Research article

Oldroyd 6-constant Electro-magneto-hydrodynamic fluid flow through parallel micro-plates with heat transfer using Darcy-Brinkman-Forchheimer model: A parametric investigation

  • Received: 13 October 2021 Revised: 17 July 2022 Accepted: 16 August 2022 Published: 24 August 2022
  • The focus of the article is the electro-magneto-hydrodynamics of an Oldroyd 6-constants fluid flow through parallel micro-plates with heat transfer. The medium between the micro-plates is porous and we use the Darcy-Brinkman-Forchheimer model for it. Numerical calculations, using the shooting method, were performed to solve the non-linear equations that emanate from the modeling. The results for the velocity mechanism, the Nusselt number and the temperature distribution are graphically shown. The analysis of the problem focuses on the effects of several fluid and heat transfer parameters, such as the Hartmann number, the Brinkmann number, the Darcy-Brinkman-Forchheimer parameter, the Darcy parameter, the viscous dissipation, and the Joule heating coefficient.

    Citation: M. M. Bhatti, Efstathios E. Michaelides. Oldroyd 6-constant Electro-magneto-hydrodynamic fluid flow through parallel micro-plates with heat transfer using Darcy-Brinkman-Forchheimer model: A parametric investigation[J]. Mathematics in Engineering, 2023, 5(3): 1-19. doi: 10.3934/mine.2023051

    Related Papers:

  • The focus of the article is the electro-magneto-hydrodynamics of an Oldroyd 6-constants fluid flow through parallel micro-plates with heat transfer. The medium between the micro-plates is porous and we use the Darcy-Brinkman-Forchheimer model for it. Numerical calculations, using the shooting method, were performed to solve the non-linear equations that emanate from the modeling. The results for the velocity mechanism, the Nusselt number and the temperature distribution are graphically shown. The analysis of the problem focuses on the effects of several fluid and heat transfer parameters, such as the Hartmann number, the Brinkmann number, the Darcy-Brinkman-Forchheimer parameter, the Darcy parameter, the viscous dissipation, and the Joule heating coefficient.



    加载中


    [1] D. A. Konovalov, V. I. Ryazhskikh, I. N. Lazarenko, N. N. Kozhukhov, Model of cooling of compact surfaces by microchannel recuperative heat exchangers with a matrix of filamentary silicon single crystals, J. Eng. Phys. Thermophys., 92 (2019), 355–364. https://doi.org/10.1007/s10891-019-01938-2 doi: 10.1007/s10891-019-01938-2
    [2] K. Nakatsuka, B. Jeyadevan, S. Neveu, H. Koganezawa, The magnetic fluid for heat transfer applications, J. Magn. Magn. Mater., 252 (2002), 360–362. https://doi.org/10.1016/s0304-8853(02)00683-2 doi: 10.1016/S0304-8853(02)00683-2
    [3] L. Theodore, Heat transfer applications for the practicing engineer, Hoboken, NJ: Wiley-Blackwell, 2011. https://doi.org/10.1002/9780470937228
    [4] H. Singh, R. S. Myong, Critical review of fluid flow physics at micro- to nano‐scale porous media applications in the energy sector, Adv. Mater. Sci. Eng., 2018 (2018), 9565240. https://doi.org/10.1155/2018/9565240 doi: 10.1155/2018/9565240
    [5] A. Moradi, D. Toghraie, A. H. M. Isfahani, A. Hosseinian, An experimental study on MWCNT–water nanofluids flow and heat transfer in double-pipe heat exchanger using porous media, J. Therm. Anal. Calorim., 137 (2019), 1797–1807. https://doi.org/10.1007/s10973-019-08076-0 doi: 10.1007/s10973-019-08076-0
    [6] I. Ataei-Dadavi, M. Chakkingal, S. Kenjeres, C. R. Kleijn, M. J. Tummers, Flow and heat transfer measurements in natural convection in coarse-grained porous media, Int. J. Heat Mass Tran., 130 (2019), 575–584. https://doi.org/10.1016/j.ijheatmasstransfer.2018.10.118 doi: 10.1016/j.ijheatmasstransfer.2018.10.118
    [7] N. S. Pandya, H. Shah, M. Molana, A. K. Tiwari, Heat transfer enhancement with nanofluids in plate heat exchangers: A comprehensive review, Eur. J. Mech. B Fluid., 81 (2020), 173–190. https://doi.org/10.1016/j.euromechflu.2020.02.004 doi: 10.1016/j.euromechflu.2020.02.004
    [8] S. M. Miri Joibary, M. Siavashi, Effect of Reynolds asymmetry and use of porous media in the counterflow double-pipe heat exchanger for passive heat transfer enhancement, J. Therm. Anal. Calorim., 140 (2020), 1079–1093. https://doi.org/10.1007/s10973-019-08991-2 doi: 10.1007/s10973-019-08991-2
    [9] L. Zhang, M. M. Bhatti, R. Ellahi, E. E. Michaelides, Oxytactic microorganisms and thermo-bioconvection nanofluid flow over a porous riga plate with Darcy–Brinkman–Forchheimer medium, J. Non-Equilib. Thermodyn., 45 (2020), 257–268. https://doi.org/10.1515/jnet-2020-0010 doi: 10.1515/jnet-2020-0010
    [10] F. Selimefendigil, H. F. Öztop, Combined effects of double porous layers and nanofluids on the performance of confined single and multi-jet impingement heat transfer, Chem. Eng. Commun., 209 (2022), 925–937. https://doi.org/10.1080/00986445.2021.1928650 doi: 10.1080/00986445.2021.1928650
    [11] J. West, B. Karamata, B. Lillis, J. P. Gleeson, J. Alderman, J. K. Collins, et al., Application of magnetohydrodynamic actuation to continuous flow chemistry, Lab Chip., 2 (2002), 224–230. https://doi.org/10.1039/b206756k doi: 10.1039/b206756k
    [12] M. Yi, S. Qian, H. H. Bau, A magnetohydrodynamic chaotic stirrer, J. Fluid Mech., 468 (2002), 153–177. https://doi.org/10.1017/s0022112002001635 doi: 10.1017/S0022112002001635
    [13] N. Pamme, Magnetism and microfluidics, Lab Chip., 6 (2006), 24–38. https://doi.org/10.1039/b513005k doi: 10.1039/B513005K
    [14] N. T. Nguyen, Micro-magnetofluidics: interactions between magnetism and fluid flow on the microscale, Microfluid. Nanofluidics., 12 (2012), 1–16. https://doi.org/10.1007/s10404-011-0903-5 doi: 10.1007/s10404-011-0903-5
    [15] M. M. Bhatti, A. Zeeshan, M. A. Asif, R. Ellahi, S. M. Sait, Non-uniform pumping flow model for the couple stress particle-fluid under magnetic effects, Chem. Eng. Commun., 209 (2022), 1058–1069. https://doi.org/10.1080/00986445.2021.1940156 doi: 10.1080/00986445.2021.1940156
    [16] R. Chakraborty, R. Dey, S. Chakraborty, Thermal characteristics of electromagnetohydrodynamic flows in narrow channels with viscous dissipation and Joule heating under constant wall heat flux, Int. J. Heat Mass Trans., 67 (2013), 1151–1162. https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.099 doi: 10.1016/j.ijheatmasstransfer.2013.08.099
    [17] S. Sarkar, S. Ganguly, S. Chakraborty, Influence of combined electromagnetohydrodynamics on microchannel flow with electrokinetic effect and interfacial slip, Microfluid. Nanofluidics., 21 (2017), 56. https://doi.org/10.1007/s10404-017-1894-7 doi: 10.1007/s10404-017-1894-7
    [18] M. Rashid, S. Nadeem, I. Shahzadi, Permeability impact on electromagnetohydrodynamic flow through corrugated walls of microchannel with variable viscosity, Adv. Mech. Eng., 12 (2020), 1–11. https://doi.org/10.1177/1687814020944336 doi: 10.1177/1687814020944336
    [19] M. Reza, A. Rana, G. C. Shit, Thermo-fluidic transport of electromagnetohydrodynamic flow in a corrugated porous medium microchannel, Eur. Phys. J. Plus, 136 (2021), 496. https://doi.org/10.1140/epjp/s13360-021-01505-w doi: 10.1140/epjp/s13360-021-01505-w
    [20] M. Reza, A. Rana, R. Patra, A numerical experiment on Thermo-fluidic transport of third-grade fluid flow through a porous microchannel under the influence of combined electromagnetohydrodynamic effect, In: Advances in mechanical processing and design, Singapore: Springer, 2021,115–126. https://doi.org/10.1007/978-981-15-7779-6_10
    [21] A. M. Obalalu, O. A. Ajala, A. O. Akindele, S. Alao, A. Okunloye, Effect of melting heat transfer on electromagnetohydrodynamic non-newtonian nanofluid flow over a riga plate with chemical reaction and arrhenius activation energy, Eur. Phys. J. Plus, 136 (2021), 891. https://doi.org/10.1140/epjp/s13360-021-01869-z doi: 10.1140/epjp/s13360-021-01869-z
    [22] D. J. Laser, J. G. Santiago, A review of micropumps, J. Micromech. Microeng., 14 (2004), R35–R64. https://doi.org/10.1088/0960-1317/14/6/r01 doi: 10.1088/0960-1317/14/6/R01
    [23] H. A. Stone, A. D. Stroock, A. Ajdari, Engineering flows in small devices: Microfluidics toward a lab-on-a-chip, Annu. Rev. Fluid Mech., 36 (2004), 381–411. https://doi.org/10.1146/annurev.fluid.36.050802.122124 doi: 10.1146/annurev.fluid.36.050802.122124
    [24] M. M. Bhatti, O. A. Bég, R. Ellahi, T. Abbas, Natural convection non-Newtonian EMHD dissipative flow through a microchannel containing a non-Darcy porous medium: Homotopy perturbation method study, Qual. Theory Dyn. Syst., 21 (2022), 97. https://doi.org/10.1007/s12346-022-00625-7 doi: 10.1007/s12346-022-00625-7
    [25] P. Liang, S. Wang, M. Zhao, Numerical study of rotating electroosmotic flow of Oldroyd-B fluid in a microchannel with slip boundary condition, Chinese J. Phys., 65 (2020), 459–471. https://doi.org/10.1016/j.cjph.2020.02.025 doi: 10.1016/j.cjph.2020.02.025
    [26] X. Wang, H. Xu, H. Qi, Transient magnetohydrodynamic flow and heat transfer of fractional Oldroyd-B fluids in a microchannel with slip boundary condition, Phys. Fluids, 32 (2020), 103104. https://doi.org/10.1063/5.0025195 doi: 10.1063/5.0025195
    [27] S. O. Salawu, A. B. Disu, Branch-chain criticality and thermal explosion of Oldroyd 6-constant fluid for a generalized Couette reactive flow, South African Journal of Chemical Engineering, 34 (2020), 90–96. https://doi.org/10.1016/j.sajce.2020.06.004 doi: 10.1016/j.sajce.2020.06.004
    [28] T. Hayat, M. Khan, M. Sajid, M. Ayub, Steady flow of an Oldroyd 8-constant fluid between coaxial cylinders in a porous medium, J. Porous Media, 9 (2006), 709–722. https://doi.org/10.1615/jpormedia.v9.i8.10 doi: 10.1615/JPorMedia.v9.i8.10
    [29] M. Zhao, C. Yang, C. Fan, Q. Zhang, A shooting method for nonlinear boundary value problems in a thermal piezoelectric semiconductor plate, Z. Angew. Math. Mech., 100 (2020), e201900302. https://doi.org/10.1002/zamm.201900302 doi: 10.1002/zamm.201900302
    [30] I. K. Argyros, J. Ceballos, D. González, J. M. Gutiérrez, Extending the applicability of Newton's method for a class of boundary value problems using the shooting method, Appl. Math. Comput., 384 (2020), 125378. https://doi.org/10.1016/j.amc.2020.125378 doi: 10.1016/j.amc.2020.125378
    [31] A. Daneshyar, P. Sotoudeh, M. Ghaemian, A shooting approach to the scaled boundary finite element equations of elastodynamics in the frequency domain, Comput. Method. Appl. Mech. Eng., 387 (2021), 114170. https://doi.org/10.1016/j.cma.2021.114170 doi: 10.1016/j.cma.2021.114170
    [32] B. Q. Zhao, A. Pantokratoras, T. G. Fang, S. J. Liao, Flow of a weakly conducting fluid in a channel filled with a Darcy–Brinkman–forchheimer porous medium, Transp. Porous Med., 85 (2010), 131–142. https://doi.org/10.1007/s11242-010-9550-7 doi: 10.1007/s11242-010-9550-7
    [33] E. Michaelides, Exergy analysis for energy conversion systems, Cambridge, England: Cambridge University Press, 2021. https://doi.org/10.1017/9781108635684
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1540) PDF downloads(229) Cited by(9)

Article outline

Figures and Tables

Figures(16)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog