Editorial Special Issues

Partial differential equations from theory to applications: Dedicated to Alberto Farina, on the occasion of his 50th birthday

  • Received: 17 August 2022 Revised: 18 August 2022 Accepted: 18 August 2022 Published: 19 August 2022
  • Partial differential equations are a classical and very active field of research. One of its salient features is to break the rigid distinction between the evolution of the theory and the applications to real world phenomena, since the two are intimately intertwined in the harmonious development of such a fascinating and multifaceted topic of investigation.

    Citation: Serena Dipierro, Luca Lombardini. Partial differential equations from theory to applications: Dedicated to Alberto Farina, on the occasion of his 50th birthday[J]. Mathematics in Engineering, 2023, 5(3): 1-9. doi: 10.3934/mine.2023050

    Related Papers:

  • Partial differential equations are a classical and very active field of research. One of its salient features is to break the rigid distinction between the evolution of the theory and the applications to real world phenomena, since the two are intimately intertwined in the harmonious development of such a fascinating and multifaceted topic of investigation.



    加载中


    [1] N. Abatangelo, S. Jarohs, A. Saldaña, Fractional Laplacians on ellipsoids, Mathematics in Engineering, 3 (2021), 1–34. http://doi.org/10.3934/mine.2021038 doi: 10.3934/mine.2021038
    [2] B. Abdellaoui, P. Ochoa, I. Peral, A note on quasilinear equations with fractional diffusion, Mathematics in Engineering, 3 (2021), 1–28. http://doi.org/10.3934/mine.2021018 doi: 10.3934/mine.2021018
    [3] F. G. Alessio, P. Montecchiari, Gradient Lagrangian systems and semilinear PDE, Mathematics in Engineering, 3 (2021), 1–28. http://doi.org/10.3934/mine.2021044 doi: 10.3934/mine.2021044
    [4] M. T. Barlow, R. F. Bass, C. Gui, The Liouville property and a conjecture of De Giorgi, Commun. Pure Appl. Math., 53 (2000), 1007–1038. http://doi.org/10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO;2-U doi: 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.0.CO;2-U
    [5] H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry of bounded entire solutions of some elliptic equations, Duke Math. J., 103 (2000), 375–396. http://doi.org/10.1215/S0012-7094-00-10331-6 doi: 10.1215/S0012-7094-00-10331-6
    [6] B. Bianchini, G. Colombo, M. Magliaro, L. Mari, P. Pucci, M. Rigoli, Recent rigidity results for graphs with prescribed mean curvature, Mathematics in Engineering, 3 (2021), 1–48. http://doi.org/10.3934/mine.2021039 doi: 10.3934/mine.2021039
    [7] D. Castorina, G. Catino, C. Mantegazza, A triviality result for semilinear parabolic equations, Mathematics in Engineering, 4 (2022), 1–15. http://doi.org/10.3934/mine.2022002 doi: 10.3934/mine.2022002
    [8] A. Cesaroni, M. Novaga, Second-order asymptotics of the fractional perimeter as $s\to 1$, Mathematics in Engineering, 2 (2020), 512–526. http://doi.org/10.3934/mine.2020023 doi: 10.3934/mine.2020023
    [9] M. Cirant, K. R. Payne, Comparison principles for viscosity solutions of elliptic branches of fully nonlinear equations independent of the gradient, Mathematics in Engineering, 3 (2021), 1–45. http://doi.org/10.3934/mine.2021030 doi: 10.3934/mine.2021030
    [10] M. Conti, F. Dell'Oro, V. Pata, Exponential decay of a first order linear Volterra equation, Mathematics in Engineering, 2 (2020), 459–471. http://doi.org/10.3934/mine.2020021 doi: 10.3934/mine.2020021
    [11] M. Cozzi, A. Farina, L. Lombardini, Bernstein-Moser-type results for nonlocal minimal graphs, Commun. Anal. Geom., 29 (2021), 761–777. http://doi.org/10.4310/CAG.2021.v29.n4.a1 doi: 10.4310/CAG.2021.v29.n4.a1
    [12] L. Damascelli, A. Farina, B. Sciunzi, E. Valdinoci, Liouville results for $m$-Laplace equations of Lane-Emden-Fowler type, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 26 (2009), 1099–1119. http://doi.org/10.1016/j.anihpc.2008.06.001 doi: 10.1016/j.anihpc.2008.06.001
    [13] L. D'Ambrosio, M. Gallo, A. Pugliese, A note on the Kuramoto-Sivashinsky equation with discontinuity, Mathematics in Engineering, 3 (2021), 1–29. http://doi.org/10.3934/mine.2021041 doi: 10.3934/mine.2021041
    [14] E. N. Dancer, A. Farina, On the classification of solutions of $-\Delta u = e^u$ on $\Bbb R^N$: stability outside a compact set and applications, Proc. Amer. Math. Soc., 137 (2009), 1333–1338. http://doi.org/10.1090/S0002-9939-08-09772-4 doi: 10.1090/S0002-9939-08-09772-4
    [15] E. De Giorgi, Convergence problems for functionals and operators, In: Proceedings of the international meeting on recent methods in nonlinear analysis (Rome, 1978), Bologna: Pitagora, 1979,131–188.
    [16] A. De Luca, V. Felli, Unique continuation from the edge of a crack, Mathematics in Engineering, 3 (2021), 1–40. http://doi.org/10.3934/mine.2021023 doi: 10.3934/mine.2021023
    [17] D. De Silva, O. Savin, On the boundary Harnack principle in Hölder domains, Mathematics in Engineering, 4 (2022), 1–12. http://doi.org/10.3934/mine.2022004 doi: 10.3934/mine.2022004
    [18] G. Delvoye, O. Goubet, F. Paccaut, Comparison principles and applications to mathematical modelling of vegetal meta-communities, Mathematics in Engineering, 4 (2022), 1–17. http://doi.org/10.3934/mine.2022035 doi: 10.3934/mine.2022035
    [19] S. Dipierro, A. Farina, E. Valdinoci, A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime, Calc. Var., 57 (2018), 15. http://doi.org/10.1007/s00526-017-1295-5 doi: 10.1007/s00526-017-1295-5
    [20] S. Dipierro, E. Valdinoci, Long-range phase coexistence models: recent progress on the fractional Allen-Cahn equation, In: Topics in applied analysis and optimisation, Cham: Springer, 2019,121–138. http://doi.org/10.1007/978-3-030-33116-0_5
    [21] L. Dupaigne, A. Farina, Stable solutions of $-\Delta u = f(u)$ in $\Bbb R^N$, J. Eur. Math. Soc., 12 (2010), 855–882. http://doi.org/10.4171/JEMS/217 doi: 10.4171/JEMS/217
    [22] L. Dupaigne, A. Farina, Classification and Liouville-type theorems for semilinear elliptic equations in unbounded domains, Anal. PDE, 15 (2022), 551–566. http://doi.org/10.2140/apde.2022.15.551 doi: 10.2140/apde.2022.15.551
    [23] A. Farina, B. Kawohl, Remarks on an overdetermined boundary value problem, Calc. Var., 31 (2008), 351–357. http://doi.org/10.1007/s00526-007-0115-8 doi: 10.1007/s00526-007-0115-8
    [24] A. Farina, Symmetry for solutions of semilinear elliptic equations in ${\bf R}^N$ and related conjectures, (Italian), Ricerche Mat., 48 (1999), 129–154.
    [25] A. Farina, On the classification of solutions of the Lane-Emden equation on unbounded domains of $\Bbb R^N$, J. Math. Pures Appl. (9), 87 (2007), 537–561. http://doi.org/10.1016/j.matpur.2007.03.001 doi: 10.1016/j.matpur.2007.03.001
    [26] A. Farina, Stable solutions of $-\Delta u = e^u$ on $\Bbb R^N$, C. R. Math., 345 (2007), 63–66. http://doi.org/10.1016/j.crma.2007.05.021 doi: 10.1016/j.crma.2007.05.021
    [27] A. Farina, A sharp Bernstein-type theorem for entire minimal graphs, Calc. Var., 57 (2018), 123. http://doi.org/10.1007/s00526-018-1392-0 doi: 10.1007/s00526-018-1392-0
    [28] A. Farina, B. Sciunzi, E. Valdinoci, Bernstein and De Giorgi type problems: new results via a geometric approach, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (5), 7 (2008), 741–791. http://doi.org/10.2422/2036-2145.2008.4.06 doi: 10.2422/2036-2145.2008.4.06
    [29] A. Farina, J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations, J. Differ. Equations, 250 (2011), 4367–4408. http://doi.org/10.1016/j.jde.2011.02.007 doi: 10.1016/j.jde.2011.02.007
    [30] A. Farina, J. Serrin, Entire solutions of completely coercive quasilinear elliptic equations, Ⅱ, J. Differ. Equations, 250 (2011), 4409–4436. http://doi.org/10.1016/j.jde.2011.02.016 doi: 10.1016/j.jde.2011.02.016
    [31] A. Farina, E. Valdinoci, The state of the art for a conjecture of De Giorgi and related problems, In: Recent progress on reaction-diffusion systems and viscosity solutions, Hackensack, NJ: World Sci. Publ., 2009, 74–96. http://doi.org/10.1142/9789812834744_0004
    [32] A. Farina, E. Valdinoci, Flattening results for elliptic PDEs in unbounded domains with applications to overdetermined problems, Arch. Rational Mech. Anal., 195 (2010), 1025–1058. http://doi.org/10.1007/s00205-009-0227-8 doi: 10.1007/s00205-009-0227-8
    [33] A. Farina, E. Valdinoci, 1D symmetry for solutions of semilinear and quasilinear elliptic equations, Trans. Amer. Math. Soc., 363 (2011), 579–609. http://doi.org/10.1090/S0002-9947-2010-05021-4 doi: 10.1090/S0002-9947-2010-05021-4
    [34] A. Farina, E. Valdinoci, Rigidity results for elliptic PDEs with uniform limits: an abstract framework with applications, Indiana Univ. Math. J., 60 (2011), 121–141. http://doi.org/10.1512/iumj.2011.60.4433 doi: 10.1512/iumj.2011.60.4433
    [35] A. Farina, E. Valdinoci, 1D symmetry for semilinear PDEs from the limit interface of the solution, Commun. Part. Diff. Eq., 41 (2016), 665–682. http://doi.org/10.1080/03605302.2015.1135165 doi: 10.1080/03605302.2015.1135165
    [36] M. Fogagnolo, A. Pinamonti, Strict starshapedness of solutions to the horizontal $p$-Laplacian in the Heisenberg group, Mathematics in Engineering, 3 (2021), 1–15. http://doi.org/10.3934/mine.2021046 doi: 10.3934/mine.2021046
    [37] F. Gazzola, E. M. Marchini, The moon lander optimal control problem revisited, Mathematics in Engineering, 3 (2021), 1–14. http://doi.org/10.3934/mine.2021040 doi: 10.3934/mine.2021040
    [38] A. Jüngel, U. Stefanelli, L. Trussardi, A minimizing-movements approach to GENERIC systems, Mathematics in Engineering, 4 (2022), 1–18. http://doi.org/10.3934/mine.2022005 doi: 10.3934/mine.2022005
    [39] R. Magnanini, G. Poggesi, Interpolating estimates with applications to some quantitative symmetry results, Mathematics in Engineering, 5 (2023), 1–21. http://doi.org/10.3934/mine.2023002 doi: 10.3934/mine.2023002
    [40] L. Modica, S. Mortola, Il limite nella $\Gamma $-convergenza di una famiglia di funzionali ellittici, (Italian), Boll. Un. Mat. Ital. A (5), 14 (1977), 526–529.
    [41] L. Modica, S. Mortola, Un esempio di $\Gamma ^-$-convergenza, (Italian), Boll. Un. Mat. Ital. B (5), 14 (1977), 285–299.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1562) PDF downloads(252) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog