In the paper [
Citation: Qiang Guang, Qi-Rui Li, Xu-Jia Wang. Flow by Gauss curvature to the $ L_p $ dual Minkowski problem[J]. Mathematics in Engineering, 2023, 5(3): 1-19. doi: 10.3934/mine.2023049
In the paper [
[1] | B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), 443–459. https://doi.org/10.1090/S0894-0347-02-00415-0 doi: 10.1090/S0894-0347-02-00415-0 |
[2] | K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831–852. https://doi.org/10.1090/S0894-0347-2012-00741-3 doi: 10.1090/S0894-0347-2012-00741-3 |
[3] | K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao, The Gauss image problem, Commun. Pure Appl. Math., 73 (2020), 1406–1452. https://doi.org/10.1002/cpa.21898 doi: 10.1002/cpa.21898 |
[4] | K. J. Böröczky, F. Fodor, The $L_p$ dual Minkowski problem for $p>1$ and $q > 0$, J. Differ. Equations, 266 (2019), 7980–8033. https://doi.org/10.1016/j.jde.2018.12.020 doi: 10.1016/j.jde.2018.12.020 |
[5] | P. Bryan, M. N. Ivaki, J. Scheuer, A unified flow approach to smooth, even $L_p$-Minkowski problems, Anal. PDE, 12 (2019), 259–280. https://doi.org/10.2140/apde.2019.12.259 doi: 10.2140/apde.2019.12.259 |
[6] | C. Chen, Y. Huang, Y. Zhao, Smooth solution to the $L_p$ dual Minkowski problem, Math. Ann., 373 (2019), 953–976. https://doi.org/10.1007/s00208-018-1727-3 doi: 10.1007/s00208-018-1727-3 |
[7] | H. Chen, S. Chen, Q.-R. Li, Variations of a class of Monge-Ampère-type functionals and their applications, Anal. PDE, 14 (2021), 689–716. https://doi.org/10.2140/apde.2021.14.689 doi: 10.2140/apde.2021.14.689 |
[8] | H. Chen, Q.-R. Li, The $L_p$-dual Minkowski problem and related parabolic flows, J. Funct. Anal., 281 (2021), 109139. https://doi.org/10.1016/j.jfa.2021.109139 doi: 10.1016/j.jfa.2021.109139 |
[9] | S. Chen, Q.-R. Li, G. Zhu, The logarithmic Minkowski problem for non-symmetric measures, Trans. Amer. Math. Soc., 371 (2019), 2623–2641. https://doi.org/10.1090/tran/7499 doi: 10.1090/tran/7499 |
[10] | K.-S. Chou, X.-J. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Anal. Non Lin'eaire, 17 (2000), 733–751. https://doi.org/10.1016/S0294-1449(00)00053-6 doi: 10.1016/S0294-1449(00)00053-6 |
[11] | K.-S. Chou, X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33–83. https://doi.org/10.1016/j.aim.2005.07.004 doi: 10.1016/j.aim.2005.07.004 |
[12] | S.-Z. Du, On the planar $L_ p$-Minkowski problem, J. Differ. Equations, 287 (2021), 37–77. https://doi.org/10.1016/j.jde.2021.03.035 doi: 10.1016/j.jde.2021.03.035 |
[13] | Q. Guang, Q.-R. Li, X.-J. Wang, The $L_p$-Minkowski problem with super-critical exponents, arXiv: 2203.05099. |
[14] | Q. Guang, Q.-R. Li, X.-J. Wang, Existence of convex hypersurfaces with prescribed centroaffine curvature, preprint. |
[15] | Y. He, Q.-R. Li, X.-J. Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var., 55 (2016), 117. https://doi.org/10.1007/s00526-016-1063-y doi: 10.1007/s00526-016-1063-y |
[16] | Y. Huang, E. Lutwak, D. Yang, G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325–388. https://doi.org/10.1007/s11511-016-0140-6 doi: 10.1007/s11511-016-0140-6 |
[17] | Y. Huang, Y. Zhao, On the $L_p$ dual Minkowski problem, Adv. Math., 332 (2018), 57–84. https://doi.org/10.1016/j.aim.2018.05.002 doi: 10.1016/j.aim.2018.05.002 |
[18] | H. Jian, J. Lu, X.-J. Wang, Nonuniqueness of solutions to the $L_p$-Minkowski problem, Adv. Math., 281 (2015), 845–856. https://doi.org/10.1016/j.aim.2015.05.010 doi: 10.1016/j.aim.2015.05.010 |
[19] | Q.-R. Li, Infinitely many solutions for centro-affine Minkowski problem, Int. Math. Res. Notices, 2019 (2019), 5577–5596. https://doi.org/10.1093/imrn/rnx284 doi: 10.1093/imrn/rnx284 |
[20] | Q.-R. Li, W. Sheng, X.-J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22 (2020), 893–923. https://doi.org/10.4171/JEMS/936 doi: 10.4171/JEMS/936 |
[21] | Q.-R. Li, X.-J. Wang, A class of optimal transportation problems on the sphere, (Chinese), Scientia Sinica Mathematica, 48 (2018), 181–200. https://doi.org/10.1360/N012017-00061 doi: 10.1360/N012017-00061 |
[22] | E. Lutwak, The Brunn-Minkowski-Firey theory Ⅰ. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131–150. https://doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097 |
[23] | E. Lutwak, D. Yang, G. Zhang, $L_p$ dual curvature measures, Adv. Math., 329 (2018), 85–132. https://doi.org/10.1016/j.aim.2018.02.011 doi: 10.1016/j.aim.2018.02.011 |