A new logistic model tree (LMT) model is developed to predict slope stability status based on an updated database including 627 slope stability cases with input parameters of unit weight, cohesion, angle of internal friction, slope angle, slope height and pore pressure ratio. The performance of the LMT model was assessed using statistical metrics, including accuracy (Acc), Matthews correlation coefficient (Mcc), area under the receiver operating characteristic curve (AUC) and F-score. The analysis of the Acc together with Mcc, AUC and F-score values for the slope stability suggests that the proposed LMT achieved better prediction results (Acc = 85.6%, Mcc = 0.713, AUC = 0.907, F-score for stable state = 0.967 and F-score for failed state = 0.923) as compared to other methods previously employed in the literature. Two case studies with ten slope stability events were used to verify the proposed LMT. It was found that the prediction results are completely consistent with the actual situation at the site. Finally, risk analysis was carried out, and the result also agrees with the actual conditions. Such probability results can be incorporated into risk analysis with the corresponding failure cost assessment later.
Citation: Feezan Ahmad, Xiao-Wei Tang, Mahmood Ahmad, Roberto Alonso González-Lezcano, Ali Majdi, Mohamed Moafak Arbili. Stability risk assessment of slopes using logistic model tree based on updated case histories[J]. Mathematical Biosciences and Engineering, 2023, 20(12): 21229-21245. doi: 10.3934/mbe.2023939
A new logistic model tree (LMT) model is developed to predict slope stability status based on an updated database including 627 slope stability cases with input parameters of unit weight, cohesion, angle of internal friction, slope angle, slope height and pore pressure ratio. The performance of the LMT model was assessed using statistical metrics, including accuracy (Acc), Matthews correlation coefficient (Mcc), area under the receiver operating characteristic curve (AUC) and F-score. The analysis of the Acc together with Mcc, AUC and F-score values for the slope stability suggests that the proposed LMT achieved better prediction results (Acc = 85.6%, Mcc = 0.713, AUC = 0.907, F-score for stable state = 0.967 and F-score for failed state = 0.923) as compared to other methods previously employed in the literature. Two case studies with ten slope stability events were used to verify the proposed LMT. It was found that the prediction results are completely consistent with the actual situation at the site. Finally, risk analysis was carried out, and the result also agrees with the actual conditions. Such probability results can be incorporated into risk analysis with the corresponding failure cost assessment later.
[1] | K. Méheux, D. Dominey-Howes, K. Lloyd, Natural hazard impacts in small island developing states: A review of current knowledge and future research needs, Nat. Hazards, 40 (2007), 429–446. https://doi.org/10.1007/s11069-006-9001-5 doi: 10.1007/s11069-006-9001-5 |
[2] | S. Iai, Geotechnics and Earthquake Geotechnics Towards Global Sustainability, Springer, Dordrecht, 2011. https://doi.org/10.1007/978-94-007-0470-1 |
[3] | J. Ma, X. Liu, X. Niu, Y. Wang, T. Wen, J. Zhang, et al., Forecasting of landslide displacement using a probability-scheme combination ensemble prediction technique, Int. J. Environ. Res. Public Health, 17 (2020), 4788. https://doi.org/10.3390/ijerph17134788 doi: 10.3390/ijerph17134788 |
[4] | X. Niu, J. Ma, Y. Wang, J. Zhang, H. Chen, H. Tang, A novel decomposition-ensemble learning model based on ensemble empirical mode decomposition and recurrent neural network for landslide displacement prediction, Appl. Sci., 11 (2021), 4684. https://doi.org/10.3390/app11104684 doi: 10.3390/app11104684 |
[5] | C. Ouyang, K. Zhou, Q. Xu, J. Yin, D. Peng, D. Wang, et al., Dynamic analysis and numerical modeling of the 2015 catastrophic landslide of the construction waste landfill at Guangming, Shenzhen, China, Landslides, 14 (2017), 705–718. https://doi.org/10.1007/s10346-016-0764-9 doi: 10.1007/s10346-016-0764-9 |
[6] | J. M. Duncan, S. G. Wright, The accuracy of equilibrium methods of slope stability analysis, Eng. Geol., 16 (1980), 5–17. https://doi.org/10.1016/0013-7952(80)90003-4 doi: 10.1016/0013-7952(80)90003-4 |
[7] | D. Y. Zhu, C. F. Lee, H. D. Jiang, Generalised framework of limit equilibrium methods for slope stability analysis, Géotechnique, 53 (2003), 377–395. https://doi.org/10.1680/geot.2003.53.4.377 doi: 10.1680/geot.2003.53.4.377 |
[8] | S. Y. Liu, L. T. Shao, H. J. Li, Slope stability analysis using the limit equilibrium method and two finite element methods, Comput. Geotech., 63 (2015), 291–298. https://doi.org/10.1016/j.compgeo.2014.10.008 doi: 10.1016/j.compgeo.2014.10.008 |
[9] | A. J. Li, R. S. Merifield, A. V. Lyamin, Limit analysis solutions for three dimensional undrained slopes, Comput. Geotech., 36 (2009), 1330–1351. https://doi.org/10.1016/j.compgeo.2009.06.002 doi: 10.1016/j.compgeo.2009.06.002 |
[10] | Y. Yang, W. Wu, H. Zheng, Stability analysis of slopes using the vector sum numerical manifold method, Bull. Eng. Geol. Environ., 80 (2021), 345–352. https://doi.org/10.1007/s10064-020-01903-x doi: 10.1007/s10064-020-01903-x |
[11] | H. B. Wang, W. Y. Xu, R. C. Xu, Slope stability evaluation using back propagation neural networks, Eng. Geol., 80 (2005), 302–315. https://doi.org/10.1016/j.enggeo.2005.06.005 doi: 10.1016/j.enggeo.2005.06.005 |
[12] | L. Wang, Z. Chen, N. Wang, P. Sun, S. Yu, S. Li, et al., Modeling lateral enlargement in dam breaches using slope stability analysis based on circular slip mode, Eng. Geol., 209 (2016), 70–81. https://doi.org/10.1016/j.enggeo.2016.04.027 doi: 10.1016/j.enggeo.2016.04.027 |
[13] | C. Qi, A. Fourie, G. Ma, X. Tang, X. Du, Comparative study of hybrid artificial intelligence approaches for predicting hangingwall stability, J. Comput. Civ. Eng., 32 (2018). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000737 |
[14] | Y. Yang, Y. Sun, G. Sun, H. Zheng, Sequential excavation analysis of soil-rock-mixture slopes using an improved numerical manifold method with multiple layers of mathematical cover systems, Eng. Geol., 261 (2019), 105278. https://doi.org/10.1016/j.enggeo.2019.105278 doi: 10.1016/j.enggeo.2019.105278 |
[15] | C. Qi, X. Tang, A hybrid ensemble method for improved prediction of slope stability, Int. J. Numer. Anal. Methods Geomech., 42 (2018), 1823–1839. https://doi.org/10.1002/nag.2834 doi: 10.1002/nag.2834 |
[16] | A. Ray, V. Kumar, A. Kumar, R. Rai, M. Khandelwal, T. N. Singh, Stability prediction of Himalayan residual soil slope using artificial neural network, Nat. Hazards, 103 (2020), 3523–3540. https://doi.org/10.1007/s11069-020-04141-2 doi: 10.1007/s11069-020-04141-2 |
[17] | W. Zhang, H. Li, L. Tang, X. Gu, L. Wang, L. Wang, Displacement prediction of Jiuxianping landslide using gated recurrent unit (GRU) networks, Acta Geotech., 17 (2022), 1367–1382. https://doi.org/10.1007/s11440-022-01495-8 doi: 10.1007/s11440-022-01495-8 |
[18] | W. Zhang, H. Li, L. Han, L. Chen, L. Wang, Slope stability prediction using ensemble learning techniques: A case study in Yunyang County, Chongqing, China, J. Rock Mech. Geotech. Eng., 14 (2022), 1089–1099. https://doi.org/10.1016/j.jrmge.2021.12.011 |
[19] | L. Wang, C. Wu, X. Gu, H. Liu, G. Mei, W. Zhang, Probabilistic stability analysis of earth dam slope under transient seepage using multivariate adaptive regression splines, Bull. Eng. Geol. Environ., 79 (2020), 2763–2775. https://doi.org/10.1007/s10064-020-01730-0 doi: 10.1007/s10064-020-01730-0 |
[20] | J. R. Quinlan, Learning with continuous classes, in Proceedings of Australian Joint Conference on Artificial Intelligence, (1992), 343–348. |
[21] | Li, N., et al., Stability risk assessment of underground rock pillars using logistic model trees, Int. J. Environ. Res. Public Health, 19 (2022), 2136. https://doi.org/10.3390/ijerph19042136 doi: 10.3390/ijerph19042136 |
[22] | H. Zhang, S. Wu, X. Zhang, L. Han, Z. Zhang, Slope stability prediction method based on the margin distance minimization selective ensemble, CATENA, 212 (2022), 106055. https://doi.org/10.1016/j.catena.2022.106055 |
[23] | S. Lin, H. Zheng, B. Han, Y. Li, C. Han, W. Li, Comparative performance of eight ensemble learning approaches for the development of models of slope stability prediction, Acta Geotech., 17 (2022), 1477–1502. https://doi.org/10.1007/s11440-021-01440-1 doi: 10.1007/s11440-021-01440-1 |
[24] | S. S. Haghshenas, S. S. Haghshenas, Z. W. Geem, T. Kim, R. Mikaeil, L. Pugliese, et al., Application of harmony search algorithm to slope stability analysis, Land, 10 (2021), 1250. https://doi.org/10.3390/land10111250 doi: 10.3390/land10111250 |
[25] | K. Pham, D. Kim, S. Park, H. Choi, Ensemble learning-based classification models for slope stability analysis, CATENA, 196 (2021), 104886. https://doi.org/10.1016/j.catena.2020.104886 |
[26] | N. Kardani, A. Zhou, M. Nazem, S. Shen, Improved prediction of slope stability using a hybrid stacking ensemble method based on finite element analysis and field data, J. Rock Mech. Geotech. Eng., 13 (2021), 188–201. https://doi.org/10.1016/j.jrmge.2020.05.011 doi: 10.1016/j.jrmge.2020.05.011 |
[27] | V. Amirkiyaei, E. Ghasemi, Stability assessment of slopes subjected to circular-type failure using tree-based models, Int. J. Geotech. Eng., 16 (2022), 301–311. https://doi.org/10.1080/19386362.2020.1862538 doi: 10.1080/19386362.2020.1862538 |
[28] | J. Zhou, E. Li, S. Yang, M. Wang, X. Shi, S. Yao, et al., Slope stability prediction for circular mode failure using gradient boosting machine approach based on an updated database of case histories, Saf. Sci., 118 (2019), 505–518. https://doi.org/10.1016/j.ssci.2019.05.046 doi: 10.1016/j.ssci.2019.05.046 |
[29] | C. Qi, X. Tang, Slope stability prediction using integrated metaheuristic and machine learning approaches: a comparative study, Comput. Ind. Eng., 118 (2018), 112–122. https://doi.org/10.1016/j.cie.2018.02.028 doi: 10.1016/j.cie.2018.02.028 |
[30] | Y. Lin, K. Zhou, J. Li, Prediction of slope stability using four supervised learning methods, IEEE Access, 6 (2018), 31169–31179. https://doi.org/10.1109/ACCESS.2018.2843787 doi: 10.1109/ACCESS.2018.2843787 |
[31] | X. Feng, S. Li, C. Yuan, P. Zeng, Y. Sun, Prediction of slope stability using naive Bayes classifier, KSCE J. Civ. Eng., 22 (2018), 941–950. https://doi.org/10.1007/s12205-018-1337-3 doi: 10.1007/s12205-018-1337-3 |
[32] | N. Hoang, D.T. Bui, Slope stability evaluation using radial basis function neural network, least squares support vector machines, and extreme learning machine, in Handbook of Neural Computation, Elsevier, (2017), 333–344. https://doi.org/10.1016/B978-0-12-811318-9.00018-1 |
[33] | N. Hoang, A. Pham, Hybrid artificial intelligence approach based on metaheuristic and machine learning for slope stability assessment: A multinational data analysis, Expert Syst. Appl., 46 (2016) 60–68. https://doi.org/10.1016/j.eswa.2015.10.020 |
[34] | X. Xue, X. Yang, X. Chen, Application of a support vector machine for prediction of slope stability, Sci. China Technol. Sci., 57 (2014), 2379–2386. https://doi.org/10.1007/s11431-014-5699-6 doi: 10.1007/s11431-014-5699-6 |
[35] | P. Lu, M. S. Rosenbaum, Artificial neural networks and grey systems for the prediction of slope stability, Natural Hazards, 30 (2003), 383–398. https://doi.org/10.1023/B:NHAZ.0000007168.00673.27 doi: 10.1023/B:NHAZ.0000007168.00673.27 |
[36] | X. Feng, Introduction of Intelligent Rock Mechanics, Science Press, Beijing, 2000. |
[37] | D. W. Hosmer Jr., S. Lemeshow, R. X. Sturdivant, Applied Logistic Regression, Wiley, New Jersey, 2013. https://doi.org/10.1002/9781118548387 |
[38] | N. Landwehr, M. Hall, E. Frank, Logistic model trees, Mach. Learn., 59 (2005), 161–205. https://doi.org/10.1007/s10994-005-0466-3 doi: 10.1007/s10994-005-0466-3 |
[39] | J. Friedman, T. Hastie, R. Tibshirani, Additive logistic regression: A statistical view of boosting, Ann. Statist., 28 (2000), 337–407. http://doi.org/10.1214/aos/1016218223 |
[40] | E. Ghasemi, H. Kalhori, R. Bagherpour, S. Yagiz, Model tree approach for predicting uniaxial compressive strength and Young's modulus of carbonate rocks, Bull. Eng. Geol. Environ., 77 (2018), 331–343. https://doi.org/10.1007/s10064-016-0931-1 doi: 10.1007/s10064-016-0931-1 |
[41] | Y. Wang, I. Witten, Inducing Model trees for continuous classes, in Proceedings of the Ninth European Conference on Machine Learning, (1997). |
[42] | L. Breiman, J. H. Friedman, R. A. Olshen, C. J. Stone, Classification and regression trees, Biometrics, 40 (1984), 874. https://doi.org/10.2307/2530946 doi: 10.2307/2530946 |
[43] | M. G. Sakellariou, M. D. Ferentinou, A study of slope stability prediction using neural networks, Geotech. Geol. Eng., 23 (2005), 419–445. https://doi.org/10.1007/s10706-004-8680-5 doi: 10.1007/s10706-004-8680-5 |
[44] | V. Chavan, How to choose the right machine learning algorithm, 2022. Available from: https://medium.com/@vishakhachavan/how-to-choose-the-right-machine-learning-algorithm-8fc615de6869#: ~: text = How%20to%20Choose%20The%20Right%20Machine%20Learning%20Algorithm, Parameters%20...%208%20Linear%20or%20not%20...%20%E6%9B%B4%E5%A4%9A%E9%A1%B9%E7%9B%AE. |
[45] | A. C. Müller, S. Guido, Introduction to Machine Learning with Python: A Guide for Data Scientists, O'Reilly Medi, California, 2016. |
[46] | M. Sokolova, N. Japkowicz, S. Szpakowicz, Beyond accuracy, F-score and ROC: a family of discriminant measures for performance evaluation, in Australasian Joint Conference on Artificial Intelligence, 4304 (2006), 1015–1021. https://doi.org/10.1007/11941439_114 |
[47] | D. M. W. Powers, Evaluation: From precision, recall and F-measure to ROC, informedness, markedness and correlation, J. Mach. Learn. Technol., 2 (2011), 37–63. |
[48] | B. W. Matthews, Comparison of the predicted and observed secondary structure of T4 phage lysozyme, Biochim. Biophys. Acta, 405 (1975), 442–451. https://doi.org/10.1016/0005-2795(75)90109-9 doi: 10.1016/0005-2795(75)90109-9 |
[49] | C. C. Aggarwal, Neural Networks and Deep Learning, Springer, Cham, 2018. https://doi.org/10.1007/978-3-319-94463-0 |
[50] | Machine Learning at Waikato University, Weka 3-Data Mining with Open Source Machine Learning Software in Java, 2023. Available from: https://www.cs.waikato.ac.nz/ml/weka/. |
[51] | C. Elkan, The foundations of cost-sensitive learning, in Proceedings of the 17th international joint conference on Artificial intelligence, 2 (2001), 973–978. |
[52] | G. Zazzaro, P. Mercogliano, F. M. Pisano, Data mining to classify fog events by applying cost-sensitive classifier, in Proceedings of the 2010 International Conference on Complex, Intelligent and Software Intensive Systems, (2010), 568–573. |
[53] | H. Jia, S. Zhang, C. Wang, X. Wang, Z. Ma, Y. Tan, MSC-1DCNN based homogeneous slope stability state prediction method integrated with empirical information, 118 (2023), 729–753. https://doi.org/10.1007/s11069-023-06026-6 |
[54] | P. Jing, X. Zhang, W. Gong, L. Ma, Y. Xu, H. Yang, Study on the initiation mechanism and motion characteristics of the Daguangbao landslide and the slope stability evaluation method, Res. Square, (2023). https://doi.org/10.21203/rs.3.rs-2704990/v1 |
[55] | L. Zhu, X. Pei, S. Cui, S. Wang, X. Zhang, Y. Liang, On the initiation mechanism of the Daguangbao landslide triggered by the 2008 Wenchuan (Ms 7.9) earthquake, Soil Dyn. Earthquake Eng., 137 (2020), 106272. https://doi.org/10.1016/j.soildyn.2020.106272 doi: 10.1016/j.soildyn.2020.106272 |
[56] | Y. Song, D. Huang, D. Cen, Numerical modelling of the 2008 Wenchuan earthquake-triggered Daguangbao landslide using a velocity and displacement dependent friction law, Eng. Geol., 215 (2016), 50–68. https://doi.org/10.1016/j.enggeo.2016.11.003 doi: 10.1016/j.enggeo.2016.11.003 |
[57] | S. Cui, Q. Yang, X. Pei, R. Huang, B. Guo, W. Zhang, Geological and morphological study of the Daguangbao landslide triggered by the Ms. 8.0 Wenchuan earthquake, China, Geomorphology, 370 (2020), 107394. https://doi.org/10.1016/j.geomorph.2020.107394 |
[58] | X. Li, X. Tang, S. Zhao, Q. Yan, Y. Wu, MPM evaluation of the dynamic runout process of the giant Daguangbao landslide, Landslides, 18 (2021), 1509–1518. |
[59] | G. Wang, Unascertained information and its mathematical treatment, J. Harbin Univ. Civ. Eng. Archit., (1990), 1–9. |
[60] | K. Liu, H. Wu, N. Wang, H. Li, S. Liu, Unascertained Mathematics, Huazhong University of Science and Technology Press, Wuhan, 1997. |
[61] | K. Liu, Mathematical Processing and Application of Uncertainty Information, Science Press, Beijing, 1999. |
[62] | D. Norris, B. W. Pilsworth, J. F. Baldwin, Medical diagnosis from patient records-A method using fuzzy discrimination and connectivity analyses, Fuzzy Sets Syst., 23 (1987), 73–87. |
mbe-20-12-939-Supplementary.zip |