A Susceptible Infective Recovered (SIR) model is usually unable to mimic the actual epidemiological system exactly. The reasons for this inaccuracy include observation errors and model discrepancies due to assumptions and simplifications made by the SIR model. Hence, this work proposes calibration and prediction methods for the SIR model with a one-time reported number of infected cases. Given that the observation errors of the reported data are assumed to be heteroscedastic, we propose two predictors to predict the actual epidemiological system by modeling the model discrepancy through a Gaussian Process model. One is the calibrated SIR model, and the other one is the discrepancy-corrected predictor, which integrates the calibrated SIR model with the Gaussian Process predictor to solve the model discrepancy. A wild bootstrap method quantifies the two predictors' uncertainty, while two numerical studies assess the performance of the proposed method. The numerical results show that, the proposed predictors outperform the existing ones and the prediction accuracy of the discrepancy-corrected predictor is improved by at least $ 49.95\% $.
Citation: Yan Wang, Guichen Lu, Jiang Du. Calibration and prediction for the inexact SIR model[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2800-2818. doi: 10.3934/mbe.2022128
A Susceptible Infective Recovered (SIR) model is usually unable to mimic the actual epidemiological system exactly. The reasons for this inaccuracy include observation errors and model discrepancies due to assumptions and simplifications made by the SIR model. Hence, this work proposes calibration and prediction methods for the SIR model with a one-time reported number of infected cases. Given that the observation errors of the reported data are assumed to be heteroscedastic, we propose two predictors to predict the actual epidemiological system by modeling the model discrepancy through a Gaussian Process model. One is the calibrated SIR model, and the other one is the discrepancy-corrected predictor, which integrates the calibrated SIR model with the Gaussian Process predictor to solve the model discrepancy. A wild bootstrap method quantifies the two predictors' uncertainty, while two numerical studies assess the performance of the proposed method. The numerical results show that, the proposed predictors outperform the existing ones and the prediction accuracy of the discrepancy-corrected predictor is improved by at least $ 49.95\% $.
[1] | F. Brauer, C. Castillo-Chavez, C. Castillo-Chavez, Mathematical models in population biology and epidemiology, vol. 2, Springer, 2012. |
[2] | W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Proceedings of the royal society of london. Series A, Containing papers of a mathematical and physical character, 115 (1927), 700–721. |
[3] | M. Martcheva, An introduction to mathematical epidemiology, vol. 61, Springer, 2015. |
[4] | D. Caccavo, Chinese and italian covid-19 outbreaks can be correctly described by a modified sird model, medRxiv. Doi: 10.1101/2020.03.19.20039388. |
[5] | M. Shen, Z. Peng, Y. Xiao, L. Zhang, Modeling the epidemic trend of the 2019 novel coronavirus outbreak in china, The Innovation, 1 (2020), 100048. Doi:10.1016/j.xinn.2020.100048. doi: 10.1016/j.xinn.2020.100048 |
[6] | K. Hadeler, Parameter identification in epidemic models, Math. Biol., 229 (2011), 185–189. Doi: 10.1016/j.mbs.2010.12.004. doi: 10.1016/j.mbs.2010.12.004 |
[7] | A. Capaldi, S. Behrend, B. Berman, J. Smith, J. Wright, A. L. Lloyd, Parameter estimation and uncertainty quantication for an epidemic model, Math. Biosci. Eng., 9 (2012), 553–576. Doi: 10.3934/mbe.2012.9.553. doi: 10.3934/mbe.2012.9.553 |
[8] | S. Venkatramanan, B. Lewis, J. Chen, D. Higdon, A. Vullikanti, M. Marathe, Using data-driven agent-based models for forecasting emerging infectious diseases, Epidemic, 22 (2018), 43–49. Doi: 10.1016/j.epidem.2017.02.010. doi: 10.1016/j.epidem.2017.02.010 |
[9] | M. C. Kennedy, A. O'Hagan, Bayesian calibration of computer models, J. R. Statist. Soc. B, 63 (2001), 425–464. Doi: 10.1111/1467-9868.00294. doi: 10.1111/1467-9868.00294 |
[10] | R. Beckley, C. Weatherspoon, M. Alexander, M. Chandler, A. Johnson, G. S. Bhatt, Modeling epidemics with differential equations, Tennessee State University Internal Report. |
[11] | C. Tönsing, J. Timmer, C. Kreutz, Profile likelihood-based analyses of infectious disease models, Stat. Methods Med. Res., 27 (2018), 1979–1998. Doi: 10.1177/0962280217746444. doi: 10.1177/0962280217746444 |
[12] | N. C. Roberty, L. S. de Araujo, Sir model parameters estimation with covid-19 data, J. Adv. Math., 36 (2021), 97–117. Doi: 10.9734/jamcs/2021/v36i330349. doi: 10.9734/jamcs/2021/v36i330349 |
[13] | D. Higdon, M. Kennedy, J. C. Cavendish, J. A. Cafeo, R. D. Ryne, Combining field data and computer simulations for calibration and prediction, SIAM J. Sci. Comput., 26 (2004). 448–466. Doi: 10.1137/S1064827503426693. doi: 10.1137/S1064827503426693 |
[14] | C. J. Chang, V. R. Joseph, Model calibration through minimal adjustments, Technometrics, 56 (2014), 474–482. Doi: 10.1080/00401706.2013.850113. doi: 10.1080/00401706.2013.850113 |
[15] | Y. Wang, X. Yue, R. Tuo, J. H. Hunt, J. Shi, Effective model calibration via sensible variable identification and adjustment, with application to composite fuselage simulation, Ann. Appl. Stat., 14 (2020), 1759–1776, Doi: 10.1214/20-AOAS1353. doi: 10.1214/20-AOAS1353 |
[16] | W. Sun, M. Plumlee, J. Hu, J. Jin, Robust system design with limited experimental data and an inexact simulation model, SIAM-ASA J. Uncertain., 9 (2021), 483–506, Doi: 10.1137/20M1316287. doi: 10.1137/20M1316287 |
[17] | C. L. Sung, B. D. Barber, B. J. Walker, Calibration of computer models with heteroscedastic errors and application to plant relative growth rates, arXiv preprint arXiv: 1910.11518. |
[18] | R. B. Gramacy, Surrogates: Gaussian Process Modeling, Design, and Optimization for the Applied Sciences, CRC Press, 2020. |
[19] | R. Tuo, Y. Wang, C. F. J. Wu, On the improved rates of convergence for mat$\backslash$'ern-type kernel ridge regression, with application to calibration of computer models, SIAM-ASA J. Uncertain., 8 (2020), 1522–1547. Doi: 10.1137/19m1304222. doi: 10.1137/19m1304222 |
[20] | T. J. Santner, B. J. Williams, W. I. Notz, The Design and Analysis of Computer Experiments, Springer Science & Business Media, 2013. |
[21] | M. J. Bayarri, J. O. Berger, R. Paulo, J. Sacks, J. A. Cafeo, J. Cavendish, et al., A framework for validation of computer models, Technometrics, 49 (2007), 138–154. Doi: 10.1198/004017007000000092. doi: 10.1198/004017007000000092 |
[22] | M. R. Chernick, Bootstrap methods: A guide for practitioners and researchers, vol. 619, John Wiley & Sons, 2011. |
[23] | R. K. Wong, C. B. Storlie, T. C. Lee, A frequentist approach to computer model calibration, J. R. Stat. Soc. Series B. Stat. Methodol., 79 (2017), 635–648. Doi: 10.1111/rssb.12182. doi: 10.1111/rssb.12182 |
[24] | C. F. J. Wu, Jackknife, bootstrap and other resampling methods in regression analysis, Ann. Stat., 14 (1986), 1261–1295. |
[25] | Anonymous, Influenza in a boarding school, British Med. J., 1 (1978), 586–590. https://www.mendeley.com/catalogue/c6c2c239-c377-3ef9-945c-1afb8f91200f/ |
[26] | J. M. Murphy, D. M. Sexton, D. N. Barnett, G. S. Jones, M. J. Webb, M. Collins, et al., Quantification of modelling uncertainties in a large ensemble of climate change simulations, Nature, 430 (2004), 768–772. Doi: 10.1038/nature02771. doi: 10.1038/nature02771 |
[27] | A. Olivares, E. Staffetti, Uncertainty quantification of a mathematical model of covid-19 transmission dynamics with mass vaccination strategy, Chaos. Solit., 146 (2021), 110895. Doi: 10.1016/j.chaos.2021.110895. doi: 10.1016/j.chaos.2021.110895 |
[28] | G. Pujol, B. Iooss, M. B. Iooss, S. DiceDesign, Package 'sensitivity': Sensitivity analysis, 2015. |
[29] | M. J. Powell, The newuoa software for unconstrained optimization without derivatives, in Large-scale nonlinear optimization, Springer, 2006,255–297. |