Research article

Machine learning based classification of normal, slow and fast walking by extracting multimodal features from stride interval time series

  • Received: 01 October 2020 Accepted: 03 December 2020 Published: 10 December 2020
  • The gait speed affects the gait patterns (biomechanical and spatiotemporal parameters) of distinct age populations. Classification of normal, slow and fast walking is fundamental for understanding the effects of gait speed on the gait patterns and for proper evaluation of alternations associated with it. In this study, we extracted multimodal features such as time domain and entropy-based complexity measures from stride interval signals of healthy subjects moving with normal, slow and fast speeds. The classification between different gait speeds was performed using machine learning classifiers such as classification and regression tree (CART), support vector machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers (random forest (RF), XG boost, averaged neural network (AVNET)). The performance was evaluated in term of accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), p-value, area under the receiver operating characteristic curve (AUC). To distinguish the slow and normal gait walking, the highest performance was yielded in terms of accuracy (100%), p-value (0.004), and AUC (1.00) using RF, XGB-L followed by XGB-Tree with accuracy (88%), p-value (0.04) and AUC (1.00). To classify the fast and normal walking, the highest performance was obtained with accuracy (88%), p-value (0.04) using XGB-L, XGB-Tree and AVNET. The highest AUC (0.94) was obtained using NB. To discriminate the fast and slow gait walking, the highest performance was obtained using SVM-R, NNET, RF, AVNET with accuracy (88%), p-value (0.04) and AUC (0.94) using RF and AUC (0.96) using XGB-L.

    Citation: Wajid Aziz, Lal Hussain, Ishtiaq Rasool Khan, Jalal S. Alowibdi, Monagi H. Alkinani. Machine learning based classification of normal, slow and fast walking by extracting multimodal features from stride interval time series[J]. Mathematical Biosciences and Engineering, 2021, 18(1): 495-517. doi: 10.3934/mbe.2021027

    Related Papers:

  • The gait speed affects the gait patterns (biomechanical and spatiotemporal parameters) of distinct age populations. Classification of normal, slow and fast walking is fundamental for understanding the effects of gait speed on the gait patterns and for proper evaluation of alternations associated with it. In this study, we extracted multimodal features such as time domain and entropy-based complexity measures from stride interval signals of healthy subjects moving with normal, slow and fast speeds. The classification between different gait speeds was performed using machine learning classifiers such as classification and regression tree (CART), support vector machine linear (SVM-L), Naïve Bayes, neural network, and ensemble classifiers (random forest (RF), XG boost, averaged neural network (AVNET)). The performance was evaluated in term of accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), p-value, area under the receiver operating characteristic curve (AUC). To distinguish the slow and normal gait walking, the highest performance was yielded in terms of accuracy (100%), p-value (0.004), and AUC (1.00) using RF, XGB-L followed by XGB-Tree with accuracy (88%), p-value (0.04) and AUC (1.00). To classify the fast and normal walking, the highest performance was obtained with accuracy (88%), p-value (0.04) using XGB-L, XGB-Tree and AVNET. The highest AUC (0.94) was obtained using NB. To discriminate the fast and slow gait walking, the highest performance was obtained using SVM-R, NNET, RF, AVNET with accuracy (88%), p-value (0.04) and AUC (0.94) using RF and AUC (0.96) using XGB-L.


    加载中


    [1] J. B. Kiriella, V. E. Di Bacco, K. L. Hollands, W. H. Gage, Evaluation of the effects of prescribing gait complexity using several fluctuating timing imperatives, J. Mot. Behav., 52 (2020), 570-577. doi: 10.1080/00222895.2019.1654971
    [2] J. M. Hausdorff, C. K. Peng, Z. Ladin, J. Y. Wei, A. L. Goldberger, Is walking a random walk? Evidence for long-range correlations in stride interval of human gait, J. Appl. Physiol., 78 (1995), 349-358. doi: 10.1152/jappl.1995.78.1.349
    [3] C. A. Fukuchi, R. K. Fukuchi, M. Duarte, Effects of walking speed on gait biomechanics in healthy participants: a systematic review and meta-analysis, Syst. Rev., 8 (2019), 153. doi: 10.1186/s13643-019-1063-z
    [4] A. Phinyomark, S. T. Osis, B. A. Hettinga, D. Kobsar, R. Ferber, Gender differences in gait kinematics for patients with knee osteoarthritis, BMC Musculoskelet. Disord., 17 (2016), 157. doi: 10.1186/s12891-016-1013-z
    [5] M. P. Kadaba, H. K. Ramakrishnan, M. E. Wootten, Measurement of lower extremity kinematics during level walking, J. Orthop. Res., 8 (1990), 383-392. doi: 10.1002/jor.1100080310
    [6] S. R. Simon, Quantification of human motion: gait analysis—benefits and limitations to its application to clinical problems, J. Biomech., 37 (2004), 1869-1880. doi: 10.1016/j.jbiomech.2004.02.047
    [7] Z. Chen, P. C. Ivanov, K. Hu, H. E. Stanley, Effect of nonstationarities on detrended fluctuation analysis, Phys. Rev. E., 65 (2002), 041107. doi: 10.1103/PhysRevE.65.041107
    [8] M. R. Pierrynowski, A. Gross, M. Miles, V. Galea, L. McLaughlin, C. McPhee, Reliability of the long-range power-law correlations obtained from the bilateral stride intervals in asymptomatic volunteers whilst treadmill walking, Gait Posture, 22 (2005), 46-50. doi: 10.1016/j.gaitpost.2004.06.007
    [9] S. Damouras, M. D. Chang, E. Sejdić, T. Chau, An empirical examination of detrended fluctuation analysis for gait data, Gait Posture, 31 (2010), 336-340. doi: 10.1016/j.gaitpost.2009.12.002
    [10] J. B. Dingwell, J. P. Cusumano, Re-interpreting detrended fluctuation analyses of stride-to-stride variability in human walking, Gait Posture, 32 (2010), 348-353. doi: 10.1016/j.gaitpost.2010.06.004
    [11] J. M. Hausdorff, P. L. Purdon, C. K. Peng, Z. Ladin, J. Y. Wei, A. L. Goldberger, Fractal dynamics of human gait: stability of long-range correlations in stride interval fluctuations, J. Appl. Physiol., 80 (1996), 1448-1457. doi: 10.1152/jappl.1996.80.5.1448
    [12] J. M. Hausdorff, S. L. Mitchell, R. Firtion, C. K. Peng, M. E. Cudkowicz, J. Y. Wei, et al., Altered fractal dynamics of gait: reduced stride-interval correlations with aging and Huntington's disease, J. Appl. Physiol., 82 (1997), 262-269. doi: 10.1152/jappl.1997.82.1.262
    [13] J. M. Hausdorff, M. E. Cudkowicz, R. Firtion, J. Y. Wei, A. L. Goldberger, Gait variability and basal ganglia disorders: Stride-to-stride variations of gait cycle timing in parkinson's disease and Huntington's disease, Mov. Disord., 13 (1998), 428-437. doi: 10.1002/mds.870130310
    [14] M. Costa, C. K. Peng, A. L. Goldberger, J. M. Hausdorff, Multiscale entropy analysis of human gait dynamics, Phys. A Stat. Mech. Its Appl., 330 (2003), 53-60. doi: 10.1016/j.physa.2003.08.022
    [15] W. Aziz, M. Arif, Complexity analysis of stride interval time series by threshold dependent symbolic entropy, Eur. J. Appl. Physiol., 98 (2006), 30-40. doi: 10.1007/s00421-006-0226-5
    [16] A. Goshvarpour, A. Goshvarpour, Nonlinear analysis of human gait signals, Int. J. Inf. Eng. Electron. Bus., 4 (2012), 15-21.
    [17] A. Q. Abbasi, W. A. Loun, Symbolic time series analysis of temporal gait dynamics, J. Signal Process. Syst., 74 (2014), 417-422. doi: 10.1007/s11265-013-0836-1
    [18] J. Yu, J. Cao, W. H. Liao, Y. Chen, J. Lin, R. Liu, Multivariate multiscale symbolic entropy analysis of human gait signals, Entropy, 19 (2017), 557. doi: 10.3390/e19100557
    [19] J. C. Vasquez-Correa, T. Bocklet, J. R. Orozco-Arroyave, E. Noth, Comparison of user models based on GMM-UBM and i-vectors for speech, handwriting, and gait assessment of Parkinson's disease patients, ICASSP 2020-2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), IEEE, 2020. Available from: https://ieeexplore.ieee.org/abstract/document/9054348.
    [20] R. San-Segundo, R. Cordoba, J. Ferreiros, L. F. D'Haro-Enríquez, Frequency features and GMM-UBM approach for gait-based person identification using smartphone inertial signals, Pattern Recognit. Lett., 73 (2016), 60-67.
    [21] R. San-Segundo, J. D. Echeverry-Correa, C. Salamea-Palacios, S. Lebai Lutfi, J. M. Pardo, I-vector analysis for Gait-based Person Identification using smartphone inertial signals, Pervasive Mob. Comput., 38 (2017), 140-153. doi: 10.1016/j.pmcj.2016.09.007
    [22] Y. Hu, Z. Li, G. Li, P. Yuan, C. Yang, R. Song, Development of sensory-motor fusion-based manipulation and grasping control for a robotic hand-eye system, IEEE Trans. Syst. Man, Cybern. Syst., 47 (2016), 1169-1180.
    [23] R. San-Segundo, R. Torres-Sánchez, J. Hodgins, F. De la Torre, Increasing robustness in the detection of freezing of gait in Parkinson's disease, Electronics, 8 (2019), 119.
    [24] A. Zhang, R. San-Segundo, S. Panev, G. Tabor, K. Stebbins, A. S. Whitford, et al., Automated tremor detection in Parkinson's disease using accelerometer signals, Proceedings of the 2018 IEEE/ACM International Conference on Connected Health: Applications, Systems and Engineering Technologies, ACM, New York, NY, USA, 2018. Available from: https://dl.acm.org/doi/abs/10.1145/3278576.3278582.
    [25] R. San-Segundo, J. M. Montero, R. Barra-Chicote, F. Fernández, J. M. Pardo, Feature extraction from smartphone inertial signals for human activity segmentation, Signal Process., 120 (2016), 359-372. doi: 10.1016/j.sigpro.2015.09.029
    [26] H. Zhou, J. Tang, H. Zheng, Machine learning for medical applications, Sci. World J., 2015 (2015), 1-1.
    [27] H. Ma, Y. Zuo, T. Li, C. L. P. Chen, Data-driven decision-support system for speaker identification using E-Vector system, Sci. Program., 2020 (2020), 1-13.
    [28] H. Wu, M. Liu, S. Zhang, Z. Wang, S. Cheng, Big data management and analytics in scientific programming: A deep learning-based method for aspect category classification of question-answering-style reviews, Sci. Program., 2020 (2020), 1-10.
    [29] L. Hussain, Detecting epileptic seizure with different feature extracting strategies using robust machine learning classification techniques by applying advance parameter optimization approach, Cogn. Neurodyn., 12 (2018), 271-294. doi: 10.1007/s11571-018-9477-1
    [30] L. Hussain, W. Aziz, J. S. Alowibdi, N. Habib, M. Rafique, S. Saeed, et al., Symbolic time series analysis of electroencephalographic (EEG) epileptic seizure and brain dynamics with eye-open and eye-closed subjects during resting states, J. Physiol. Anthropol., 36 (2017), 21. doi: 10.1186/s40101-017-0136-8
    [31] L. Hussain, W. Aziz, S. Saeed, S. A. Shah, M. S. A. Nadeem, A. Awan, et al., Complexity analysis of EEG motor movement with eye open and close subjects using multiscale permutation entropy (MPE) technique, Biomed. Res., 28 (2017), 7104-7111.
    [32] L. Hussain, W. Aziz, S. Saeed, S. A. Shah, M. S. A. Nadeem, I. A. Awan, et al., Quantifying the dynamics of electroencephalographic (EEG) signals to distinguish alcoholic and non-alcoholic subjects using an MSE based K-d tree algorithm, Biomed. Eng.-Biomed. Tech., 63 (2018), 481-490.
    [33] L. Hussain, W. Aziz, A. A. Alshdadi, M. S. A. Nadeem, I. R. Khan, Q. A. Chaudhry, Analyzing the dynamics of lung cancer imaging data using refined fuzzy entropy methods by extracting different features, IEEE Access, 7 (2019), 64704-64721. doi: 10.1109/ACCESS.2019.2917303
    [34] S. M. Pincus, Approximate entropy as a measure of system complexity, Proc. Natl. Acad. Sci., 88 (1991), 2297-2301. doi: 10.1073/pnas.88.6.2297
    [35] M. Costa, A. L. Goldberger, C. K. Peng, Multiscale entropy analysis of complex physiologic time series, Phys. Rev. Lett., 89 (2002), 068102. doi: 10.1103/PhysRevLett.89.068102
    [36] J. S. Richman, J. R. Moorman, Physiological time-series analysis using approximate entropy and sample entropy, Am. J. Physiol. Circ. Physiol., 278 (2000), H2039-H2049. doi: 10.1152/ajpheart.2000.278.6.H2039
    [37] J. L. Bentley, Multidimensional binary search trees used for associative searching, Commun. ACM, 18 (1975), 509-517. doi: 10.1145/361002.361007
    [38] D. Wang, D. Miao, C. Xie, Best basis-based wavelet packet entropy feature extraction and hierarchical EEG classification for epileptic detection, Expert Syst. Appl., 38 (2011), 14314-14320.
    [39] O. A. Rosso, S. Blanco, J. Yordanova, V. Kolev, A. Figliola, M. Schürmann, et al., Wavelet entropy: a new tool for analysis of short duration brain electrical signals, J. Neurosci. Methods, 105 (2001), 65-75. doi: 10.1016/S0165-0270(00)00356-3
    [40] Y. Wu, Y. Zhou, G. Saveriades, S. Agaian, J. P. Noonan, P. Natarajan, Local Shannon entropy measure with statistical tests for image randomness, Inf. Sci., 222 (2013), 323-342. doi: 10.1016/j.ins.2012.07.049
    [41] S. Ekici, S. Yildirim, M. Poyraz, Energy and entropy-based feature extraction for locating fault on transmission lines by using neural network and wavelet packet decomposition, Expert Syst. Appl., 34 (2008), 2937-2944. doi: 10.1016/j.eswa.2007.05.011
    [42] E. Avci, D. Hanbay, A. Varol, An expert discrete wavelet adaptive network based fuzzy inference system for digital modulation recognition, Expert Syst. Appl., 33 (2007), 582-589. doi: 10.1016/j.eswa.2006.06.001
    [43] I. Turkoglu, A. Arslan, E. Ilkay, An intelligent system for diagnosis of the heart valve diseases with wavelet packet neural networks, Comput. Biol. Med., 33 (2003), 319-331. doi: 10.1016/S0010-4825(03)00002-7
    [44] Y. Li, C. Y. Wee, B. Jie, Z. Peng, D. Shen, Sparse multivariate autoregressive modeling for mild cognitive impairment classification, Neuroinformatics, 12 (2014), 455-469. doi: 10.1007/s12021-014-9221-x
    [45] C. J. C. Burges, A tutorial on support vector machines for pattern recognition, Data Min. Knowl. Discov., 2 (1998), 121-167. doi: 10.1023/A:1009715923555
    [46] F. J. Huang, Y. LeCun, Large-scale learning with svm and convolutional for generic object categorization, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06), 1 (2006), 284-291.
    [47] A. Gammerman, Z. Luo, J. Vega, V. Vovk, Conformal and Probabilistic Prediction with Applications: 5th International Symposium, Springer, Madrid, Spain, 2016.
    [48] V. N. Vapnik, An overview of statistical learning theory, IEEE Trans. Neural Networks, 10 (1999), 988-999. doi: 10.1109/72.788640
    [49] A. P. Dobrowolski, M. Wierzbowski, K. Tomczykiewicz, Multiresolution MUAPs decomposition and SVM-based analysis in the classification of neuromuscular disorders, Comput. Methods Programs Biomed., 107 (2012), 393-403. doi: 10.1016/j.cmpb.2010.12.006
    [50] A. Subasi, Classification of EMG signals using PSO optimized SVM for diagnosis of neuromuscular disorders, Comput. Biol. Med., 43 (2013), 576-586. doi: 10.1016/j.compbiomed.2013.01.020
    [51] C. Gao, Q. Cheng, P. He, W. Susilo, J. Li, Privacy-preserving Naive Bayes classifiers secure against the substitution-then-comparison attack, Inf. Sci., 444 (2018), 72-88. doi: 10.1016/j.ins.2018.02.058
    [52] Y. Yamauchi, M. Mukaidono, Probabilistic inference and Bayesian theorem based on logical implication, International Workshop on Rough Sets, Fuzzy Sets, Data Mining, and Granular-Soft Computing, Springer, Berlin, Heidelberg, 1999. Available from: https://link.springer.com/chapter/10.1007/978-3-540-48061-7_40.
    [53] G. X. Yuan, C. H. Ho, C. Lin, Recent advances of large-scale linear classification, Proc. IEEE, 100 (2012), 2584-2603. doi: 10.1109/JPROC.2012.2188013
    [54] N. A. Zaidi, Y. Du, G. I. Webb, On the effectiveness of discretizing quantitative attributes in linear classifiers, IEEE Access, 8 (2020), 198856-198871. doi: 10.1109/ACCESS.2020.3034955
    [55] J. Zhang, C. Chen, Y. Xiang, W. Zhou, Y. Xiang, Internet traffic classification by aggregating correlated naive bayes predictions, IEEE Trans. Inf. Forensics Secur., 8 (2013), 5-15. doi: 10.1109/TIFS.2012.2223675
    [56] C. Chen, G. Zhang, J. Yang, J. C. Milton, A. D. Alcántara, An explanatory analysis of driver injury severity in rear-end crashes using a decision table/Naïve Bayes (DTNB) hybrid classifier, Accid. Anal. Prev., 90 (2016), 95-107.
    [57] P. Bermejo, J. A. Gámez, J. M. Puerta, Speeding up incremental wrapper feature subset selection with Naive Bayes classifier, Knowledge-Based Syst., 55 (2014), 140-147. doi: 10.1016/j.knosys.2013.10.016
    [58] F. J. Ariza-Lopez, J. Rodriguez-Avi, M. V. Alba-Fernandez, Complete control of an observed confusion matrix, IGARSS 2018-2018 IEEE International Geoscience and Remote Sensing Symposium, 2018. Available from: https://ieeexplore.ieee.org/abstract/document/8517540.
    [59] L. M. Wang, X. L. Li, C. H. Cao, S. M. Yuan, Combining decision tree and Naive Bayes for classification, Knowledge-Based Syst., 19 (2006), 511-515. doi: 10.1016/j.knosys.2005.10.013
    [60] L. Hussain, W. Aziz, A. S. Khan, A. Q. Abbasi, S. Z. Hassan, Classification of electroencephlography (EEG) alcoholic and control subjects using machine learning ensemble methods, J. Multidiscip. Eng. Sci. Technol., 2 (2015), 126-131.
    [61] A. Criminisi, J. Shotton, E. Konukoglu, Decision forests: A unified framework for classification, regression, density estimation, manifold learning and semi-supervised learning, Found. Trends® Comput. Graph. Vis., 7 (2011), 81-227. doi: 10.1561/0600000035
    [62] R. Genuer, J. M. Poggi, C. Tuleau-Malot, Variable selection using random forests, Pattern Recognit. Lett., 31 (2010), 2225-2236. doi: 10.1016/j.patrec.2010.03.014
    [63] L. Breiman, Bagging predictors, Mach. Learn., 24 (1996), 123-140.
    [64] T. Chen, C. Guestrin, Xgboost: A scalable tree boosting system, Proceedings of the 22nd acm sigkdd international conference on knowledge discovery and data mining, 2016. Available from: https://dl.acm.org/doi/abs/10.1145/2939672.2939785.
    [65] J. H. Friedman, Greedy function approximation: A gradient boosting machine, Ann. Stat., 29 (2001), 1189-1232. doi: 10.1214/aos/1013203450
    [66] P. Leray, P. Gallinari, Feature selection with neural networks, Behaviormetrika, 26 (1999), 145-166. doi: 10.2333/bhmk.26.145
    [67] K. Ha, S. Cho, D. MacLachlan, Response models based on bagging neural networks, J. Interact. Mark., 19 (2005), 17-30. doi: 10.1002/dir.20028
    [68] D. Stephens, M. Diesing, A comparison of supervised classification methods for the prediction of substrate type using multibeam acoustic and legacy grain-size data, PLoS One, 9 (2014), e93950. doi: 10.1371/journal.pone.0093950
    [69] K. Hajian-Tilaki, Receiver operating characteristic (ROC) curve analysis for medical diagnostic test evaluation, Casp. J. Intern. Med., 4 (2013), 627-635.
    [70] H. Wang, T. M. Khoshgoftaar, K. Gao, A comparative study of filter-based feature ranking techniques, 2010 IEEE International Conference on Information Reuse & Integration, 2010, Available from: https://ieeexplore.ieee.org/abstract/document/5558966.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3759) PDF downloads(286) Cited by(7)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog