Processing math: 16%
Research article Special Issues

Conditional Ulam stability and its application to von Bertalanffy growth model

  • The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model dwdt=aw23bw, where w denotes mass and a>0 and b>0 are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.

    Citation: Masakazu Onitsuka. Conditional Ulam stability and its application to von Bertalanffy growth model[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2819-2834. doi: 10.3934/mbe.2022129

    Related Papers:

    [1] Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148
    [2] Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076
    [3] Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636
    [4] Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292
    [5] M. G. M. Ghazal, H. M. M. Radwan . A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617
    [6] M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455
    [7] Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900
    [8] M. Nagy, Adel Fahad Alrasheedi . The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes. Mathematical Biosciences and Engineering, 2022, 19(3): 2330-2354. doi: 10.3934/mbe.2022108
    [9] Ibrahim Alkhairy . Classical and Bayesian inference for the discrete Poisson Ramos-Louzada distribution with application to COVID-19 data. Mathematical Biosciences and Engineering, 2023, 20(8): 14061-14080. doi: 10.3934/mbe.2023628
    [10] Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880
  • The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model dwdt=aw23bw, where w denotes mass and a>0 and b>0 are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.



    Recently, the promising attention of statisticians towards the construction of new generalized distributions has been increased to explore and develop more flexible models from the baseline models. These generalized distributions open new horizons to study real-world problems and to provide more flexibility to model the asymmetric and complex random phenomena. Therefore, several models have been developed in the literature. One of the most handy and simplest lifetime distributions induced in the statistical literature is the exponential (Ex) distribution. It has been extensively adopted for analyzing lifetime data due to its simplicity and its lack of memory property.

    On the other hand, the Ex distribution with only a constant hazard rate (HR) shape is not suitable for fitting data with different HR shapes as decreasing, unimodal (upside down bathtub), increasing or bathtub shaped hazard rates which are common in reliability and engineering, among other areas. This limitation has motivated the researchers to develop more flexible extensions of the Ex model.

    For more details about other methods, the interested reader can see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].

    In the present article, we are motivated to develop a new flexible version of the Ex model called the weighted-exponential (WDEx) distribution, which can provide greater flexibility in fitting insurance data. Additionally, the aim of the article is three-fold: the first is devoted to studying a new form of the Ex distribution based on the weighted-G (WD-G) family [16], called the WDEx distribution. Basic distributional properties of the WDEx model are explored. The WDEx model has some desirable characteristics. It can accommodate upside-down bathtub, decreasing, decreasing-constant, increasing, and increasing-constant HR shapes. Its probability density function (PDF) possesses unimodal, right-skewed, reversed-J shape, left-skewed. The tail of the WDEx distribution is heavier than the EEx and Ex distributions as shown in Section 4 based on computational values of risk measures. The WDEx distribution can be used to model insurance data. It provides an adequate fit than other fourteen competing Ex distributions as illustrated in Section 7 for this insurance data set.

    The second objective of this paper is devoted to exploring five important actuarial or risk measures, called the value at risk (VaR), tail value at risk (TVaR), tail-variance (TV), tail-variance premium (TVP), and expected shortfall (ES), for the WDEx distribution. These measures play an important role in portfolio optimization under uncertainty.

    The third objective is to study the estimation of the WDEx parameters by classical and Bayesian methods. Hence, nine estimation approaches are adopted for this purpose. We explore and rank the performance of these estimators based on empirical simulation results to develop a guideline for choosing the best estimation approach for estimating the WDEx parameters.

    The paper is organized in eight Sections. In Section 2, we define the WDEx model. Its basic properties are explored in Section 3. Five actuarial indicators are studies in Section 4. The model parameters are estimated using classical and Bayesian estimation in Section 5. Simulation results are provided in Section 6. Section 7 is devoted to analyzing a real-life data. Finally, some remarks are given to conclude the paper in Section 8.

    In this section, we define the two-parameter WDEx distribution based on the WD-G family of [16]. The cumulative distribution function (CDF) and PDF of the WDEx distribution has the forms

    F(x)=log[(1eλx  )α+1]log(2) (2.1)

    and

    f(x)=αλeλx(1eλx  )α1log(2)[(1eλx  )α+1]. (2.2)

    The survival function (SF), HR function (HRF) and the reversed-HRF (RHRF) are, respectively, given by

    S(x)=1log[(1eλx  )α+1]log(2), (2.3)
    h(x)=αλ(1eλx  )α(eλx1)[(1eλx  )α+1]{log(2)log[(1eλx  )α+1]} (2.4)

    and

    r(x)=αλeλx(1eλx  )α1((1eλx  )α+1)log((1eλx  )α+1). (2.5)

    The limiting behaviors of the PDF (2.2) and HRF (2.4) are given by

    limx0f(x)={,α<10,α1,limxf(x)=0.

    and

    limx0h(x)={,α<10,α1,limxh(x)=λ.

    Plots of the PDF and HRF of the WDEx distribution are illustrated in Figures 1 and 2, respectively. These graphs show that the WDEx model possesses decreasing-constant, upside-down bathtub, increasing, decreasing, and increasing-constant HR functions along with sudden spikes at the end of upside-down bathtub shape, which manages the model to analyze a non-stationary real-life data.

    Figure 1.  Plots of the PDF of the WDEx distribution with various parametic values.
    Figure 2.  Plots of the HRF of the WDEx distribution with various parametric values.

    The quantile function (QF) of the WDEx distribution is given by

    Q(u)=log[1(2u1)1/α]λ, (2.6)

    we can determine first, second and third quartile of the WDEx distribution by setting u=0.25,0.5,0.75, respectively. Also, by using Eq (2.6), we can determine Bowley's skewness and Moor's kurtosis for the WDEx distribution. The WDEx skewness and kurtosis graphs for the different parametric values of α and λ are shown in Figure 3.

    Figure 3.  Plots of the skewness and kurtosis of the WDEx model.

    In this section, we provide some mathematical properties of the WDEx distribution.

    A useful linear representations of the CDF and PDF of the WDEx model are introduced in this subsection. For 1<x1, we have

    log(1+x)=k=1(1)k+1xkk. (3.1)

    By applying the power series (3.1) to (2.1), the CDF and PDF of the WDEx distribution can be expressed as

    F(x;α,λ)=k=1ΦkGk(x)

    and

    f(x;α,λ)=k=1Φkgk(x),

    where Φk=(1)k+1klog(2), Gk(x)=(1eλx)αk and gk(x)=αkλeλx(1eλx)αk1 are the CDF and PDF of the exponentiated-exponential (EEx) distribution with parameters λ and αk.

    The rth moments of the WDEx distribution takes the form

    μr=E(Xr)=0xrf(x)dx=k=1i=0ΦkαkΓ(r+1)λr(1)iD(αk1,i)(i+1)k+1,

    where D(a1,b)=(a1)(ab)b!. Replacing r=1,2,3, and 4 in the last formula, we obtain the first four moments for the WDEx distribution.

    The nth moment residual life of the WDEx distribution, E(Xn|X>x), has the form

    E(Xn|X>x)=xynf(y)dy=k=1Φkαλk1(1eλx)αkxynexp(λy)(1exp(λy))αk1dy=k=1Φkα(1)nλn[1(1eλx)αk]exp(λx)0(logz)n(1z)αk1dz,

    where z=exp(λy) and the mean residual life function of the proposed model is E(X|X>x)1.

    the moment generating function (MGF) of the WDEx distribution is

    M(t)=0etxf(x)dx=k=1Φkαkβ(1tλ,αk),

    where β(a,b) is beta function. The characteristic function of the WDEx model is

    ϕ(t)=0eitxf(x)dx=k=1Φkαkβ(1itλ,αk).

    The mean deviation about the mean of the WDEx model reduces to

    ψ1=0|xμ|f(x)dx=2μF(μ)2μ+2μxf(x)dx=2μF(μ)2μ+2k=1Φkμxgk(x)dx=2μF(μ)2μ+2αkλk=1i=0Φk(1)i(i+1)2(αk1i)[1+μλ(i+1)]exp(μλ(i+1)).

    The mean deviation about the median of the WDEx distribution takes the form

    ψ2=0|xM|f(x)dx=2Mxf(x)dxμ=2k=1ΦkMxgk(x)dxμ=2αkλk=1i=0Φk(1)i(i+1)2(αk1i)[1+Mλ(i+1)]exp(Mλ(i+1))μ.

    The Bonferroni and Lorenz curves for a positive random variable X are defined the following formulae

    B(F(x))=E(X|Xx)μandL(F(x))=E(X|Xx)F(x)μ,

    where the quantity E(X|Xx) has the form

    E(X|Xx)=αkλF(x)k=1i=0Φk(1)i(i+1)2(αk1i){1[1+λ(i+1)x]exp(λ(i+1)x)}.

    Hence,

    B(p)=αkλpμk=1i=0Φk(1)i(i+1)2(αk1i){1[1+λ(i+1)xp]exp(λ(i+1)xp)}

    and

    L(p)=αkλμk=1i=0Φk(1)i(i+1)2(αk1i){1[1+λ(i+1)xp]exp(λ(i+1)xp)},

    where xp=log[1(2p1)1/α]λ is the QF of the WDEx model.

    The PDF and CDF of the ith order statistic for the WDEx distribution are given by

    fi:n(x)=f(x)B(i,ni+1)h=0(1)h(nih)Fh+i1(x)=αλn!logi(2)(1eλ(x))αlogi1((1eλ(x))α+1)(1log((1eλ(x))α+1)log(2))niΓ(i)(eλx1)Γ(i+n+1)((1eλ(x))α+1)

    and

    Fi:n(x)=nr=i(nr)(F(x))r(1F(x))nr=logi(2)(ni)logi((1eλ(x))α+1)(1log((1eλ(x))α+1)log(2))ni×2F1(1,in;i+1;log((1exλ)α+1)log(2(1exλ)α+1)),

    where 2F1(1,in;i+1;log((1exλ)α+1)log(2(1exλ)α+1)) is a hyper geometric function.

    Five risk measures are explored for the WDEx distribution in this section. Some actuarial measures such as VaR, TVaR, TV, TVP, and ES are calculated. A brief simulation study for these measures is provided. Finally, an application to the insurance loss data set is analyzed. For more information we refer to refs [17,18,19,20,21].

    The VaR is often referred to as the quantile risk measure or the concept of quantile premium, and it is defined with a certain amount of confidence, say q (typically 90, 95, or 99%). In comparison, VaR is a quantitative sum of accumulated loss distribution. Risk management are also interested in the "chance of an unfavorable outcome" and can be represented at a specific likelihood level using the VaR. The VaR of a random variable X is the qth quantile of its CDF, denoted by VaRq, and it is defined by VaRq=Q(q) (see Artzner [22]).

    The VaR measure of the WDEx distribution is expressed by

    VaRq=log[1(2q1)1/α]λ.

    The TVaR, which is now being assigned many names, including conditional tail-expectation and conditional VaR, is another significant indicator. The TVaR is used to measure the potential value of the loss provided that there has been an occurrence outside of a provided probability level. The TVaR of a random variable X is represented by

    TVaRq=1(1q)VaRqxf(x)dx.

    The TVaR of the WDEx distribution is

    TVaRq=α(1q)λlog(2)k=1m=1(1)k+1[1(1+2q)k+mα]mk(m+αk). (4.1)

    Landsman [23] presented the TV risk that is described by the variance of the loss distribution beyond some critical value. The TV of the WDEx distribution is described as

    TVq(X)=E(X2|X>xq)(TVaRq)2=1(1q)VaRqx2f(x)dx(TVaRq)2, (4.2)

    where

    E(X2|X>xq)=2α(1q)λ2log(2)k=1m=1kn=1(1)k+1[1(1+2q)k+m+1α]kn(m+1)(m+αk+1), (4.3)

    by using Eqs (4.1)–(4.3), we get the TV of the WDEx distribution.

    The TVP is also another effective criterion in the insurance fields. The TVP of the WDEx distribution has the form

    TVPq(x)=TVaRq+qTVq, (4.4)

    where 0<q<1. The TVP of the WDEx distribution follows by replacing Eqs (4.1) and (4.2) in (4.4).

    Artzner [22] developed the expected shortfall (ES) as a common indicator in financial risk. In some definitions, if the underlying distribution of X is continuous then the ES coincides with the Conditional tail expectation and the TVaR. The ES of the WDEx distribution takes the form

    ESq(x)=1qq0VaRtdt=m=11qmλq0(2t1)mαdt. (4.5)

    In this sub-section, we discuss some empirical results for the five aforemention risk measures for the WDEx, EEx, and Ex distributions for some parametric values. The findings are obtained through to the followings steps:

    (1) Random sample of size n=100 is produced from the WDEx, EEx, and Ex distributions, and their parameters are calculated via the maximum likelihood (ML) approach.

    (2) 1000 Replications are designed to determine the mean of the VaR, TVaR, TV, TVP as well as ES for the three distributions.

    Simulation results of the average VaR, TVaR, TV, TVP and ES for the WDEx, EEx, and Ex distributions are provided in Tables 1 and 2 and displayed graphically in Figures 4 and 5.

    Table 1.  Simulation results of the five measures of risk for the WDEx, EEx, and Ex distributions.
    Distribution parameter Significance level VaR TVaR TV TVP ES
    WDEx α=3,λ=0.5 0.60 3.24353 5.32312 4.07298 7.83746 1.89911
    0.65 3.53435 5.59982 4.08566 8.30964 2.01350
    0.70 3.86421 5.91721 4.09951 8.82180 2.13364
    0.75 4.24850 6.29046 4.11464 9.38883 2.26146
    0.80 4.71278 6.74496 4.13115 10.03667 2.39965
    0.85 5.30475 7.32825 4.14941 10.81284 2.55232
    0.90 6.13120 8.14701 4.16895 11.82411 2.72668
    0.95 7.53258 9.54158 4.19058 13.41092 2.93856
    EEx α=3,λ=0.5 0.60 0.49017 2.04260 3.25950 3.99830 0.11832
    0.65 0.64444 2.25379 3.35743 4.43611 0.15262
    0.70 0.84081 2.50632 3.45651 4.92587 0.19448
    0.75 1.09436 2.81518 3.55661 5.48264 0.24565
    0.80 1.43025 3.20549 3.65760 6.13157 0.30867
    0.85 1.89560 3.72427 3.75935 6.91972 0.38752
    0.90 2.59602 4.47711 3.86176 7.95269 0.48924
    0.95 3.86842 5.80090 3.96470 9.56736 0.62946
    Ex λ=0.5 0.60 1.83505 3.83774 4.05243 6.26920 0.77933
    0.65 2.10247 4.10516 4.05243 6.73924 0.87059
    0.70 2.41119 4.41388 4.05243 7.25058 0.96933
    0.75 2.77632 4.77901 4.05243 7.81833 1.07725
    0.80 3.22321 5.22590 4.05243 8.46784 1.19689
    0.85 3.79935 5.80204 4.05243 9.24660 1.33222
    0.90 4.61137 6.61406 4.05243 10.26125 1.49032
    0.95 5.99953 8.00222 4.05243 11.85203 1.68693

     | Show Table
    DownLoad: CSV
    Table 2.  Simulation results of the five measures of risk for the WDEx, EEx, and Ex distributions.
    Distribution Parameter Significance level VaR TVaR TV TVP ES
    WDEx α=2,λ=0.75 0.60 1.68889 3.03197 1.78964 4.11200 0.89027
    0.65 1.87191 3.21103 1.78988 4.37915 0.95860
    0.70 2.08127 3.41720 1.79047 4.67351 1.03113
    0.75 2.32712 3.66052 1.79145 5.00516 1.10910
    0.80 2.62636 3.95782 1.79286 5.39098 1.19423
    0.85 3.01058 4.34064 1.79474 5.86253 1.28924
    0.90 3.55059 4.87971 1.79711 6.49060 1.39887
    0.95 4.47215 5.80076 1.80005 7.50092 1.53359
    EEx α=2,λ=0.75 0.60 0.59547 1.76160 1.59250 2.71710 0.18354
    0.65 0.73107 1.91880 1.61759 2.97024 0.22029
    0.70 0.89504 2.10354 1.64237 3.25320 0.26243
    0.75 1.09725 2.32577 1.66681 3.57588 0.31110
    0.80 1.35434 2.60215 1.69096 3.95491 0.36792
    0.85 1.69752 2.96394 1.71477 4.42150 0.43550
    0.90 2.19695 3.48134 1.73829 5.04581 0.51848
    0.95 3.07660 4.37836 1.76151 6.05179 0.62721
    Ex λ=0.75 0.60 1.13884 2.38172 1.56099 3.31832 0.48365
    0.65 1.30481 2.54769 1.56099 3.56233 0.54029
    0.70 1.49640 2.73928 1.56100 3.83198 0.60157
    0.75 1.72300 2.96588 1.56099 4.13662 0.66855
    0.80 2.00034 3.24322 1.56099 4.49202 0.74280
    0.85 2.35790 3.60078 1.56099 4.92762 0.82678
    0.90 2.86184 4.10472 1.56099 5.50962 0.92490
    0.95 3.72334 4.96623 1.56099 6.44917 1.04692

     | Show Table
    DownLoad: CSV
    Figure 4.  The above figure displays the graphs of the VaR, TVaR, TV, TVP, and ES using the values in Table 1.
    Figure 5.  The above figure displays the graphs of the VaR, TVaR, TV, TVP, and ES using the values in Table 2.

    The model with highest value of VaR, TVaR, TV, TVP and ES metrics does also have a heavier tail than other competitor models. The results illustrate that the WDEx model has improved quantities of the five risk factors than the EEx, and Ex distributions. Thus, the WDEx model with these parameter values has a heavier-tail than other distributions and could be used efficiently to model heavy-tailed insurance data.

    This section is devoted to address the estimation of the WDEx parameters by various estimation methods including eight classical estimation approaches, such as the MLE, Anderson–Darling (ADE) and right-tail Anderson–Darling (RTADE), Cramér–von Mises (CVME), least-squares (LSE), weighted least-squares (WLSE), maximum product of spacings (MPS) and percentile estimation (PCE), and Bayesian approach under three loss functions namely, square error (SE), linear exponential (LINEX), and the general entropy (GE).

    Consider the random sample of size n, say x1,x2,,xn, from the PDF (2.2), and let x1:n,x2:n,,x2:n be their associated order statistics.

    The log-likelihood function of the WDEx distribution has the form

    L=(α1)ni=1log((1e)λxi)ni=1log((1eλxi)α+1)λni=1xi+nlog(αλlog(2)). (5.1)

    Hence, the MLEs of α and λ are determined by maximizing Eq (5.1) with respect to α and λ, as the solutions of the following equations

    Lα=ni=1(1eλxi)αlog(1eλxi)(1eλxi)α+1+ni=1log((1e)λxi)+nα=0

    and

    Lλ=(α1)ni=1xieλxi1eλxini=1αxieλxi(1eλxi)α1(1eλxi)α+1ni=1xi+nλ=0.

    Furthermore, solving the above two equations mathematically is complicated, hence the equations can be solved by the numerical methods to obtain the MLE of α and λ.

    The LSE of the WDEx parameters come from minimizing

    O=ni=1[F(xi:n)in+1]2=ni=1[log[(1eλxi:n)α+1]log(2)in+1]2.

    The LSE of the WDEx parameters are also obtained by solving the following equations

    ni=1{log[(1eλxi:n)α+1]log(2)in+1}Δs(xi:n)=0,s=1,2,

    where

    Δ1(xi:n)=αF(xi:n)=(1eλxi)αlog(1eλxi)log(2)((1eλxi)α+1), (5.2)
    Δ2(xi:n)=λF(xi:n)=αxieλxi(1eλxi)α1log(2)((1eλxi)α+1). (5.3)

    The WLSE of the WDEx parameters can be calculated by minimizing

    W=ni=1(n+1)2(n+2)i(ni+1)[F(xi:n)in+1]2=ni=1(n+1)2(n+2)i(ni+1)[log[(1eλxi:n)α+1]log(2)in+1]2.

    Furthermore, the WLSE of the WDEx parameters are obtained by solving the following equations

    ni=1(n+1)2(n+2)i(ni+1)[log[(1eλxi:n)α+1]log(2)in+1]Δs(xi:n)=0,

    where Δs(xi:n),s=1,2,3 are given by Eqs (5.2) and (5.3).

    The ADE of the WDEx parameters are obtained by minimizing

    A=n1nni=1(2i1)[logF(xi:n)+logS(xi:n)].

    The ADE are also calculated by solving the following equations

    ni=1(2i1)[Δs(xi:n)F(xi:n)Δs(xn+1i:n)S(xn+1i:n)]=0,

    where Δs(xi:n),s=1,2,3 were defined in (5.2) and (5.3), respectively.

    The RTADE of the WDEx parameters can be calculated by minimizing

    R=n22ni=1F(xi:n)1nni=1(2i1)logS(xi:n).

    The RADE can also be follow by solving the non-linear equations

    2ni=1Δs(xn+1i:n)+1nni=1Δs(xn+1i:n)S(xn+1i:n)=0,

    where Δs(xi:n),s=1,2,3 are defined in (5.2) and (5.3).

    As an alternative to the ML method, the maximum product spacing (MPS) approach is adopted to estimate the parameters of continuous univariate distributions. The uniform spacings, say Di, of a random sample of size n from the WDEx distribution are defined by

    Di=F(xi)F(xi1),i=1,2,...,n.

    where F(x0)=0, F(xn+1=1) and n+1i=1Di=1. Then, the MPSE of the WDEx parameters can be obtained by maximizing

    G=1n+1n+1i=1log(Di),

    with respect to α and λ. Further, the MPSE of the WDEx parameters are also obtained by solving

    1n+1n+1i=11Di[Δs(xi:n)Δs(xi1:n)]=0,

    where Δs(xi:n),s=1,2,3 are presented in (5.2) and (5.3).

    Let pi=in+1 be an estimate of F(xi:n). Hence, the PCE of the WDEx parameters are obtained by minimizing

    PCE=ni=1[xi:nQ(pi)]2=ni=1[xi:nlog[1(2pi1)1/α]λ]2.

    The PCE are calculated by solving the following equations

    ni=1(xi:nlog[1(2pi1)1/α]λ)Φs(xi:n)=0,s=1,2,

    where

    Φ1(xi:n)=αQ(pi)=(2pi1)1/αlog(2pi1)α2λ((2pi1)1/α1),Φ2(xi:n)=λQ(pi)=log(1(2pi1)1/α)λ2.

    The CVME of the WDEx parameters are obtained by minimizing

    CV=112n+ni=1[F(xi:n)2i12n]2=112n+ni=1[log[(1eλxi:n)α+1]log(2)2i12n]2,

    They also are obtained by solving the following equations

    ni=1{log[(1eλxi:n)α+1]log(2)2i12n}Δs(xi:n)=0,

    where Δs(xi:n),s=1,2,3 are given in (5.2) and (5.3).

    The Bayesian estimation (BE) for the distribution parameters under different loss functions such as the SE, LINEX, and GE loss functions is studied. The parameters are assumed to have gamma priors. Thus,

    π1(α)αμ11eαλ1,α>0,μ1,λ1>0

    and

    π2(λ)λμ21eλλ2,λ>0μ2,λ2>0

    Suppose that the parameters are independent, therefore the joint PDF of the prior distribution has the form

    π(α,λ)λμ21αμ11e(αλ1+λλ2). (5.4)

    The posterior density function of the parameters α and λ can be obtained from (5.1) and (5.4), as follows

    π(Θ|t)=π(α,λ|t)L(α,λ)π(α,λ). (5.5)

    The BE of the function of parameters U=U(Θ), Θ=(γ,α,θ1,b) under the SE loss function (LF) is given by

    ˆUSE=ΘUπ(Θ|t)dΘ. (5.6)

    Under the LINEX LF, the BE of U=U(Θ) reduces to

    ˆULINEX=1clog[ΘecUπ(Θ|t)dΘ], (5.7)

    where c0 is the shape parameter of the LINEX LF.

    Based on the GE LF, the BE of U takes the form

    ˆUGE=(ΘUqπ(Θ|t)dΘ)1/q, (5.8)

    where q0.

    It is obvious that the integrals in Eqs (5.6)–(5.8) are complicated. Consequently, the important sampling method and the MCMC method are applied to obtain an approximation for these integrals. The Metropolis Hasting (MH) algorithm produces a series of draws from the WDEx distribution as follows:

    Algorithm 1 The MCMC for BE
    1. First we will start with initial values for the two parameters α(0)=ˆαMLE, λ(0)=ˆλMLE,
    2. Start the first iteration with counter i=1.
    3. Now we will generate a random value for α from proposal distribution N(α(i1),var(α(i1)))., where var(α(i1)) is the variance of the parameter α
    4. We will use the following equation A(α(i1)|α)=min[1,π(α|λ(i1))π(α(i1)|λ(i1))], the value of this equation donates the acceptance probability.
    5. Now we will generate a random value that follows the uniform distribution UU(0,1) that ranges from 0 to 1.
    6. If UA(α(i1)|α), put α(i)=α, else put α(i)=α(i1).
    7. In order to evaluate the other parameter λ we will repeat the steps from ((2)–(6)) for λ.
    8. Now increase the counter by one such that i=i+1.
    9. To avoid any correlation between the initial values and the estimated values we will repeat the steps from ((3)–(8)), N=10,000 times to obtain (α(1),λ(1)), ..., (α(N),β(N)).
    Then, the BEs of u(α,β) using the MCMC under the three LFs are, respectively, given by
    ˜uSE=1NMNi=M+1u(α(i),λ(i)),
    ˜uLINEX=1clog[1NMNi=M+1exp{cu(α(i),λ(i))}]
    and
    ˜uGE=[1NMNi=M+1(u(α(i),λ(i)))q]1/q,
    where M=2000 is the burn-in period.

     | Show Table
    DownLoad: CSV

    One of the most computationally efficient methods, for estimating the distribution parameter is the Tierney and Kadane [24] (TK) method. They developed an easily calculable integration approximation approach for evaluating the distribution parameters. The advantage of the TK approach is that it provides an easy and fast approximation method, however some methods are very hard to find the values of integration and takes a lot of time and effort.

    Throughout this segment, we use the TK approximation method for calculating the Bayesian estimates (BEs) of the parameters that are focused on the SE, Linex, and GE LFs. TK method [24] is among the techniques to obtain the estimated value of the ratio of the two integrals as given in the following equation

    ˆU(Θ)=ΘU(Θ)e[l(Θ|t)+ρ(Θ|t)]  dΘΘe[l(Θ|t)+ρ(Θ|t)]  dΘ, (5.9)

    where U(Θ) is any function of the parameters (α,λ), l(Θ|t) is defined in (5.1), and ρ(Θ|t) is the logarithm joint prior distribution which is defined by

    ρ(α,λ|t)=(μ11)ln(α)+(μ21)lnλ(αλ1+λλ2). (5.10)

    To obtain an explicit expression for ˆUSE(Θ) using TK approximation, we consider the following functions

    δ(Θ)=l(Θ|t)+ρ(Θ|t)n (5.11)

    and

    δ(Θ)=δ(Θ)+lnU(Θ)n. (5.12)

    Now, assume that the following groups of values (ˆαδ,ˆλδ) and (ˆαδ,ˆλδ) maximize the functions δ(α,λ) and δ(α,λ), respectively.

    Hence, we can evaluate the approximation of ˆU(Θ) by

    ˆUTK(Θ)=|Δ||Δ|exp[n{δ(ˆαδ,ˆλδ)δ(ˆαδ,ˆλδ)}], (5.13)

    where |Δ| and |Δ| refers to the determinants of negative inverse hessian of δ(α,λ) and δ(α,λ), respectively.

    Now, we asses the performance of the above estimation techniques in estimating the WDEx parameters using simulation results. Different sample sizes, n={15,30,70,100,200,350}, and some initial values are assigned. We generated 5000 random samples from the WDEx distribution to calculate the average absolute biases (ABBs), mean square errors (MSEs), and mean relative errors of estimates (MREs) using the R program©.

    The following respective mathematical formulae are used to evaluate the ABBs, MSEs, and MREs (for θθ=(α,λ))

    ABs=1NNi=1|^θθθθ|,MSEs=1NNi=1(^θθθθ)2,MREs=1NNi=1|^θθθθ|/θθ.

    Table 3 reports the simulation results including the ABBs, MSEs, and MREs of the WDEx parameters using the nine estimation approaches. One can note that all methods provide small ABBs, MSEs and MREs in all parametric values. The nine estimators are consistent, i.e., the MSEs decrease as the sample size increases, for all studied cases.

    Table 3.  Simulation results of the WDEx distribution using different estimators for (α=0.75,λ=0.75).
    n Est. Est. Par. Classical
    MLE ADE CVME MPS LSE PCE RTADE WLSE
    15 BIAS ˆα 0.25192877{5}{11} 0.22405917{2}{8} 0.30164256{7}{13} 0.19839734{1}{7} 0.24557181{4}{10} 0.32687545{8}{14} 0.29638657{6}{12} 0.24157906{3}{9}
    ˆλ 0.32093518{5}{11} 0.30428638{2}{8} 0.39524432{8}{14} 0.26371696{1}{7} 0.31652453{4}{10} 0.34677645{7}{13} 0.32593945{6}{12} 0.31219147{3}{9}
    MSE ˆα 0.16122813{3}{9} 0.11215242{2}{8} 0.26608275{8}{14} 0.06560425{1}{7} 0.1682729{4}{10} 0.19013447{6}{12} 0.22921014{7}{13} 0.18043259{5}{11}
    ˆλ 0.21915477{4}{10} 0.20639267{2}{8} 0.34394628{8}{14} 0.11724707{1}{7} 0.2237624{5}{11} 0.2148123{3}{9} 0.23978318{7}{13} 0.23922943{6}{12}
    MRE ˆα 0.33590503{5}{11} 0.29874556{2}{8} 0.40219008{7}{13} 0.26452979{1}{7} 0.32742908{4}{10} 0.43583393{8}{14} 0.3951821{6}{12} 0.32210541{3}{9}
    ˆλ 0.42791357{5}{11} 0.40571517{2}{8} 0.52699243{8}{14} 0.35162261{1}{7} 0.42203271{4}{10} 0.4623686{7}{13} 0.43458594{6}{12} 0.4162553{3}{9}
    CRanks 27{5} 12{2} 46{8} 6{1} 25{4} 39{7} 38{6} 23{3}
    C&BRanks 63{11} 48{8} 82{14} 42{7} 61{10} 75{13} 74{12} 59{9}
    30 BIAS ˆα 0.14405974{3}{9} 0.13901101{2}{8} 0.17725422{7}{13} 0.13213658{1}{7} 0.16209531{5}{11} 0.25820992{8}{14} 0.16964029{6}{12} 0.14580412{4}{10}
    ˆλ 0.18969311{2}{8} 0.19141061{3}{9} 0.23350009{7}{13} 0.18115544{1}{7} 0.22786428{6}{12} 0.24136118{8}{14} 0.20026589{4}{10} 0.20766574{5}{11}
    MSE ˆα 0.03746839{3}{9} 0.03635968{2}{8} 0.06052504{7}{13} 0.02548745{1}{7} 0.05095711{5}{11} 0.10729773{8}{14} 0.05828137{6}{12} 0.04260275{4}{10}
    ˆλ 0.06746508{3}{9} 0.06525692{2}{8} 0.09980727{8}{14} 0.04907736{1}{7} 0.09345408{7}{13} 0.09161708{6}{12} 0.07713619{4}{10} 0.0814058{5}{11}
    MRE ˆα 0.19207965{3}{9} 0.18534802{2}{8} 0.23633896{7}{13} 0.1761821{1}{7} 0.21612709{5}{11} 0.34427989{8}{14} 0.22618705{6}{12} 0.19440549{4}{10}
    ˆλ 0.25292415{2}{8} 0.25521415{3}{9} 0.31133346{7}{13} 0.24154058{1}{7} 0.30381904{6}{12} 0.32181491{8}{14} 0.26702119{4}{10} 0.27688765{5}{11}
    CRanks 16{3} 14{2} 43{7} 6{1} 34{6} 46{8} 30{5} 27{4}
    C&BRanks 52{9} 50{8} 79{13} 42{7} 70{12} 82{14} 66{11} 63{10}
    70 BIAS ˆα 0.08792199{3}{9} 0.08650543{2}{8} 0.10310607{6}{12} 0.08281633{1}{7} 0.10074083{5}{11} 0.1753952{8}{14} 0.10421227{7}{13} 0.08803723{4}{10}
    ˆλ 0.11408442{1}{7} 0.12445549{3}{9} 0.14143312{7}{13} 0.1164039{2}{8} 0.13839689{6}{12} 0.16478766{8}{14} 0.12896275{5}{11} 0.12549479{4}{10}
    MSE ˆα 0.01336042{3}{9} 0.01302739{2}{8} 0.01826087{6}{12} 0.01051127{1}{7} 0.01740773{5}{11} 0.04721909{8}{14} 0.01897672{7}{13} 0.01339529{4}{10}
    ˆλ 0.02286488{2}{8} 0.02612201{3}{9} 0.03569504{7}{13} 0.02027791{1}{7} 0.03209949{6}{12} 0.04224291{8}{14} 0.02824455{5}{11} 0.02671826{4}{10}
    MRE ˆα 0.11722932{3}{9} 0.11534057{2}{8} 0.13747476{6}{12} 0.11042178{1}{7} 0.13432111{5}{11} 0.23386027{8}{14} 0.13894969{7}{13} 0.11738297{4}{10}
    ˆλ 0.15211257{1}{7} 0.16594066{3}{9} 0.18857749{7}{13} 0.1552052{2}{8} 0.18452919{6}{12} 0.21971689{8}{14} 0.17195033{5}{11} 0.16732638{4}{10}
    CRanks 13{2} 15{3} 39{7} 8{1} 33{5} 48{8} 36{6} 24{4}
    C&BRanks 49{8} 51{9} 75{13} 44{7} 69{11} 84{14} 72{12} 60{10}
    100 BIAS ˆα 0.0711708{2}{8} 0.07361175{3}{9} 0.08687172{6}{12} 0.06877471{1}{7} 0.07956296{5}{11} 0.15707028{8}{14} 0.0891824{7}{13} 0.07485017{4}{10}
    ˆλ 0.10091505{4}{10} 0.09963177{2}{8} 0.11507711{6}{12} 0.0956997{1}{7} 0.11614478{7}{13} 0.14353138{8}{14} 0.10220272{5}{11} 0.10079129{3}{9}
    MSE ˆα 0.00836564{2}{8} 0.00880658{3}{9} 0.01255586{7}{13} 0.0070432{1}{7} 0.01016903{5}{11} 0.03872841{8}{14} 0.01247087{6}{12} 0.0095693{4}{10}
    ˆλ 0.01716988{4}{10} 0.01679548{2}{8} 0.02177566{6}{12} 0.01380793{1}{7} 0.02250852{7}{13} 0.03103759{8}{14} 0.01734026{5}{11} 0.01694889{3}{9}
    MRE ˆα 0.09489439{2}{8} 0.098149{3}{9} 0.11582897{6}{12} 0.09169961{1}{7} 0.10608395{5}{11} 0.20942704{8}{14} 0.11890987{7}{13} 0.09980023{4}{10}
    ˆλ 0.13455341{4}{10} 0.13284236{2}{8} 0.15343615{6}{12} 0.1275996{1}{7} 0.15485971{7}{13} 0.19137517{8}{14} 0.1362703{5}{11} 0.13438838{3}{9}
    CRanks 18{3} 15{2} 37{7} 6{1} 36{6} 48{8} 35{5} 21{4}
    C&BRanks 54{9} 51{8} 73{13} 42{7} 72{12} 84{14} 71{11} 57{10}
    200 BIAS ˆα 0.04897082{1}{7} 0.05135288{3}{9} 0.05580712{5}{11} 0.05042855{2}{8} 0.05620865{6}{12} 0.11786812{8}{14} 0.05902749{7}{13} 0.0514394{4}{10}
    ˆλ 0.0680904{1}{7} 0.07177274{3}{9} 0.08001323{7}{13} 0.06943586{2}{8} 0.07996607{6}{12} 0.10198027{8}{14} 0.07187114{4}{10} 0.07208482{5}{11}
    MSE ˆα 0.00376579{1}{7} 0.00414776{3}{9} 0.00504929{5}{11} 0.00389309{2}{8} 0.00516812{6}{12} 0.02119878{8}{14} 0.0057458{7}{13} 0.00430278{4}{10}
    ˆλ 0.00722093{1}{7} 0.00838347{3}{9} 0.01096736{7}{13} 0.00726195{2}{8} 0.01032872{6}{12} 0.01585112{8}{14} 0.0084817{4}{10} 0.00865163{5}{11}
    MRE ˆα 0.06529443{1}{7} 0.06847051{3}{9} 0.07440949{5}{11} 0.06723806{2}{8} 0.07494487{6}{12} 0.15715749{8}{14} 0.07870332{7}{13} 0.06858586{4}{10}
    ˆλ 0.09078719{1}{7} 0.09569698{3}{9} 0.10668431{7}{13} 0.09258115{2}{8} 0.10662142{6}{12} 0.1359737{8}{14} 0.09582819{4}{10} 0.09611309{5}{11}
    CRanks 6{1} 18{3} 36{6.5} 12{2} 36{6.5} 48{8} 33{5} 27{4}
    \sum C&BRanks 42{7} 54{9} 72{12.5} 48{8} 72{12.5} 84{14} 69{11} 63{10}
    300 BIAS ˆα 0.03667764{1}{6} 0.03990136{3}{9} 0.04288476{5}{11} 0.03760933{2}{7} 0.04356189{6}{12} 0.0934606{8}{14} 0.04654803{7}{13} 0.040086{4}{10}
    ˆλ 0.04795812{1}{6} 0.05338798{3}{9} 0.05993014{6}{12} 0.05257793{2}{7} 0.06112134{7}{13} 0.07718156{8}{14} 0.05407786{5}{11} 0.05393484{4}{10}
    MSE ˆα 0.00215764{1}{6} 0.00250001{3}{8} 0.00296309{6}{12} 0.00221696{2}{7} 0.00293099{5}{11} 0.01343653{8}{14} 0.00346372{7}{13} 0.0025318{4}{10}
    ˆλ 0.00376997{1}{6} 0.00453163{3}{8} 0.00573555{6}{12} 0.00421602{2}{7} 0.00580597{7}{13} 0.0091151{8}{14} 0.00478321{5}{10} 0.00471786{4}{9}
    MRE ˆα 0.04890353{1}{6} 0.05320181{3}{9} 0.05717968{5}{11} 0.05014577{2}{7} 0.05808252{6}{12} 0.12461413{8}{14} 0.06206403{7}{13} 0.053448{4}{10}
    ˆλ 0.06394416{1}{6} 0.07118398{3}{9} 0.07990685{6}{12} 0.07010391{2}{7} 0.08149512{7}{13} 0.10290874{8}{14} 0.07210381{5}{11} 0.07191312{4}{10}
    CRanks 6{1} 18{3} 34{5} 12{2} 38{7} 48{8} 36{6} 24{4}
    C&BRanks 36{6} 52{8.5} 70{11} 42{7} 74{13} 84{14} 71{12} 59{10}
    15 BIAS ˆα 0.07080639{2}{2} 0.07080648{3}{3} 0.07079734{1}{1} 0.10887156{6}{6} 0.078971{5}{5} 0.07215014{4}{4}
    ˆλ 0.07334416{2}{2} 0.07334414{1}{1} 0.07335074{3}{3} 0.13371233{6}{6} 0.12036804{5}{5} 0.11400132{4}{4}
    MSE ˆα 0.00700589{4}{4} 0.0070059{5}{5} 0.00700451{3}{3} 0.01710565{6}{6} 0.00623642{2}{2} 0.00520564{1}{1}
    ˆλ 0.00734358{2}{2} 0.00734357{1}{1} 0.00734515{3}{3} 0.02521906{6}{6} 0.01448847{5}{5} 0.0129963{4}{4}
    MRE ˆα 0.09440852{2}{2} 0.09440864{3}{3} 0.09439646{1}{1} 0.14516208{6}{6} 0.10529467{5}{5} 0.09620019{4}{4}
    ˆλ 0.09779221{2}{2} 0.09779219{1}{1} 0.09780098{3}{3} 0.17828311{6}{6} 0.16049072{5}{5} 0.15200176{4}{4}
    BRanks 14{2} 14{2} 14{2} 36{6} 27{5} 21 ^{\{ 4 \}}
    \sum C \&BRanks 14 ^{\{ 2 \}} 14 ^{\{ 2 \}} 14 ^{\{ 2 \}} 36 ^{\{ 6 \}} 27 ^{\{ 5 \}} 21 ^{\{ 4 \}}
    30 BIAS \hat{\alpha} 0.06707577 ^{\{ 4 \}\{ 4 \}} 0.06707579 ^{\{ 5 \}\{ 5 \}} 0.06707479 ^{\{ 3 \}\{ 3 \}} 0.08818954 ^{\{ 6 \}\{ 6 \}} 0.05398142 ^{\{ 2 \}\{ 2 \}} 0.0484456 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.07063728 ^{\{ 2 \}\{ 2 \}} 0.07063729 ^{\{ 3 \}\{ 3 \}} 0.07063836 ^{\{ 4 \}\{ 4 \}} 0.09669995 ^{\{ 6 \}\{ 6 \}} 0.07140666 ^{\{ 5 \}\{ 5 \}} 0.06590862 ^{\{ 1 \}\{ 1 \}}
    MSE \hat{\alpha} 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} 0.00638429 ^{\{ 3 \}\{ 3 \}} 0.01167204 ^{\{ 6 \}\{ 6 \}} 0.00291399 ^{\{ 2 \}\{ 2 \}} 0.00234698 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} 0.00685694 ^{\{ 3 \}\{ 3 \}} 0.01388726 ^{\{ 6 \}\{ 6 \}} 0.00509891 ^{\{ 2 \}\{ 2 \}} 0.00434395 ^{\{ 1 \}\{ 1 \}}
    MRE \hat{\alpha} 0.08943436 ^{\{ 4 \}\{ 4 \}} 0.08943439 ^{\{ 5 \}\{ 5 \}} 0.08943306 ^{\{ 3 \}\{ 3 \}} 0.11758605 ^{\{ 6 \}\{ 6 \}} 0.07197522 ^{\{ 2 \}\{ 2 \}} 0.06459413 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.09418304 ^{\{ 2 \}\{ 2 \}} 0.09418306 ^{\{ 3 \}\{ 3 \}} 0.09418448 ^{\{ 4 \}\{ 4 \}} 0.12893327 ^{\{ 6 \}\{ 6 \}} 0.09520888 ^{\{ 5 \}\{ 5 \}} 0.08787816 ^{\{ 1 \}\{ 1 \}}
    \sum BRanks 21 ^{\{ 4 \}} 25 ^{\{ 5 \}} 20 ^{\{ 3 \}} 36 ^{\{ 6 \}} 18 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    \sum C \&BRanks 21 ^{\{ 4 \}} 25 ^{\{ 5 \}} 20 ^{\{ 3 \}} 36 ^{\{ 6 \}} 18 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    70 BIAS \hat{\alpha} 0.0628967 ^{\{ 4 \}\{ 4 \}} 0.06289672 ^{\{ 5 \}\{ 5 \}} 0.06289578 ^{\{ 3 \}\{ 3 \}} 0.06988905 ^{\{ 6 \}\{ 6 \}} 0.03512338 ^{\{ 2 \}\{ 2 \}} 0.03097589 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.06382592 ^{\{ 3 \}\{ 3 \}} 0.06382593 ^{\{ 4 \}\{ 4 \}} 0.06382623 ^{\{ 5 \}\{ 5 \}} 0.08500664 ^{\{ 6 \}\{ 6 \}} 0.04706336 ^{\{ 2 \}\{ 2 \}} 0.04163393 ^{\{ 1 \}\{ 1 \}}
    MSE \hat{\alpha} 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} 0.00529439 ^{\{ 3 \}\{ 3 \}} 0.00766215 ^{\{ 6 \}\{ 6 \}} 0.00123365 ^{\{ 2 \}\{ 2 \}} 0.00095951 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} 0.00577528 ^{\{ 5 \}\{ 5 \}} 0.01076173 ^{\{ 6 \}\{ 6 \}} 0.00221496 ^{\{ 2 \}\{ 2 \}} 0.00173338 ^{\{ 1 \}\{ 1 \}}
    MRE \hat{\alpha} 0.08386227 ^{\{ 4 \}\{ 4 \}} 0.08386229 ^{\{ 5 \}\{ 5 \}} 0.08386104 ^{\{ 3 \}\{ 3 \}} 0.0931854 ^{\{ 6 \}\{ 6 \}} 0.04683117 ^{\{ 2 \}\{ 2 \}} 0.04130118 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} 0.08510164 ^{\{ 5 \}\{ 5 \}} 0.11334219 ^{\{ 6 \}\{ 6 \}} 0.06275115 ^{\{ 2 \}\{ 2 \}} 0.0555119 ^{\{ 1 \}\{ 1 \}}
    \sum BRanks 22.5 ^{\{ 3 \}} 25.5 ^{\{ 5 \}} 24 ^{\{ 4 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    \sum C \&BRanks 22.5 ^{\{ 3 \}} 25.5 ^{\{ 5 \}} 24 ^{\{ 4 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    100 BIAS \hat{\alpha} 0.05470376 ^{\{ 4 \}\{ 4 \}} 0.05470375 ^{\{ 3 \}\{ 3 \}} 0.05470411 ^{\{ 5 \}\{ 5 \}} 0.06296533 ^{\{ 6 \}\{ 6 \}} 0.02807831 ^{\{ 2 \}\{ 2 \}} 0.02458989 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} 0.0631295 ^{\{ 5 \}\{ 5 \}} 0.07802856 ^{\{ 6 \}\{ 6 \}} 0.04616373 ^{\{ 2 \}\{ 2 \}} 0.04172589 ^{\{ 1 \}\{ 1 \}}
    MSE \hat{\alpha} 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} 0.00439478 ^{\{ 5 \}\{ 5 \}} 0.00608088 ^{\{ 6 \}\{ 6 \}} 0.00078839 ^{\{ 2 \}\{ 2 \}} 0.00060466 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} 0.00567383 ^{\{ 3 \}\{ 3 \}} 0.00900842 ^{\{ 6 \}\{ 6 \}} 0.00213109 ^{\{ 2 \}\{ 2 \}} 0.00174105 ^{\{ 1 \}\{ 1 \}}
    MRE \hat{\alpha} 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} 0.07293881 ^{\{ 5 \}\{ 5 \}} 0.08395377 ^{\{ 6 \}\{ 6 \}} 0.03743775 ^{\{ 2 \}\{ 2 \}} 0.03278652 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} 0.08417267 ^{\{ 5 \}\{ 5 \}} 0.10403808 ^{\{ 6 \}\{ 6 \}} 0.06155164 ^{\{ 2 \}\{ 2 \}} 0.05563452 ^{\{ 1 \}\{ 1 \}}
    \sum BRanks 22.5 ^{\{ 4 \}} 21.5 ^{\{ 3 \}} 28 ^{\{ 5 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    \sum C \&BRanks 22.5 ^{\{ 4 \}} 21.5 ^{\{ 3 \}} 28 ^{\{ 5 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    200 BIAS \hat{\alpha} 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} 0.04001848 ^{\{ 3 \}\{ 3 \}} 0.04705698 ^{\{ 6 \}\{ 6 \}} 0.01733801 ^{\{ 2 \}\{ 2 \}} 0.01516892 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.05856409 ^{\{ 4 \}\{ 4 \}} 0.0585641 ^{\{ 5 \}\{ 5 \}} 0.05856347 ^{\{ 3 \}\{ 3 \}} 0.06345567 ^{\{ 6 \}\{ 6 \}} 0.02796569 ^{\{ 2 \}\{ 2 \}} 0.02441503 ^{\{ 1 \}\{ 1 \}}
    MSE \hat{\alpha} 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} 0.00253076 ^{\{ 3 \}\{ 3 \}} 0.00362108 ^{\{ 6 \}\{ 6 \}} 0.00030061 ^{\{ 2 \}\{ 2 \}} 0.0002301 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} 0.0047633 ^{\{ 3 \}\{ 3 \}} 0.00626275 ^{\{ 6 \}\{ 6 \}} 0.00078208 ^{\{ 2 \}\{ 2 \}} 0.00059609 ^{\{ 1 \}\{ 1 \}}
    MRE \hat{\alpha} 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} 0.05335798 ^{\{ 3 \}\{ 3 \}} 0.06274264 ^{\{ 6 \}\{ 6 \}} 0.02311735 ^{\{ 2 \}\{ 2 \}} 0.02022522 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.07808545 ^{\{ 4 \}\{ 4 \}} 0.07808546 ^{\{ 5 \}\{ 5 \}} 0.07808462 ^{\{ 3 \}\{ 3 \}} 0.08460756 ^{\{ 6 \}\{ 6 \}} 0.03728759 ^{\{ 2 \}\{ 2 \}} 0.03255338 ^{\{ 1 \}\{ 1 \}}
    \sum BRanks 26 ^{\{ 4 \}} 28 ^{\{ 5 \}} 18 ^{\{ 3 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    \sum C\&BRanks 26 ^{\{ 4 \}} 28 ^{\{ 5 \}} 18 ^{\{ 3 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    300 BIAS \hat{\alpha} 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} 0.03245972 ^{\{ 3 \}\{ 3 \}} 0.03938224 ^{\{ 6 \}\{ 8 \}} 0.01407489 ^{\{ 2 \}\{ 2 \}} 0.01252037 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} 0.0473218 ^{\{ 5 \}\{ 5 \}} 0.05290774 ^{\{ 6 \}\{ 8 \}} 0.02365826 ^{\{ 2 \}\{ 2 \}} 0.02092282 ^{\{ 1 \}\{ 1 \}}
    MSE \hat{\alpha} 0.00166778 ^{\{ 4 \}\{ 4 \}} 0.00166778 ^{\{ 4 \}\{ 4 \}} 0.00166778 ^{\{ 4 \}\{ 4 \}} 0.00252766 ^{\{ 6 \}\{ 9 \}} 0.0001981 ^{\{ 2 \}\{ 2 \}} 0.00015676 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} 0.00341069 ^{\{ 5 \}\{ 5 \}} 0.00482747 ^{\{ 6 \}\{ 11 \}} 0.00055971 ^{\{ 2 \}\{ 2 \}} 0.00043776 ^{\{ 1 \}\{ 1 \}}
    MRE \hat{\alpha} 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} 0.04327963 ^{\{ 3 \}\{ 3 \}} 0.05250965 ^{\{ 6 \}\{ 8 \}} 0.01876651 ^{\{ 2 \}\{ 2 \}} 0.01669383 ^{\{ 1 \}\{ 1 \}}
    \hat{\lambda} 0.06309505 ^{\{ 4 \}\{ 4 \}} 0.06309504 ^{\{ 3 \}\{ 3 \}} 0.06309574 ^{\{ 5 \}\{ 5 \}} 0.07054365 ^{\{ 6 \}\{ 8 \}} 0.03154434 ^{\{ 2 \}\{ 2 \}} 0.02789709 ^{\{ 1 \}\{ 1 \}}
    \sum BRanks 24 ^{\{ 4 \}} 23 ^{\{ 3 \}} 25 ^{\{ 5 \}} 36 ^{\{ 6 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}
    \sum C\&BRanks 24 ^{\{ 4 \}} 23 ^{\{ 3 \}} 25 ^{\{ 5 \}} 52 ^{\{ 8.5 \}} 12 ^{\{ 2 \}} 6 ^{\{ 1 \}}

     | Show Table
    DownLoad: CSV
    Table 4.  The CI length for different parametric values of all estimation methods.
    n Est. Par. MLE ADE CVME MPS LSE PCE RTADE WLSE Bayesian
    L. BP L. BT L. BP L. BT L. BP L. BT L. BP L. BT L. BP L. BT L. BP L. BT L. BP L. BT L. BP L. BT L. CR
    15 \hat{\alpha} 1.76864 ^{\{ 14 \}} 1.01231 ^{\{ 5 \}} 1.23169 ^{\{ 7 \}} 0.9917 ^{\{ 4 \}} 2.44613 ^{\{ 16 \}} 1.42478 ^{\{ 11 \}} 0.75104 ^{\{ 1 \}} 0.85626 ^{\{ 3 \}} 1.37582 ^{\{ 10 \}} 1.2964 ^{\{ 9 \}} 1.73329 ^{\{ 13 \}} 4.52643 ^{\{ 17 \}} 2.21266 ^{\{ 15 \}} 1.4343 ^{\{ 12 \}} 1.26902 ^{\{ 8 \}} 1.09219 ^{\{ 6 \}} 0.79185 ^{\{ 2 \}}
    \hat{\lambda} 1.8179 ^{\{ 13 \}} 1.21276 ^{\{ 3 \}} 1.61918 ^{\{ 9 \}} 1.35754 ^{\{ 6 \}} 2.45476 ^{\{ 16 \}} 1.76051 ^{\{ 12 \}} 1.08184 ^{\{ 2 \}} 1.21353 ^{\{ 4 \}} 1.82447 ^{\{ 14 \}} 1.7064 ^{\{ 10 \}} 1.51256 ^{\{ 7 \}} 2.71437 ^{\{ 17 \}} 1.85662 ^{\{ 15 \}} 1.32039 ^{\{ 5 \}} 1.73185 ^{\{ 11 \}} 1.56473 ^{\{ 8 \}} 1.02613 ^{\{ 1 \}}
    30 \hat{\alpha} 0.76771 ^{\{ 10 \}} 0.61941 ^{\{ 3 \}} 0.69962 ^{\{ 6 \}} 0.63344 ^{\{ 5 \}} 0.93483 ^{\{ 14 \}} 0.73927 ^{\{ 8 \}} 0.54674 ^{\{ 1 \}} 0.62416 ^{\{ 4 \}} 0.8346 ^{\{ 13 \}} 0.82046 ^{\{ 12 \}} 1.17514 ^{\{ 16 \}} 2.60316 ^{\{ 17 \}} 0.96934 ^{\{ 15 \}} 0.81431 ^{\{ 11 \}} 0.75708 ^{\{ 9 \}} 0.73181 ^{\{ 7 \}} 0.56731 ^{\{ 2 \}}
    \hat{\lambda} 1.01832 ^{\{ 9 \}} 0.85197 ^{\{ 4 \}} 0.95639 ^{\{ 7 \}} 0.87947 ^{\{ 6 \}} 1.2636 ^{\{ 16 \}} 1.08914 ^{\{ 13 \}} 0.74985 ^{\{ 2 \}} 0.85211 ^{\{ 5 \}} 1.15014 ^{\{ 15 \}} 1.14232 ^{\{ 14 \}} 1.0211 ^{\{ 10 \}} 1.58731 ^{\{ 17 \}} 1.04276 ^{\{ 12 \}} 0.81825 ^{\{ 3 \}} 1.03151 ^{\{ 11 \}} 1.00314 ^{\{ 8 \}} 0.73465 ^{\{ 1 \}}
    70 \hat{\alpha} 0.44252 ^{\{ 9 \}} 0.40638 ^{\{ 3 \}} 0.43855 ^{\{ 8 \}} 0.4246 ^{\{ 5 \}} 0.52287 ^{\{ 15 \}} 0.47767 ^{\{ 11 \}} 0.363 ^{\{ 1 \}} 0.4131 ^{\{ 4 \}} 0.47865 ^{\{ 12 \}} 0.47271 ^{\{ 10 \}} 0.82108 ^{\{ 16 \}} 1.36637 ^{\{ 17 \}} 0.51984 ^{\{ 14 \}} 0.47879 ^{\{ 13 \}} 0.43536 ^{\{ 6 \}} 0.43582 ^{\{ 7 \}} 0.37696 ^{\{ 2 \}}
    \hat{\lambda} 0.59365 ^{\{ 6 \}} 0.54695 ^{\{ 4 \}} 0.61226 ^{\{ 10 \}} 0.59699 ^{\{ 7 \}} 0.75869 ^{\{ 16 \}} 0.69736 ^{\{ 14 \}} 0.487 ^{\{ 1 \}} 0.54884 ^{\{ 5 \}} 0.65062 ^{\{ 12 \}} 0.6587 ^{\{ 13 \}} 0.70313 ^{\{ 15 \}} 0.80559 ^{\{ 17 \}} 0.60571 ^{\{ 8 \}} 0.50151 ^{\{ 3 \}} 0.60658 ^{\{ 9 \}} 0.61611 ^{\{ 11 \}} 0.49915 ^{\{ 2 \}}
    100 \hat{\alpha} 0.33944 ^{\{ 5 \}} 0.31992 ^{\{ 3 \}} 0.34198 ^{\{ 6 \}} 0.33375 ^{\{ 4 \}} 0.42215 ^{\{ 14 \}} 0.38962 ^{\{ 10 \}} 0.30229 ^{\{ 1 \}} 0.34622 ^{\{ 7 \}} 0.39767 ^{\{ 11 \}} 0.39816 ^{\{ 12 \}} 0.68273 ^{\{ 16 \}} 1.05362 ^{\{ 17 \}} 0.4355 ^{\{ 15 \}} 0.41384 ^{\{ 13 \}} 0.3649 ^{\{ 9 \}} 0.35835 ^{\{ 8 \}} 0.31696 ^{\{ 2 \}}
    \hat{\lambda} 0.47339 ^{\{ 6 \}} 0.43589 ^{\{ 4 \}} 0.47704 ^{\{ 7 \}} 0.47049 ^{\{ 5 \}} 0.56073 ^{\{ 15 \}} 0.52885 ^{\{ 12 \}} 0.40649 ^{\{ 1 \}} 0.4866 ^{\{ 8 \}} 0.54784 ^{\{ 13 \}} 0.55029 ^{\{ 14 \}} 0.59234 ^{\{ 16 \}} 0.62163 ^{\{ 17 \}} 0.52259 ^{\{ 11 \}} 0.43411 ^{\{ 3 \}} 0.51049 ^{\{ 10 \}} 0.5069 ^{\{ 9 \}} 0.42203 ^{\{ 2 \}}
    200 \hat{\alpha} 0.2389 ^{\{ 4 \}} 0.23142 ^{\{ 3 \}} 0.2516 ^{\{ 9 \}} 0.2482 ^{\{ 8 \}} 0.27946 ^{\{ 13 \}} 0.27005 ^{\{ 10 \}} 0.22294 ^{\{ 1 \}} 0.24721 ^{\{ 7 \}} 0.27286 ^{\{ 12 \}} 0.27282 ^{\{ 11 \}} 0.52575 ^{\{ 16 \}} 0.70941 ^{\{ 17 \}} 0.29224 ^{\{ 15 \}} 0.2862 ^{\{ 14 \}} 0.24663 ^{\{ 6 \}} 0.2461 ^{\{ 5 \}} 0.2278 ^{\{ 2 \}}
    \hat{\lambda} 0.32208 ^{\{ 5 \}} 0.31305 ^{\{ 4 \}} 0.35705 ^{\{ 11 \}} 0.3489 ^{\{ 9 \}} 0.3895 ^{\{ 15 \}} 0.37969 ^{\{ 12 \}} 0.30621 ^{\{ 2 \}} 0.34766 ^{\{ 8 \}} 0.38153 ^{\{ 14 \}} 0.3812 ^{\{ 13 \}} 0.43553 ^{\{ 17 \}} 0.39775 ^{\{ 16 \}} 0.35301 ^{\{ 10 \}} 0.30882 ^{\{ 3 \}} 0.33943 ^{\{ 6 \}} 0.34042 ^{\{ 7 \}} 0.3042 ^{\{ 1 \}}
    350 \hat{\alpha} 0.17441 ^{\{ 4 \}} 0.17146 ^{\{ 2 \}} 0.1858 ^{\{ 6 \}} 0.18336 ^{\{ 5 \}} 0.20941 ^{\{ 13 \}} 0.20323 ^{\{ 9 \}} 0.17002 ^{\{ 1 \}} 0.21806 ^{\{ 15 \}} 0.20592 ^{\{ 10 \}} 0.20694 ^{\{ 11 \}} 0.40697 ^{\{ 16 \}} 0.49775 ^{\{ 17 \}} 0.21169 ^{\{ 14 \}} 0.20828 ^{\{ 12 \}} 0.19022 ^{\{ 7 \}} 0.19045 ^{\{ 8 \}} 0.17249 ^{\{ 3 \}}
    \hat{\lambda} 0.24024 ^{\{ 5 \}} 0.23525 ^{\{ 4 \}} 0.25748 ^{\{ 8 \}} 0.2569 ^{\{ 7 \}} 0.29707 ^{\{ 15 \}} 0.28529 ^{\{ 12 \}} 0.23099 ^{\{ 2 \}} 0.30366 ^{\{ 16 \}} 0.28776 ^{\{ 13 \}} 0.29495 ^{\{ 14 \}} 0.34137 ^{\{ 17 \}} 0.27981 ^{\{ 11 \}} 0.25913 ^{\{ 10 \}} 0.22713 ^{\{ 1 \}} 0.25778 ^{\{ 9 \}} 0.25635 ^{\{ 6 \}} 0.23339 ^{\{ 3 \}}
    \sum Ranks 90 ^{\{ 6.5 \}} 42 ^{\{ 3 \}} 94 ^{\{ 9 \}} 71 ^{\{ 4 \}} 178 ^{\{ 16 \}} 134 ^{\{ 11 \}} 16 ^{\{ 1 \}} 86 ^{\{ 5 \}} 149 ^{\{ 13 \}} 143 ^{\{ 12 \}} 175 ^{\{ 15 \}} 197 ^{\{ 17 \}} 154 ^{\{ 14 \}} 93 ^{\{ 8 \}} 101 ^{\{ 10 \}} 90 ^{\{ 6.5 \}} 23 ^{\{ 2 \}}

     | Show Table
    DownLoad: CSV
    Table 5.  Overage probabilities for all estimation methods.
    n Est. Par. MLE ADE CVME MPS LSE PCE RTADE WLSE Bayesian
    CV. BP CV. BT CV. BP CV. BT CV. BP CV. BT CV. BP CV. BT CV. BP CV. BT CV. BP CV. BT CV. BP CV. BT CV. BP CV. BT CV. CR
    15 \hat{\alpha} 0.8 ^{\{ 1 \}} 0.85 ^{\{ 3 \}} 0.93 ^{\{ 10.5 \}} 0.95 ^{\{ 16 \}} 0.84 ^{\{ 2 \}} 0.9 ^{\{ 6 \}} 0.91 ^{\{ 8 \}} 0.94 ^{\{ 13.5 \}} 0.94 ^{\{ 13.5 \}} 0.93 ^{\{ 10.5 \}} 0.92 ^{\{ 9 \}} 0.86 ^{\{ 4 \}} 0.9 ^{\{ 6 \}} 0.9 ^{\{ 6 \}} 0.94 ^{\{ 13.5 \}} 0.94 ^{\{ 13.5 \}} 1 ^{\{ 17 \}}
    \hat{\lambda} 0.82 ^{\{ 1.5 \}} 0.89 ^{\{ 7 \}} 0.94 ^{\{ 14.5 \}} 0.91 ^{\{ 9 \}} 0.85 ^{\{ 4 \}} 0.88 ^{\{ 6 \}} 0.93 ^{\{ 11.5 \}} 0.97 ^{\{ 16 \}} 0.94 ^{\{ 14.5 \}} 0.9 ^{\{ 8 \}} 0.93 ^{\{ 11.5 \}} 0.84 ^{\{ 3 \}} 0.93 ^{\{ 11.5 \}} 0.82 ^{\{ 1.5 \}} 0.93 ^{\{ 11.5 \}} 0.87 ^{\{ 5 \}} 1 ^{\{ 17 \}}
    30 \hat{\alpha} 0.88 ^{\{ 4 \}} 0.92 ^{\{ 11 \}} 0.94 ^{\{ 13.5 \}} 0.88 ^{\{ 4 \}} 0.92 ^{\{ 11 \}} 0.91 ^{\{ 8.5 \}} 0.85 ^{\{ 1 \}} 0.88 ^{\{ 4 \}} 0.89 ^{\{ 6 \}} 0.91 ^{\{ 8.5 \}} 0.86 ^{\{ 2 \}} 0.9 ^{\{ 7 \}} 0.97 ^{\{ 16 \}} 0.94 ^{\{ 13.5 \}} 0.95 ^{\{ 15 \}} 0.92 ^{\{ 11 \}} 1 ^{\{ 17 \}}
    \hat{\lambda} 0.89 ^{\{ 4 \}} 0.92 ^{\{ 8.5 \}} 0.98 ^{\{ 16 \}} 0.91 ^{\{ 6 \}} 0.93 ^{\{ 11 \}} 0.92 ^{\{ 8.5 \}} 0.91 ^{\{ 6 \}} 0.94 ^{\{ 13 \}} 0.95 ^{\{ 14.5 \}} 0.93 ^{\{ 11 \}} 0.87 ^{\{ 3 \}} 0.86 ^{\{ 2 \}} 0.91 ^{\{ 6 \}} 0.81 ^{\{ 1 \}} 0.95 ^{\{ 14.5 \}} 0.93 ^{\{ 11 \}} 1 ^{\{ 17 \}}
    70 \hat{\alpha} 0.94 ^{\{ 9 \}} 0.97 ^{\{ 16 \}} 0.91 ^{\{ 4.5 \}} 0.95 ^{\{ 12.5 \}} 0.89 ^{\{ 2.5 \}} 0.89 ^{\{ 2.5 \}} 0.84 ^{\{ 1 \}} 0.94 ^{\{ 9 \}} 0.93 ^{\{ 6.5 \}} 0.95 ^{\{ 12.5 \}} 0.93 ^{\{ 6.5 \}} 0.95 ^{\{ 12.5 \}} 0.95 ^{\{ 12.5 \}} 0.91 ^{\{ 4.5 \}} 0.94 ^{\{ 9 \}} 0.96 ^{\{ 15 \}} 0.978 ^{\{ 17 \}}
    \hat{\lambda} 0.87 ^{\{ 2.5 \}} 0.93 ^{\{ 12 \}} 0.93 ^{\{ 12 \}} 0.92 ^{\{ 10 \}} 0.91 ^{\{ 8.5 \}} 0.87 ^{\{ 2.5 \}} 0.88 ^{\{ 4.5 \}} 0.88 ^{\{ 4.5 \}} 0.91 ^{\{ 8.5 \}} 0.9 ^{\{ 6.5 \}} 0.94 ^{\{ 14 \}} 0.9 ^{\{ 6.5 \}} 0.93 ^{\{ 12 \}} 0.83 ^{\{ 1 \}} 0.95 ^{\{ 15.5 \}} 0.95 ^{\{ 15.5 \}} 0.993 ^{\{ 17 \}}
    100 \hat{\alpha} 0.94 ^{\{ 10.5 \}} 0.96 ^{\{ 13 \}} 0.94 ^{\{ 10.5 \}} 0.92 ^{\{ 5.5 \}} 0.9 ^{\{ 3 \}} 0.96 ^{\{ 13 \}} 0.82 ^{\{ 1 \}} 0.93 ^{\{ 8 \}} 0.96 ^{\{ 13 \}} 0.97 ^{\{ 16.5 \}} 0.89 ^{\{ 2 \}} 0.92 ^{\{ 5.5 \}} 0.97 ^{\{ 16.5 \}} 0.93 ^{\{ 8 \}} 0.93 ^{\{ 8 \}} 0.91 ^{\{ 4 \}} 0.967 ^{\{ 15 \}}
    \hat{\lambda} 0.93 ^{\{ 12 \}} 0.91 ^{\{ 8.5 \}} 0.9 ^{\{ 6 \}} 0.96 ^{\{ 16 \}} 0.93 ^{\{ 12 \}} 0.93 ^{\{ 12 \}} 0.86 ^{\{ 2 \}} 0.9 ^{\{ 6 \}} 0.95 ^{\{ 15 \}} 0.91 ^{\{ 8.5 \}} 0.88 ^{\{ 3.5 \}} 0.85 ^{\{ 1 \}} 0.93 ^{\{ 12 \}} 0.88 ^{\{ 3.5 \}} 0.93 ^{\{ 12 \}} 0.9 ^{\{ 6 \}} 0.984 ^{\{ 17 \}}
    200 \hat{\alpha} 0.93 ^{\{ 9.5 \}} 0.95 ^{\{ 15 \}} 0.95 ^{\{ 15 \}} 0.91 ^{\{ 6.5 \}} 0.94 ^{\{ 12.5 \}} 0.93 ^{\{ 9.5 \}} 0.93 ^{\{ 9.5 \}} 0.9 ^{\{ 4.5 \}} 0.9 ^{\{ 4.5 \}} 0.91 ^{\{ 6.5 \}} 0.85 ^{\{ 1 \}} 0.95 ^{\{ 15 \}} 0.94 ^{\{ 12.5 \}} 0.93 ^{\{ 9.5 \}} 0.88 ^{\{ 3 \}} 0.86 ^{\{ 2 \}} 0.972 ^{\{ 17 \}}
    \hat{\lambda} 0.9 ^{\{ 6 \}} 0.88 ^{\{ 5 \}} 0.95 ^{\{ 14 \}} 0.93 ^{\{ 11.5 \}} 0.96 ^{\{ 15 \}} 0.97 ^{\{ 16 \}} 0.87 ^{\{ 3.5 \}} 0.91 ^{\{ 7.5 \}} 0.93 ^{\{ 11.5 \}} 0.91 ^{\{ 7.5 \}} 0.86 ^{\{ 2 \}} 0.81 ^{\{ 1 \}} 0.92 ^{\{ 9.5 \}} 0.87 ^{\{ 3.5 \}} 0.98 ^{\{ 17 \}} 0.92 ^{\{ 9.5 \}} 0.949 ^{\{ 13 \}}
    350 \hat{\alpha} 0.92 ^{\{ 9 \}} 0.91 ^{\{ 7 \}} 0.89 ^{\{ 4.5 \}} 0.89 ^{\{ 4.5 \}} 0.94 ^{\{ 13 \}} 0.91 ^{\{ 7 \}} 0.93 ^{\{ 11 \}} 0.93 ^{\{ 11 \}} 0.98 ^{\{ 17 \}} 0.97 ^{\{ 16 \}} 0.87 ^{\{ 1 \}} 0.96 ^{\{ 14 \}} 0.88 ^{\{ 2.5 \}} 0.88 ^{\{ 2.5 \}} 0.93 ^{\{ 11 \}} 0.91 ^{\{ 7 \}} 0.962 ^{\{ 15 \}}
    \hat{\lambda} 0.95 ^{\{ 15 \}} 0.97 ^{\{ 17 \}} 0.92 ^{\{ 5 \}} 0.94 ^{\{ 11 \}} 0.94 ^{\{ 11 \}} 0.94 ^{\{ 11 \}} 0.91 ^{\{ 3 \}} 0.92 ^{\{ 5 \}} 0.94 ^{\{ 11 \}} 0.95 ^{\{ 15 \}} 0.92 ^{\{ 5 \}} 0.83 ^{\{ 1 \}} 0.93 ^{\{ 7 \}} 0.88 ^{\{ 2 \}} 0.94 ^{\{ 11 \}} 0.95 ^{\{ 15 \}} 0.936 ^{\{ 8 \}}
    \sum Ranks 84 ^{\{ 5 \}} 123 ^{\{ 11 \}} 126 ^{\{ 13 \}} 112.5 ^{\{ 9 \}} 105.5 ^{\{ 8 \}} 102.5 ^{\{ 7 \}} 62 ^{\{ 3 \}} 102 ^{\{ 6 \}} 135.5 ^{\{ 15 \}} 127 ^{\{ 14 \}} 60.5 ^{\{ 2 \}} 72.5 ^{\{ 4 \}} 124 ^{\{ 12 \}} 56.5 ^{\{ 1 \}} 141 ^{\{ 16 \}} 114.5 ^{\{ 10 \}} 187 ^{\{ 17 \}}

     | Show Table
    DownLoad: CSV

    Here, we analyze a data set from the insurance sector to illustrate the utility of the WDEx distribution. This data set reflects the monthly unemployment insurance metrics from July 2008 to April 2013, and it includes 58 observations as recorded by the department of labor, state of Maryland, USA. The data frame consists of 21 variables and the variable number 9 is fitted using the WDEx model. Data is listed below and it can be found at: https://catalog.data.gov/dataset/unemployment-insurance-data-from-July-2008-to-April-2013.

    48.2 48.2 55.6 49.4 54.7 84.4 85.6 92.1 115.7 92.7
    87.4 104.1 86.6 96.7 74.1 70.4 84 80.3 86.5 86.9
    104.7 74.3 66.7 79.1 65.7 78.6 59.9 59 72.6 66.6
    89.9 75.2 72.1 63.2 70.3 58.9 59.7 72.6 55.3 62.6
    55.5 60.4 84.2 68.9 65.2 70 56.6 56.3 71.9 60.3
    54 65.2 56.3 69.6 68.8 66 63.5 64.9

     | Show Table
    DownLoad: CSV

    We compare the WDEx distribution with some well-known competing distributions including the beta exponential (BEx) [25], gamma (G), exponentiated Weibull (EW) [26], Harris extend exponential (HEEx) [27], alpha power exponentiated-exponential (APEEx) [28], Frechet–Weibull mixture exponential (FWMEx) [29], Marshall–Olkin alpha-power exponential (MOAPEx) [30], Marshall Olkin exponential (MOEx) [31], Frechet–Weibull (FW) [32], Weibull (W), alpha-power exponential (APEx) [33], transmuted exponential (TEx) [34], EEx, and Ex distributions. The competing models are compared by using some discrimination measures such as Anderson–Darling (AD), Cramér–von Mises (CM), and Kolmogorov–Smirnov (KS) with its p -value (KS p -value).

    The MLEs and the statistical metrics are calculated using the R software©. Table 6 provides analytical metrics along with the MLEs and their standard errors (SEs). The findings in Table 6 suggest that the WDEx offers better fits than other competitive models and it can be selected as an appropriate model to evaluate the analyzed insurance data.

    Table 6.  The analytical measures and the MLEs of the WDEx distribution and other competing models.
    Model AD CM KS KS p -value Estimates (SEs)
    WDEx 0.22888 0.03088 0.05815 0.98949 \hat{\alpha}=132.362\ (56.1205)
    \hat{\lambda}=0.07249\ (0.00691)
    FW 0.38156 0.04884 0.06949 0.94209 \hat{\alpha}=4.46474\ (66.2443)
    \hat{\beta}=3.17550\ (115.269)
    \hat{\lambda}=25.3428\ (579.785)
    \hat{k}=1.25626\ (18.6392)
    BEx 0.27609 0.04162 0.07932 0.85886 \hat{a}=75.9965\ (84.8089)
    \hat{b}=1.91398\ (1.80320)
    \hat{\lambda}=0.05573\ (0.03166)
    EEx 0.23791 0.03101 0.08120 0.83898 \hat{\alpha}=232.474\ (126.888)
    \hat{\lambda}=0.08431\ (0.00884)
    G 0.45378 0.07394 0.08162 0.83451 \hat{a}=24.6226\ (4.54042)
    \hat{b}=0.34427\ (0.06413)
    EW 0.23348 0.03278 0.08179 0.83263 \hat{\beta}=1.15364\ (0.11836)
    \hat{\lambda}=0.03802\ (0.02282)
    \hat{\theta}=106.742\ (69.8959)
    HEEx 0.31048 0.04283 0.08205 0.82975 \hat{\alpha}=3.80452\ (0.75598)
    \hat{\lambda}=0.00662\ (0.00113)
    \hat{\theta}=2115870\ (11864.4)
    APEEx 0.22899 0.03147 0.08234 0.82653 \hat{\alpha}=1.22817\ (1.95307)
    \hat{a}=0.08631\ (0.01593)
    \hat{c}=248.897\ (168.117)
    FWMEx 0.43428 0.06586 0.09245 0.70449 \hat{a}=0.01001\ (0.01317)
    \hat{\alpha}=18.1993\ (114.082)
    \hat{\lambda}=40.6229\ (6.75603)
    \hat{k}=0.47024\ (2.94764)
    MOAPEx 0.77269 0.12783 0.09341 0.69217 \hat{\alpha}=413.107\ (876.070)
    \hat{\lambda}=0.11824\ (0.01269)
    \hat{\theta}=674.591\ (637.159)
    MOEx 0.77594 0.12836 0.09397 0.68499 \hat{\alpha}=4174.02\ (3747.42)
    \hat{\lambda}=0.11858\ (0.01261)
    W 1.19149 0.18595 0.12496 0.32540 \hat{a}=4.88793\ (0.46156)
    \hat{b}=77.6595\ (2.21593)
    APEx 0.42964 0.06957 0.28502 0.00016 \hat{\alpha}=1432.64\ (802.869)
    \hat{\lambda}=0.00352\ (0.00233)
    TEx 0.43477 0.07062 0.39111 #60;0.00001 \hat{\lambda}= -1.00000 \ (0.51995)
    \hat{\theta}=0.02028\ (0.00262)
    Ex 0.45213 0.07366 0.49029 #60;0.00001 \hat{\lambda}=0.01398\ (0.00183)

     | Show Table
    DownLoad: CSV

    The fitted PDF, CDF, SF, and probability-probability (P-P) graphs of the WDEx model are displayed in Figure 6, whereas the total time on test (TTT) and WDEx HRF plots for the analyzed data are depicted in Figure 7. The TTT plots confirms that the data has an increasing HRF. We conclude that the WDEx distribution is suitable for modeling the insurance data.

    Figure 6.  The fitted WDEx PDF, CDF, SF, and P-P plots for insurance data.
    Figure 7.  The HRF plot of the WDEx model and TTT plot for insurance data set.

    Moreover, the nine estimation approaches mentioned before in Section 5 are adopted to estimate the WDEx parameters. Table 7 records the calculations of the WDEx parameters using such estimation techniques and the empirical values for insurance data.

    Table 7.  Different estimates of the WDEx parameters using several estimators along with goodness-of-fit measures for insurance data.
    Method \hat{\alpha} \hat{\lambda} AD CM KS KS p -value
    MLE 132.36153 0.07249 0.22888 0.03088 0.05815 0.98949
    WLSE 132.36153 0.07269 0.22855 0.03084 0.06117 0.98173
    CVME 132.36173 0.07270 0.22853 0.03083 0.06138 0.98107
    OLSE 132.36145 0.07273 0.22849 0.03083 0.06173 0.97992
    PCE 132.36153 0.07295 0.22812 0.03078 0.06516 0.96630
    ADE 155.92600 0.07513 0.22928 0.03068 0.06857 0.94795
    MPS 130.36158 0.07244 0.22857 0.03086 0.06015 0.98469
    RTADE 157.11897 0.07521 0.22939 0.03068 0.06846 0.94860
    BMC 194.1689 0.07856 0.23413 0.03148 0.08025 0.84907
    BTK 160.4825 0.07402 0.49763 0.07956 0.08157 0.83500

     | Show Table
    DownLoad: CSV

    The P-P graphs and histogram of insurance data with the fitted WDEx density for different estimation techniques are shown in Figure 8. Figure 9 shows the histogram of the data with the fitted WDEx PDF for different estimators.

    Figure 8.  The P-P plots of the WDEx model using different estimators for insurance data.
    Figure 9.  The histogram of insurance data with the fitted WDEx densities using different estimators.

    In this paper, we studied a new extension of the exponential model that exhibits upside-down bathtub, decreasing, decreasing-constant, increasing, and increasing-constant hazard rates. The studied model is called the weighted-exponential (WDEx) distribution. Some basic distributional characteristics are derived. Five risk measures are calculated for the WDEx distribution. Eight classical estimation methods along with the Bayesian estimation are utilized to estimate the WDEx parameters. The simulation results show that the proposed estimators provide good performance. Moreover, the practical applicability of the WDEx distribution is addressed using a real-life insurance data set, showing its superiority fit over fourteen competing exponential models.

    The authors thanks the respected editors for supporting us in the review process.

    The authors declare there is no conflict of interest.



    [1] L. V. Bertalanffy, Quantitative laws in metabolism and growth, Quarterly Rev. Biol., 32 (1957), 217–231.
    [2] M. Kühleitner, N. Brunner, W. Nowak, K. Renner-Martin, K. Scheicher, Best-fitting growth curves of the von Bertalanffy-Pütter type, Poultry Sci., 98 (2019), 3587–3592. https://doi.org/10.3382/ps/pez122 doi: 10.3382/ps/pez122
    [3] P. Román-Román, D. Romero, F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data, J. Theoret. Biol., 263 (2010), 59–69. https://doi.org/10.1016/j.jtbi.2009.12.009 doi: 10.1016/j.jtbi.2009.12.009
    [4] J. Calatayud, T. Caraballo, J. C. Cortés, M. Jornet, Mathematical methods for the randomized non-autonomous Bertalanffy model, Electron. J. Differ. Equat., 2020, 50.
    [5] M. P. Edwards, R. S. Anderssen, Symmetries and solutions of the non-autonomous von Bertalanffy equation, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1062–1067. https://doi.org/10.1016/j.cnsns.2014.08.033 doi: 10.1016/j.cnsns.2014.08.033
    [6] J. Brzdęk, D. Popa, I. Rașa, B. Xu, Ulam stability of operators, Mathematical analysis and its applications, Academic Press, London, 2018.
    [7] M. Onitsuka, Hyers–Ulam stability of first order linear differential equations of Carathéodory type and its application, Appl. Math. Lett., 90 (2019), 61–68. https://doi.org/10.1016/j.aml.2018.10.013 doi: 10.1016/j.aml.2018.10.013
    [8] M. Onitsuka, T. Shoji, Hyers–Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient, Appl. Math. Lett., 63 (2017), 102–108. http://dx.doi.org/10.1016/j.aml.2016.07.020 doi: 10.1016/j.aml.2016.07.020
    [9] R. Fukutaka, M. Onitsuka, Best constant in Hyers–Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient, J. Math. Anal. Appl., 473 (2019), 1432–1446. https://doi.org/10.1016/j.jmaa.2019.01.030 doi: 10.1016/j.jmaa.2019.01.030
    [10] R. Fukutaka, M. Onitsuka, A necessary and sufficient condition for Hyers–Ulam stability of first-order periodic linear differential equations, Appl. Math. Lett., 100 (2020), 106040. https://doi.org/10.1016/j.aml.2019.106040 doi: 10.1016/j.aml.2019.106040
    [11] D. Popa, I. Rașa, On the Hyers–Ulam stability of the linear differential equation, J. Math. Anal. Appl., 381 (2011), 530–537. https://doi.org/10.1016/j.jmaa.2011.02.051 doi: 10.1016/j.jmaa.2011.02.051
    [12] G. Wang, M. Zhou, L. Sun, Hyers–Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024–1028. https://doi.org/10.1016/j.aml.2007.10.020 doi: 10.1016/j.aml.2007.10.020
    [13] A. Zada, O. Shah, R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. https://doi.org/10.1016/j.amc.2015.09.040 doi: 10.1016/j.amc.2015.09.040
    [14] D. Dragičević, Hyers–Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2021). https://doi.org/10.1007/s00025-021-01442-1 doi: 10.1007/s00025-021-01442-1
    [15] R. Fukutaka, M. Onitsuka, Best constant for Ulam stability of Hill's equations, Bull. Sci. Math., 163 (2020), 102888. https://doi.org/10.1016/j.bulsci.2020.102888 doi: 10.1016/j.bulsci.2020.102888
    [16] M. Onitsuka, Hyers–Ulam stability for second order linear differential equations of Carathéodory type, J. Math. Inequal., 15 (2021), 1499–1518. https://doi.org/10.7153/jmi-2021-15-103 doi: 10.7153/jmi-2021-15-103
    [17] A. Akgül, A. Cordero, J. R. Torregrosa, A fractional Newton method with 2\alphath-order of convergence and its stability, Appl. Math. Lett., 98 (2019), 344–351. https://doi.org/10.1016/j.aml.2019.06.028 doi: 10.1016/j.aml.2019.06.028
    [18] N. Bouteraa, M. Inc, A. Akgül, Stability analysis of time-fractional differential equations with initial data, Math. Methods Appl. Sci., https://doi.org/10.1002/mma.7782
    [19] D. Dragičević, Hyers–Ulam stability for nonautonomous semilinear dynamics on bounded intervals, Mediterr. J. Math., 18 (2021), 71. https://doi.org/10.1007/s00009-021-01729-1 doi: 10.1007/s00009-021-01729-1
    [20] J. Huang, S-M. Jung, Y. Li, On Hyers–Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52 (2015), 685–697. https://doi.org/10.4134/BKMS.2015.52.2.685 doi: 10.4134/BKMS.2015.52.2.685
    [21] I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babeș-Bolyai Math., 54 (2009), 125–133.
    [22] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [23] M. Choubin, H. Javanshiri, A new approach to the Hyers–Ulam–Rassias stability of differential equations, Results Math., 76 (2021), 11. https://doi.org/10.1007/s00025-020-01318-w doi: 10.1007/s00025-020-01318-w
    [24] S.-M. Jung, A fixed point approach to the stability of differential equations y' = F(x, y), Bull. Malays. Math. Sci. Soc., 33 (2010), 47–56.
    [25] R. Murali, C. Park, A. Ponmana Selvan, Hyers–Ulam stability for an nth order differential equation using fixed point approach, J. Appl. Anal. Comput., 11 (2021), 614–631. https://doi.org/10.11948/20190093 doi: 10.11948/20190093
    [26] D. Popa, I. Rașa, A. Viorel, Approximate solutions of the logistic equation and Ulam stability, Appl. Math. Lett., 85 (2018), 64–69. https://doi.org/10.1016/j.aml.2018.05.018 doi: 10.1016/j.aml.2018.05.018
    [27] M. Onitsuka, Conditional Ulam stability and its application to the logistic model, Appl. Math. Lett., 122 (2021), 107565. https://doi.org/10.1016/j.aml.2021.107565 doi: 10.1016/j.aml.2021.107565
  • This article has been cited by:

    1. Muqrin A. Almuqrin, Ahmed M. Gemeay, M. M. Abd El-Raouf, Mutua Kilai, Ramy Aldallal, Eslam Hussam, Fathalla A. Rihan, A Flexible Extension of Reduced Kies Distribution: Properties, Inference, and Applications in Biology, 2022, 2022, 1099-0526, 1, 10.1155/2022/6078567
    2. Huda M. Alshanbari, Omalsad Hamood Odhah, Ehab M. Almetwally, Eslam Hussam, Mutua Kilai, Abdal-Aziz H. El-Bagoury, Sania Qureshi, Novel Type I Half Logistic Burr-Weibull Distribution: Application to COVID-19 Data, 2022, 2022, 1748-6718, 1, 10.1155/2022/1444859
    3. Muqrin A. Almuqrin, A new flexible distribution with applications to engineering data, 2023, 69, 11100168, 371, 10.1016/j.aej.2023.01.046
    4. M. E. Bakr, Abdulhakim A. Al-Babtain, Zafar Mahmood, R. A. Aldallal, Saima Khan Khosa, M. M. Abd El-Raouf, Eslam Hussam, Ahmed M. Gemeay, Statistical modelling for a new family of generalized distributions with real data applications, 2022, 19, 1551-0018, 8705, 10.3934/mbe.2022404
    5. Yinghui Zhou, Zubair Ahmad, Zahra Almaspoor, Faridoon Khan, Elsayed tag-Eldin, Zahoor Iqbal, Mahmoud El-Morshedy, On the implementation of a new version of the Weibull distribution and machine learning approach to model the COVID-19 data, 2022, 20, 1551-0018, 337, 10.3934/mbe.2023016
    6. Mahdi Rasekhi, Mohammad Mehdi Saber, G. G Hamedani, M. M.Abd El-Raouf, Ramy Aldallal, Ahmed M. Gemeay, Melike Kaplan, Approximate Maximum Likelihood Estimations for the Parameters of the Generalized Gudermannian Distribution and Its Characterizations, 2022, 2022, 2314-4785, 1, 10.1155/2022/4092576
    7. Najwan Alsadat, A new modified model with application to engineering data sets, 2023, 72, 11100168, 1, 10.1016/j.aej.2023.03.050
    8. Marwa M. Mohie El-Din, M.A. Meraou, Najwan Alsadat, Anoop Kumar, M.M. Abd El-Raouf, Mahmoud Mohamed Bahloul, Modeling insurance loss data using novel approach of moment exponential model: Inference, actuarial measures and application, 2024, 106, 11100168, 544, 10.1016/j.aej.2024.08.060
    9. M.M. Abd El-Raouf, Mohammed AbaOud, A novel extension of generalized Rayleigh model with engineering applications, 2023, 73, 11100168, 269, 10.1016/j.aej.2023.04.063
    10. Eslam Hussam, Mohamed A. Sabry, M. M. Abd El-Raouf, Ehab M. Almetwally, Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution, 2023, 12, 2075-1680, 582, 10.3390/axioms12060582
    11. Muqrin A. Almuqrin, Bayesian and non-Bayesian inference for the compound Poisson log-normal model with application in finance, 2024, 90, 11100168, 24, 10.1016/j.aej.2024.01.031
    12. Hassan M. Aljohani, Statistical inference for a novel distribution using ranked set sampling with applications, 2024, 10, 24058440, e26893, 10.1016/j.heliyon.2024.e26893
    13. Mohammed AbaOud, Muqrin A. Almuqrin, The weighted inverse Weibull distribution: Heavy-tailed characteristics, Monte Carlo simulation with medical application, 2024, 102, 11100168, 99, 10.1016/j.aej.2024.05.056
    14. Aijaz Ahmad, Najwan Alsadat, Mintodê Nicodème Atchadé, S. Qurat ul Ain, Ahmed M. Gemeay, Mohammed Amine Meraou, Ehab M. Almetwally, Md. Moyazzem Hossain, Eslam Hussam, New hyperbolic sine-generator with an example of Rayleigh distribution: Simulation and data analysis in industry, 2023, 73, 11100168, 415, 10.1016/j.aej.2023.04.048
    15. Aijaz Ahmad, Fatimah M. Alghamdi, Afaq Ahmad, Olayan Albalawi, Abdullah A. Zaagan, Mohammed Zakarya, Ehab M. Almetwally, Getachew Tekle Mekiso, New Arctan-generator family of distributions with an example of Frechet distribution: Simulation and analysis to strength of glass and carbon fiber data, 2024, 100, 11100168, 42, 10.1016/j.aej.2024.05.021
    16. Ibrahim Alkhairy, A new approach of generalized Rayleigh distribution with analysis of asymmetric data sets, 2024, 100, 11100168, 1, 10.1016/j.aej.2024.04.070
    17. Mohd Irfan, A. K. Sharma, 2024, Chapter 22, 978-3-031-54546-7, 284, 10.1007/978-3-031-54547-4_22
    18. Meshayil M. Alsolmi, Fatimah A. Almulhim, Meraou Mohammed Amine, Hassan M. Aljohani, Amani Alrumayh, Fateh Belouadah, Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance, 2024, 16, 2073-8994, 1367, 10.3390/sym16101367
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2332) PDF downloads(81) Cited by(4)

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog