Research article Special Issues

Flow by Gauss curvature to the $ L_p $ dual Minkowski problem

  • Received: 22 March 2022 Revised: 01 August 2022 Accepted: 01 August 2022 Published: 16 August 2022
  • In the paper [20], the authors introduced a Gauss curvature flow to study the Aleksandrov problem and the dual Minkowski problem. The paper [20] treated the cases when one can establish the uniform estimate for the Gauss curvature flow. In this paper, we study the $ L_p $ dual Minkowski problem, an extension of the dual Minkowski problem. We deal with some cases in which there is no uniform estimate for the Gauss curvature flow. We adopt the topological method from [13] to find a special initial condition such that the Gauss curvature flow converges to a solution of the $ L_p $ dual Minkowski problem.

    Citation: Qiang Guang, Qi-Rui Li, Xu-Jia Wang. Flow by Gauss curvature to the $ L_p $ dual Minkowski problem[J]. Mathematics in Engineering, 2023, 5(3): 1-19. doi: 10.3934/mine.2023049

    Related Papers:

  • In the paper [20], the authors introduced a Gauss curvature flow to study the Aleksandrov problem and the dual Minkowski problem. The paper [20] treated the cases when one can establish the uniform estimate for the Gauss curvature flow. In this paper, we study the $ L_p $ dual Minkowski problem, an extension of the dual Minkowski problem. We deal with some cases in which there is no uniform estimate for the Gauss curvature flow. We adopt the topological method from [13] to find a special initial condition such that the Gauss curvature flow converges to a solution of the $ L_p $ dual Minkowski problem.



    加载中


    [1] B. Andrews, Classification of limiting shapes for isotropic curve flows, J. Amer. Math. Soc., 16 (2003), 443–459. https://doi.org/10.1090/S0894-0347-02-00415-0 doi: 10.1090/S0894-0347-02-00415-0
    [2] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, The logarithmic Minkowski problem, J. Amer. Math. Soc., 26 (2013), 831–852. https://doi.org/10.1090/S0894-0347-2012-00741-3 doi: 10.1090/S0894-0347-2012-00741-3
    [3] K. J. Böröczky, E. Lutwak, D. Yang, G. Zhang, Y. Zhao, The Gauss image problem, Commun. Pure Appl. Math., 73 (2020), 1406–1452. https://doi.org/10.1002/cpa.21898 doi: 10.1002/cpa.21898
    [4] K. J. Böröczky, F. Fodor, The $L_p$ dual Minkowski problem for $p>1$ and $q > 0$, J. Differ. Equations, 266 (2019), 7980–8033. https://doi.org/10.1016/j.jde.2018.12.020 doi: 10.1016/j.jde.2018.12.020
    [5] P. Bryan, M. N. Ivaki, J. Scheuer, A unified flow approach to smooth, even $L_p$-Minkowski problems, Anal. PDE, 12 (2019), 259–280. https://doi.org/10.2140/apde.2019.12.259 doi: 10.2140/apde.2019.12.259
    [6] C. Chen, Y. Huang, Y. Zhao, Smooth solution to the $L_p$ dual Minkowski problem, Math. Ann., 373 (2019), 953–976. https://doi.org/10.1007/s00208-018-1727-3 doi: 10.1007/s00208-018-1727-3
    [7] H. Chen, S. Chen, Q.-R. Li, Variations of a class of Monge-Ampère-type functionals and their applications, Anal. PDE, 14 (2021), 689–716. https://doi.org/10.2140/apde.2021.14.689 doi: 10.2140/apde.2021.14.689
    [8] H. Chen, Q.-R. Li, The $L_p$-dual Minkowski problem and related parabolic flows, J. Funct. Anal., 281 (2021), 109139. https://doi.org/10.1016/j.jfa.2021.109139 doi: 10.1016/j.jfa.2021.109139
    [9] S. Chen, Q.-R. Li, G. Zhu, The logarithmic Minkowski problem for non-symmetric measures, Trans. Amer. Math. Soc., 371 (2019), 2623–2641. https://doi.org/10.1090/tran/7499 doi: 10.1090/tran/7499
    [10] K.-S. Chou, X.-J. Wang, A logarithmic Gauss curvature flow and the Minkowski problem, Ann. Inst. H. Poincaré Anal. Non Lin'eaire, 17 (2000), 733–751. https://doi.org/10.1016/S0294-1449(00)00053-6 doi: 10.1016/S0294-1449(00)00053-6
    [11] K.-S. Chou, X.-J. Wang, The $L_p$-Minkowski problem and the Minkowski problem in centroaffine geometry, Adv. Math., 205 (2006), 33–83. https://doi.org/10.1016/j.aim.2005.07.004 doi: 10.1016/j.aim.2005.07.004
    [12] S.-Z. Du, On the planar $L_ p$-Minkowski problem, J. Differ. Equations, 287 (2021), 37–77. https://doi.org/10.1016/j.jde.2021.03.035 doi: 10.1016/j.jde.2021.03.035
    [13] Q. Guang, Q.-R. Li, X.-J. Wang, The $L_p$-Minkowski problem with super-critical exponents, arXiv: 2203.05099.
    [14] Q. Guang, Q.-R. Li, X.-J. Wang, Existence of convex hypersurfaces with prescribed centroaffine curvature, preprint.
    [15] Y. He, Q.-R. Li, X.-J. Wang, Multiple solutions of the $L_p$-Minkowski problem, Calc. Var., 55 (2016), 117. https://doi.org/10.1007/s00526-016-1063-y doi: 10.1007/s00526-016-1063-y
    [16] Y. Huang, E. Lutwak, D. Yang, G. Zhang, Geometric measures in the dual Brunn-Minkowski theory and their associated Minkowski problems, Acta Math., 216 (2016), 325–388. https://doi.org/10.1007/s11511-016-0140-6 doi: 10.1007/s11511-016-0140-6
    [17] Y. Huang, Y. Zhao, On the $L_p$ dual Minkowski problem, Adv. Math., 332 (2018), 57–84. https://doi.org/10.1016/j.aim.2018.05.002 doi: 10.1016/j.aim.2018.05.002
    [18] H. Jian, J. Lu, X.-J. Wang, Nonuniqueness of solutions to the $L_p$-Minkowski problem, Adv. Math., 281 (2015), 845–856. https://doi.org/10.1016/j.aim.2015.05.010 doi: 10.1016/j.aim.2015.05.010
    [19] Q.-R. Li, Infinitely many solutions for centro-affine Minkowski problem, Int. Math. Res. Notices, 2019 (2019), 5577–5596. https://doi.org/10.1093/imrn/rnx284 doi: 10.1093/imrn/rnx284
    [20] Q.-R. Li, W. Sheng, X.-J. Wang, Flow by Gauss curvature to the Aleksandrov and dual Minkowski problems, J. Eur. Math. Soc., 22 (2020), 893–923. https://doi.org/10.4171/JEMS/936 doi: 10.4171/JEMS/936
    [21] Q.-R. Li, X.-J. Wang, A class of optimal transportation problems on the sphere, (Chinese), Scientia Sinica Mathematica, 48 (2018), 181–200. https://doi.org/10.1360/N012017-00061 doi: 10.1360/N012017-00061
    [22] E. Lutwak, The Brunn-Minkowski-Firey theory Ⅰ. Mixed volumes and the Minkowski problem, J. Differential Geom., 38 (1993), 131–150. https://doi.org/10.4310/jdg/1214454097 doi: 10.4310/jdg/1214454097
    [23] E. Lutwak, D. Yang, G. Zhang, $L_p$ dual curvature measures, Adv. Math., 329 (2018), 85–132. https://doi.org/10.1016/j.aim.2018.02.011 doi: 10.1016/j.aim.2018.02.011
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1973) PDF downloads(368) Cited by(5)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog