
The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model dwdt=aw23−bw, where w denotes mass and a>0 and b>0 are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.
Citation: Masakazu Onitsuka. Conditional Ulam stability and its application to von Bertalanffy growth model[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2819-2834. doi: 10.3934/mbe.2022129
[1] | Walid Emam, Khalaf S. Sultan . Bayesian and maximum likelihood estimations of the Dagum parameters under combined-unified hybrid censoring. Mathematical Biosciences and Engineering, 2021, 18(3): 2930-2951. doi: 10.3934/mbe.2021148 |
[2] | Manal M. Yousef, Rehab Alsultan, Said G. Nassr . Parametric inference on partially accelerated life testing for the inverted Kumaraswamy distribution based on Type-II progressive censoring data. Mathematical Biosciences and Engineering, 2023, 20(2): 1674-1694. doi: 10.3934/mbe.2023076 |
[3] | Said G. Nassr, Amal S. Hassan, Rehab Alsultan, Ahmed R. El-Saeed . Acceptance sampling plans for the three-parameter inverted Topp–Leone model. Mathematical Biosciences and Engineering, 2022, 19(12): 13628-13659. doi: 10.3934/mbe.2022636 |
[4] | Wael S. Abu El Azm, Ramy Aldallal, Hassan M. Aljohani, Said G. Nassr . Estimations of competing lifetime data from inverse Weibull distribution under adaptive progressively hybrid censored. Mathematical Biosciences and Engineering, 2022, 19(6): 6252-6275. doi: 10.3934/mbe.2022292 |
[5] | M. G. M. Ghazal, H. M. M. Radwan . A reduced distribution of the modified Weibull distribution and its applications to medical and engineering data. Mathematical Biosciences and Engineering, 2022, 19(12): 13193-13213. doi: 10.3934/mbe.2022617 |
[6] | M. Nagy, M. H. Abu-Moussa, Adel Fahad Alrasheedi, A. Rabie . Expected Bayesian estimation for exponential model based on simple step stress with Type-I hybrid censored data. Mathematical Biosciences and Engineering, 2022, 19(10): 9773-9791. doi: 10.3934/mbe.2022455 |
[7] | Lernik Asserian, Susan E. Luczak, I. G. Rosen . Computation of nonparametric, mixed effects, maximum likelihood, biosensor data based-estimators for the distributions of random parameters in an abstract parabolic model for the transdermal transport of alcohol. Mathematical Biosciences and Engineering, 2023, 20(11): 20345-20377. doi: 10.3934/mbe.2023900 |
[8] | M. Nagy, Adel Fahad Alrasheedi . The lifetime analysis of the Weibull model based on Generalized Type-I progressive hybrid censoring schemes. Mathematical Biosciences and Engineering, 2022, 19(3): 2330-2354. doi: 10.3934/mbe.2022108 |
[9] | Ibrahim Alkhairy . Classical and Bayesian inference for the discrete Poisson Ramos-Louzada distribution with application to COVID-19 data. Mathematical Biosciences and Engineering, 2023, 20(8): 14061-14080. doi: 10.3934/mbe.2023628 |
[10] | Amal S. Hassan, Najwan Alsadat, Christophe Chesneau, Ahmed W. Shawki . A novel weighted family of probability distributions with applications to world natural gas, oil, and gold reserves. Mathematical Biosciences and Engineering, 2023, 20(11): 19871-19911. doi: 10.3934/mbe.2023880 |
The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model dwdt=aw23−bw, where w denotes mass and a>0 and b>0 are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.
Recently, the promising attention of statisticians towards the construction of new generalized distributions has been increased to explore and develop more flexible models from the baseline models. These generalized distributions open new horizons to study real-world problems and to provide more flexibility to model the asymmetric and complex random phenomena. Therefore, several models have been developed in the literature. One of the most handy and simplest lifetime distributions induced in the statistical literature is the exponential (Ex) distribution. It has been extensively adopted for analyzing lifetime data due to its simplicity and its lack of memory property.
On the other hand, the Ex distribution with only a constant hazard rate (HR) shape is not suitable for fitting data with different HR shapes as decreasing, unimodal (upside down bathtub), increasing or bathtub shaped hazard rates which are common in reliability and engineering, among other areas. This limitation has motivated the researchers to develop more flexible extensions of the Ex model.
For more details about other methods, the interested reader can see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15].
In the present article, we are motivated to develop a new flexible version of the Ex model called the weighted-exponential (WDEx) distribution, which can provide greater flexibility in fitting insurance data. Additionally, the aim of the article is three-fold: the first is devoted to studying a new form of the Ex distribution based on the weighted-G (WD-G) family [16], called the WDEx distribution. Basic distributional properties of the WDEx model are explored. The WDEx model has some desirable characteristics. It can accommodate upside-down bathtub, decreasing, decreasing-constant, increasing, and increasing-constant HR shapes. Its probability density function (PDF) possesses unimodal, right-skewed, reversed-J shape, left-skewed. The tail of the WDEx distribution is heavier than the EEx and Ex distributions as shown in Section 4 based on computational values of risk measures. The WDEx distribution can be used to model insurance data. It provides an adequate fit than other fourteen competing Ex distributions as illustrated in Section 7 for this insurance data set.
The second objective of this paper is devoted to exploring five important actuarial or risk measures, called the value at risk (VaR), tail value at risk (TVaR), tail-variance (TV), tail-variance premium (TVP), and expected shortfall (ES), for the WDEx distribution. These measures play an important role in portfolio optimization under uncertainty.
The third objective is to study the estimation of the WDEx parameters by classical and Bayesian methods. Hence, nine estimation approaches are adopted for this purpose. We explore and rank the performance of these estimators based on empirical simulation results to develop a guideline for choosing the best estimation approach for estimating the WDEx parameters.
The paper is organized in eight Sections. In Section 2, we define the WDEx model. Its basic properties are explored in Section 3. Five actuarial indicators are studies in Section 4. The model parameters are estimated using classical and Bayesian estimation in Section 5. Simulation results are provided in Section 6. Section 7 is devoted to analyzing a real-life data. Finally, some remarks are given to conclude the paper in Section 8.
In this section, we define the two-parameter WDEx distribution based on the WD-G family of [16]. The cumulative distribution function (CDF) and PDF of the WDEx distribution has the forms
F(x)=log[(1−e−λx )α+1]log(2) | (2.1) |
and
f(x)=αλe−λx(1−e−λx )α−1log(2)[(1−e−λx )α+1]. | (2.2) |
The survival function (SF), HR function (HRF) and the reversed-HRF (RHRF) are, respectively, given by
S(x)=1−log[(1−e−λx )α+1]log(2), | (2.3) |
h(x)=αλ(1−e−λx )α(eλx−1)[(1−e−λx )α+1]{log(2)−log[(1−e−λx )α+1]} | (2.4) |
and
r(x)=αλe−λx(1−e−λx )α−1((1−e−λx )α+1)log((1−e−λx )α+1). | (2.5) |
The limiting behaviors of the PDF (2.2) and HRF (2.4) are given by
limx→0f(x)={∞,α<10,α≥1,limx→∞f(x)=0. |
and
limx→0h(x)={∞,α<10,α≥1,limx→∞h(x)=λ. |
Plots of the PDF and HRF of the WDEx distribution are illustrated in Figures 1 and 2, respectively. These graphs show that the WDEx model possesses decreasing-constant, upside-down bathtub, increasing, decreasing, and increasing-constant HR functions along with sudden spikes at the end of upside-down bathtub shape, which manages the model to analyze a non-stationary real-life data.
The quantile function (QF) of the WDEx distribution is given by
Q(u)=−log[1−(2u−1)1/α]λ, | (2.6) |
we can determine first, second and third quartile of the WDEx distribution by setting u=0.25,0.5,0.75, respectively. Also, by using Eq (2.6), we can determine Bowley's skewness and Moor's kurtosis for the WDEx distribution. The WDEx skewness and kurtosis graphs for the different parametric values of α and λ are shown in Figure 3.
In this section, we provide some mathematical properties of the WDEx distribution.
A useful linear representations of the CDF and PDF of the WDEx model are introduced in this subsection. For −1<x≤1, we have
log(1+x)=∞∑k=1(−1)k+1xkk. | (3.1) |
By applying the power series (3.1) to (2.1), the CDF and PDF of the WDEx distribution can be expressed as
F(x;α,λ)=∞∑k=1ΦkGk(x) |
and
f(x;α,λ)=∞∑k=1Φkgk(x), |
where Φk=(−1)k+1klog(2), Gk(x)=(1−e−λx)αk and gk(x)=αkλe−λx(1−e−λx)αk−1 are the CDF and PDF of the exponentiated-exponential (EEx) distribution with parameters λ and αk.
The rth moments of the WDEx distribution takes the form
μ′r=E(Xr)=∫∞0xrf(x)dx=∞∑k=1∞∑i=0ΦkαkΓ(r+1)λr(−1)iD(αk−1,i)(i+1)k+1, |
where D(a−1,b)=(a−1)…(a−b)b!. Replacing r=1,2,3, and 4 in the last formula, we obtain the first four moments for the WDEx distribution.
The nth moment residual life of the WDEx distribution, E(Xn|X>x), has the form
E(Xn|X>x)=∫∞xynf(y)dy=∞∑k=1Φkαλk1−(1−e−λx)αk∫∞xynexp(−λy)(1−exp(−λy))αk−1dy=∞∑k=1Φkα(−1)nλn[1−(1−e−λx)αk]∫exp(−λx)0(logz)n(1−z)αk−1dz, |
where z=exp(−λy) and the mean residual life function of the proposed model is E(X|X>x)−1.
the moment generating function (MGF) of the WDEx distribution is
M(t)=∫∞0etxf(x)dx=∞∑k=1Φkαkβ(1−tλ,αk), |
where β(a,b) is beta function. The characteristic function of the WDEx model is
ϕ(t)=∫∞0eitxf(x)dx=∞∑k=1Φkαkβ(1−itλ,αk). |
The mean deviation about the mean of the WDEx model reduces to
ψ1=∫∞0|x−μ|f(x)dx=2μF(μ)−2μ+2∫∞μxf(x)dx=2μF(μ)−2μ+2∞∑k=1Φk∫∞μxgk(x)dx=2μF(μ)−2μ+2αkλ∞∑k=1∞∑i=0Φk(−1)i(i+1)2(αk−1i)[1+μλ(i+1)]exp(−μλ(i+1)). |
The mean deviation about the median of the WDEx distribution takes the form
ψ2=∫∞0|x−M|f(x)dx=2∫∞Mxf(x)dx−μ=2∞∑k=1Φk∫∞Mxgk(x)dx−μ=2αkλ∞∑k=1∞∑i=0Φk(−1)i(i+1)2(αk−1i)[1+Mλ(i+1)]exp(−Mλ(i+1))−μ. |
The Bonferroni and Lorenz curves for a positive random variable X are defined the following formulae
B(F(x))=E(X|X≤x)μandL(F(x))=E(X|X≤x)F(x)μ, |
where the quantity E(X|X≤x) has the form
E(X|X≤x)=αkλF(x)∞∑k=1∞∑i=0Φk(−1)i(i+1)2(αk−1i){1−[1+λ(i+1)x]exp(−λ(i+1)x)}. |
Hence,
B(p)=αkλpμ∞∑k=1∞∑i=0Φk(−1)i(i+1)2(αk−1i){1−[1+λ(i+1)xp]exp(−λ(i+1)xp)} |
and
L(p)=αkλμ∞∑k=1∞∑i=0Φk(−1)i(i+1)2(αk−1i){1−[1+λ(i+1)xp]exp(−λ(i+1)xp)}, |
where xp=−log[1−(2p−1)1/α]λ is the QF of the WDEx model.
The PDF and CDF of the ith order statistic for the WDEx distribution are given by
fi:n(x)=f(x)B(i,n−i+1)∞∑h=0(−1)h(n−ih)Fh+i−1(x)=αλn!log−i(2)(1−eλ(−x))αlogi−1((1−eλ(−x))α+1)(1−log((1−eλ(−x))α+1)log(2))n−iΓ(i)(eλx−1)Γ(−i+n+1)((1−eλ(−x))α+1) |
and
Fi:n(x)=n∑r=i(nr)(F(x))r(1−F(x))n−r=log−i(2)(ni)logi((1−eλ(−x))α+1)(1−log((1−eλ(−x))α+1)log(2))n−i×2F1(1,i−n;i+1;−log((1−e−xλ)α+1)log(2(1−e−xλ)α+1)), |
where 2F1(1,i−n;i+1;−log((1−e−xλ)α+1)log(2(1−e−xλ)α+1)) is a hyper geometric function.
Five risk measures are explored for the WDEx distribution in this section. Some actuarial measures such as VaR, TVaR, TV, TVP, and ES are calculated. A brief simulation study for these measures is provided. Finally, an application to the insurance loss data set is analyzed. For more information we refer to refs [17,18,19,20,21].
The VaR is often referred to as the quantile risk measure or the concept of quantile premium, and it is defined with a certain amount of confidence, say q (typically 90, 95, or 99%). In comparison, VaR is a quantitative sum of accumulated loss distribution. Risk management are also interested in the "chance of an unfavorable outcome" and can be represented at a specific likelihood level using the VaR. The VaR of a random variable X is the qth quantile of its CDF, denoted by VaRq, and it is defined by VaRq=Q(q) (see Artzner [22]).
The VaR measure of the WDEx distribution is expressed by
VaRq=−log[1−(2q−1)1/α]λ. |
The TVaR, which is now being assigned many names, including conditional tail-expectation and conditional VaR, is another significant indicator. The TVaR is used to measure the potential value of the loss provided that there has been an occurrence outside of a provided probability level. The TVaR of a random variable X is represented by
TVaRq=1(1−q)∫∞VaRqxf(x)dx. |
The TVaR of the WDEx distribution is
TVaRq=α(1−q)λlog(2)∞∑k=1∞∑m=1(−1)k+1[1−(−1+2q)k+mα]mk(m+αk). | (4.1) |
Landsman [23] presented the TV risk that is described by the variance of the loss distribution beyond some critical value. The TV of the WDEx distribution is described as
TVq(X)=E(X2|X>xq)−(TVaRq)2=1(1−q)∫∞VaRqx2f(x)dx−(TVaRq)2, | (4.2) |
where
E(X2|X>xq)=2α(1−q)λ2log(2)∞∑k=1∞∑m=1k∑n=1(−1)k+1[1−(−1+2q)k+m+1α]kn(m+1)(m+αk+1), | (4.3) |
by using Eqs (4.1)–(4.3), we get the TV of the WDEx distribution.
The TVP is also another effective criterion in the insurance fields. The TVP of the WDEx distribution has the form
TVPq(x)=TVaRq+qTVq, | (4.4) |
where 0<q<1. The TVP of the WDEx distribution follows by replacing Eqs (4.1) and (4.2) in (4.4).
Artzner [22] developed the expected shortfall (ES) as a common indicator in financial risk. In some definitions, if the underlying distribution of X is continuous then the ES coincides with the Conditional tail expectation and the TVaR. The ES of the WDEx distribution takes the form
ESq(x)=1q∫q0VaRtdt=∞∑m=11qmλ∫q0(2t−1)mαdt. | (4.5) |
In this sub-section, we discuss some empirical results for the five aforemention risk measures for the WDEx, EEx, and Ex distributions for some parametric values. The findings are obtained through to the followings steps:
(1) Random sample of size n=100 is produced from the WDEx, EEx, and Ex distributions, and their parameters are calculated via the maximum likelihood (ML) approach.
(2) 1000 Replications are designed to determine the mean of the VaR, TVaR, TV, TVP as well as ES for the three distributions.
Simulation results of the average VaR, TVaR, TV, TVP and ES for the WDEx, EEx, and Ex distributions are provided in Tables 1 and 2 and displayed graphically in Figures 4 and 5.
Distribution | parameter | Significance level | VaR | TVaR | TV | TVP | ES |
WDEx | α=3,λ=0.5 | 0.60 | 3.24353 | 5.32312 | 4.07298 | 7.83746 | 1.89911 |
0.65 | 3.53435 | 5.59982 | 4.08566 | 8.30964 | 2.01350 | ||
0.70 | 3.86421 | 5.91721 | 4.09951 | 8.82180 | 2.13364 | ||
0.75 | 4.24850 | 6.29046 | 4.11464 | 9.38883 | 2.26146 | ||
0.80 | 4.71278 | 6.74496 | 4.13115 | 10.03667 | 2.39965 | ||
0.85 | 5.30475 | 7.32825 | 4.14941 | 10.81284 | 2.55232 | ||
0.90 | 6.13120 | 8.14701 | 4.16895 | 11.82411 | 2.72668 | ||
0.95 | 7.53258 | 9.54158 | 4.19058 | 13.41092 | 2.93856 | ||
EEx | α=3,λ=0.5 | 0.60 | 0.49017 | 2.04260 | 3.25950 | 3.99830 | 0.11832 |
0.65 | 0.64444 | 2.25379 | 3.35743 | 4.43611 | 0.15262 | ||
0.70 | 0.84081 | 2.50632 | 3.45651 | 4.92587 | 0.19448 | ||
0.75 | 1.09436 | 2.81518 | 3.55661 | 5.48264 | 0.24565 | ||
0.80 | 1.43025 | 3.20549 | 3.65760 | 6.13157 | 0.30867 | ||
0.85 | 1.89560 | 3.72427 | 3.75935 | 6.91972 | 0.38752 | ||
0.90 | 2.59602 | 4.47711 | 3.86176 | 7.95269 | 0.48924 | ||
0.95 | 3.86842 | 5.80090 | 3.96470 | 9.56736 | 0.62946 | ||
Ex | λ=0.5 | 0.60 | 1.83505 | 3.83774 | 4.05243 | 6.26920 | 0.77933 |
0.65 | 2.10247 | 4.10516 | 4.05243 | 6.73924 | 0.87059 | ||
0.70 | 2.41119 | 4.41388 | 4.05243 | 7.25058 | 0.96933 | ||
0.75 | 2.77632 | 4.77901 | 4.05243 | 7.81833 | 1.07725 | ||
0.80 | 3.22321 | 5.22590 | 4.05243 | 8.46784 | 1.19689 | ||
0.85 | 3.79935 | 5.80204 | 4.05243 | 9.24660 | 1.33222 | ||
0.90 | 4.61137 | 6.61406 | 4.05243 | 10.26125 | 1.49032 | ||
0.95 | 5.99953 | 8.00222 | 4.05243 | 11.85203 | 1.68693 |
Distribution | Parameter | Significance level | VaR | TVaR | TV | TVP | ES |
WDEx | α=2,λ=0.75 | 0.60 | 1.68889 | 3.03197 | 1.78964 | 4.11200 | 0.89027 |
0.65 | 1.87191 | 3.21103 | 1.78988 | 4.37915 | 0.95860 | ||
0.70 | 2.08127 | 3.41720 | 1.79047 | 4.67351 | 1.03113 | ||
0.75 | 2.32712 | 3.66052 | 1.79145 | 5.00516 | 1.10910 | ||
0.80 | 2.62636 | 3.95782 | 1.79286 | 5.39098 | 1.19423 | ||
0.85 | 3.01058 | 4.34064 | 1.79474 | 5.86253 | 1.28924 | ||
0.90 | 3.55059 | 4.87971 | 1.79711 | 6.49060 | 1.39887 | ||
0.95 | 4.47215 | 5.80076 | 1.80005 | 7.50092 | 1.53359 | ||
EEx | α=2,λ=0.75 | 0.60 | 0.59547 | 1.76160 | 1.59250 | 2.71710 | 0.18354 |
0.65 | 0.73107 | 1.91880 | 1.61759 | 2.97024 | 0.22029 | ||
0.70 | 0.89504 | 2.10354 | 1.64237 | 3.25320 | 0.26243 | ||
0.75 | 1.09725 | 2.32577 | 1.66681 | 3.57588 | 0.31110 | ||
0.80 | 1.35434 | 2.60215 | 1.69096 | 3.95491 | 0.36792 | ||
0.85 | 1.69752 | 2.96394 | 1.71477 | 4.42150 | 0.43550 | ||
0.90 | 2.19695 | 3.48134 | 1.73829 | 5.04581 | 0.51848 | ||
0.95 | 3.07660 | 4.37836 | 1.76151 | 6.05179 | 0.62721 | ||
Ex | λ=0.75 | 0.60 | 1.13884 | 2.38172 | 1.56099 | 3.31832 | 0.48365 |
0.65 | 1.30481 | 2.54769 | 1.56099 | 3.56233 | 0.54029 | ||
0.70 | 1.49640 | 2.73928 | 1.56100 | 3.83198 | 0.60157 | ||
0.75 | 1.72300 | 2.96588 | 1.56099 | 4.13662 | 0.66855 | ||
0.80 | 2.00034 | 3.24322 | 1.56099 | 4.49202 | 0.74280 | ||
0.85 | 2.35790 | 3.60078 | 1.56099 | 4.92762 | 0.82678 | ||
0.90 | 2.86184 | 4.10472 | 1.56099 | 5.50962 | 0.92490 | ||
0.95 | 3.72334 | 4.96623 | 1.56099 | 6.44917 | 1.04692 |
The model with highest value of VaR, TVaR, TV, TVP and ES metrics does also have a heavier tail than other competitor models. The results illustrate that the WDEx model has improved quantities of the five risk factors than the EEx, and Ex distributions. Thus, the WDEx model with these parameter values has a heavier-tail than other distributions and could be used efficiently to model heavy-tailed insurance data.
This section is devoted to address the estimation of the WDEx parameters by various estimation methods including eight classical estimation approaches, such as the MLE, Anderson–Darling (ADE) and right-tail Anderson–Darling (RTADE), Cramér–von Mises (CVME), least-squares (LSE), weighted least-squares (WLSE), maximum product of spacings (MPS) and percentile estimation (PCE), and Bayesian approach under three loss functions namely, square error (SE), linear exponential (LINEX), and the general entropy (GE).
Consider the random sample of size n, say x1,x2,…,xn, from the PDF (2.2), and let x1:n,x2:n,…,x2:n be their associated order statistics.
The log-likelihood function of the WDEx distribution has the form
L=(α−1)n∑i=1log((1−e)−λxi)−n∑i=1log((1−e−λxi)α+1)−λn∑i=1xi+nlog(αλlog(2)). | (5.1) |
Hence, the MLEs of α and λ are determined by maximizing Eq (5.1) with respect to α and λ, as the solutions of the following equations
∂L∂α=−n∑i=1(1−e−λxi)αlog(1−e−λxi)(1−e−λxi)α+1+n∑i=1log((1−e)−λxi)+nα=0 |
and
∂L∂λ=(α−1)n∑i=1xie−λxi1−e−λxi−n∑i=1αxie−λxi(1−e−λxi)α−1(1−e−λxi)α+1−n∑i=1xi+nλ=0. |
Furthermore, solving the above two equations mathematically is complicated, hence the equations can be solved by the numerical methods to obtain the MLE of α and λ.
The LSE of the WDEx parameters come from minimizing
O=n∑i=1[F(xi:n)−in+1]2=n∑i=1[log[(1−e−λxi:n)α+1]log(2)−in+1]2. |
The LSE of the WDEx parameters are also obtained by solving the following equations
n∑i=1{log[(1−e−λxi:n)α+1]log(2)−in+1}Δs(xi:n)=0,s=1,2, |
where
Δ1(xi:n)=∂∂αF(xi:n)=(1−e−λxi)αlog(1−e−λxi)log(2)((1−e−λxi)α+1), | (5.2) |
Δ2(xi:n)=∂∂λF(xi:n)=αxie−λxi(1−e−λxi)α−1log(2)((1−e−λxi)α+1). | (5.3) |
The WLSE of the WDEx parameters can be calculated by minimizing
W=n∑i=1(n+1)2(n+2)i(n−i+1)[F(xi:n)−in+1]2=n∑i=1(n+1)2(n+2)i(n−i+1)[log[(1−e−λxi:n)α+1]log(2)−in+1]2. |
Furthermore, the WLSE of the WDEx parameters are obtained by solving the following equations
n∑i=1(n+1)2(n+2)i(n−i+1)[log[(1−e−λxi:n)α+1]log(2)−in+1]Δs(xi:n)=0, |
where Δs(xi:n),s=1,2,3 are given by Eqs (5.2) and (5.3).
The ADE of the WDEx parameters are obtained by minimizing
A=−n−1nn∑i=1(2i−1)[logF(xi:n)+logS(xi:n)]. |
The ADE are also calculated by solving the following equations
n∑i=1(2i−1)[Δs(xi:n)F(xi:n)−Δs(xn+1−i:n)S(xn+1−i:n)]=0, |
where Δs(xi:n),s=1,2,3 were defined in (5.2) and (5.3), respectively.
The RTADE of the WDEx parameters can be calculated by minimizing
R=n2−2n∑i=1F(xi:n)−1nn∑i=1(2i−1)logS(xi:n). |
The RADE can also be follow by solving the non-linear equations
−2n∑i=1Δs(xn+1−i:n)+1nn∑i=1Δs(xn+1−i:n)S(xn+1−i:n)=0, |
where Δs(xi:n),s=1,2,3 are defined in (5.2) and (5.3).
As an alternative to the ML method, the maximum product spacing (MPS) approach is adopted to estimate the parameters of continuous univariate distributions. The uniform spacings, say Di, of a random sample of size n from the WDEx distribution are defined by
Di=F(xi)−F(xi−1),i=1,2,...,n. |
where F(x0)=0, F(xn+1=1) and ∑n+1i=1Di=1. Then, the MPSE of the WDEx parameters can be obtained by maximizing
G=1n+1n+1∑i=1log(Di), |
with respect to α and λ. Further, the MPSE of the WDEx parameters are also obtained by solving
1n+1n+1∑i=11Di[Δs(xi:n)−Δs(xi−1:n)]=0, |
where Δs(xi:n),s=1,2,3 are presented in (5.2) and (5.3).
Let pi=in+1 be an estimate of F(xi:n). Hence, the PCE of the WDEx parameters are obtained by minimizing
PCE=n∑i=1[xi:n−Q(pi)]2=n∑i=1[xi:n−log[1−(2pi−1)1/α]λ]2. |
The PCE are calculated by solving the following equations
n∑i=1(xi:n−log[1−(2pi−1)1/α]λ)Φs(xi:n)=0,s=1,2, |
where
Φ1(xi:n)=∂∂αQ(pi)=(2pi−1)1/αlog(2pi−1)α2λ((2pi−1)1/α−1),Φ2(xi:n)=∂∂λQ(pi)=log(1−(2pi−1)1/α)λ2. |
The CVME of the WDEx parameters are obtained by minimizing
CV=112n+n∑i=1[F(xi:n)−2i−12n]2=112n+n∑i=1[log[(1−e−λxi:n)α+1]log(2)−2i−12n]2, |
They also are obtained by solving the following equations
n∑i=1{log[(1−e−λxi:n)α+1]log(2)−2i−12n}Δs(xi:n)=0, |
where Δs(xi:n),s=1,2,3 are given in (5.2) and (5.3).
The Bayesian estimation (BE) for the distribution parameters under different loss functions such as the SE, LINEX, and GE loss functions is studied. The parameters are assumed to have gamma priors. Thus,
π1(α)∝αμ1−1e−αλ1,α>0,μ1,λ1>0 |
and
π2(λ)∝λμ2−1e−λλ2,λ>0μ2,λ2>0 |
Suppose that the parameters are independent, therefore the joint PDF of the prior distribution has the form
π(α,λ)∝λμ2−1αμ1−1e−(αλ1+λλ2). | (5.4) |
The posterior density function of the parameters α and λ can be obtained from (5.1) and (5.4), as follows
π∗(Θ|t)=π∗(α,λ|t)∝L(α,λ)π(α,λ). | (5.5) |
The BE of the function of parameters U=U(Θ), Θ=(γ,α,θ1,b) under the SE loss function (LF) is given by
ˆUSE=∫ΘUπ∗(Θ|t)dΘ. | (5.6) |
Under the LINEX LF, the BE of U=U(Θ) reduces to
ˆULINEX=−1clog[∫Θe−cUπ∗(Θ|t)dΘ], | (5.7) |
where c≠0 is the shape parameter of the LINEX LF.
Based on the GE LF, the BE of U takes the form
ˆUGE=(∫ΘU−qπ∗(Θ|t)dΘ)−1/q, | (5.8) |
where q≠0.
It is obvious that the integrals in Eqs (5.6)–(5.8) are complicated. Consequently, the important sampling method and the MCMC method are applied to obtain an approximation for these integrals. The Metropolis Hasting (MH) algorithm produces a series of draws from the WDEx distribution as follows:
Algorithm 1 The MCMC for BE |
1. First we will start with initial values for the two parameters α(0)=ˆαMLE, λ(0)=ˆλMLE, |
2. Start the first iteration with counter i=1. |
3. Now we will generate a random value for α∗ from proposal distribution N(α(i−1),var(α(i−1)))., where var(α(i−1)) is the variance of the parameter α |
4. We will use the following equation A(α(i−1)|α∗)=min[1,π∗(α∗|λ(i−1))π∗(α(i−1)|λ(i−1))], the value of this equation donates the acceptance probability. |
5. Now we will generate a random value that follows the uniform distribution U∼U(0,1) that ranges from 0 to 1. |
6. If U≤A(α(i−1)|α∗), put α(i)=α∗, else put α(i)=α(i−1). |
7. In order to evaluate the other parameter λ we will repeat the steps from ((2)–(6)) for λ. |
8. Now increase the counter by one such that i=i+1. |
9. To avoid any correlation between the initial values and the estimated values we will repeat the steps from ((3)–(8)), N=10,000 times to obtain (α(1),λ(1)), ..., (α(N),β(N)). |
Then, the BEs of u(α,β) using the MCMC under the three LFs are, respectively, given by |
˜uSE=1N−MN∑i=M+1u(α(i),λ(i)), |
˜uLINEX=−1clog[1N−MN∑i=M+1exp{−cu(α(i),λ(i))}] |
and |
˜uGE=[1N−MN∑i=M+1(u(α(i),λ(i)))−q]−1/q, |
where M=2000 is the burn-in period. |
One of the most computationally efficient methods, for estimating the distribution parameter is the Tierney and Kadane [24] (TK) method. They developed an easily calculable integration approximation approach for evaluating the distribution parameters. The advantage of the TK approach is that it provides an easy and fast approximation method, however some methods are very hard to find the values of integration and takes a lot of time and effort.
Throughout this segment, we use the TK approximation method for calculating the Bayesian estimates (BEs) of the parameters that are focused on the SE, Linex, and GE LFs. TK method [24] is among the techniques to obtain the estimated value of the ratio of the two integrals as given in the following equation
ˆU(Θ)=∫ΘU(Θ)e[l(Θ|t)+ρ(Θ|t)] dΘ∫Θe[l(Θ|t)+ρ(Θ|t)] dΘ, | (5.9) |
where U(Θ) is any function of the parameters (α,λ), l(Θ|t) is defined in (5.1), and ρ(Θ|t) is the logarithm joint prior distribution which is defined by
ρ(α,λ|t)=(μ1−1)ln(α)+(μ2−1)lnλ−(αλ1+λλ2). | (5.10) |
To obtain an explicit expression for ˆUSE(Θ) using TK approximation, we consider the following functions
δ(Θ)=l(Θ|t)+ρ(Θ|t)n | (5.11) |
and
δ∗(Θ)=δ(Θ)+lnU(Θ)n. | (5.12) |
Now, assume that the following groups of values (ˆαδ,ˆλδ) and (ˆαδ∗,ˆλδ∗) maximize the functions δ(α,λ) and δ∗(α,λ), respectively.
Hence, we can evaluate the approximation of ˆU(Θ) by
ˆUTK(Θ)=√|Δ∗||Δ|exp[n{δ(ˆαδ,ˆλδ)−δ(ˆαδ∗,ˆλδ∗)}], | (5.13) |
where |Δ| and |Δ∗| refers to the determinants of negative inverse hessian of δ(α,λ) and δ∗(α,λ), respectively.
Now, we asses the performance of the above estimation techniques in estimating the WDEx parameters using simulation results. Different sample sizes, n={15,30,70,100,200,350}, and some initial values are assigned. We generated 5000 random samples from the WDEx distribution to calculate the average absolute biases (ABBs), mean square errors (MSEs), and mean relative errors of estimates (MREs) using the R program©.
The following respective mathematical formulae are used to evaluate the ABBs, MSEs, and MREs (for θθ=(α,λ)′)
ABs=1NN∑i=1|^θθ−θθ|,MSEs=1NN∑i=1(^θθ−θθ)2,MREs=1NN∑i=1|^θθ−θθ|/θθ. |
Table 3 reports the simulation results including the ABBs, MSEs, and MREs of the WDEx parameters using the nine estimation approaches. One can note that all methods provide small ABBs, MSEs and MREs in all parametric values. The nine estimators are consistent, i.e., the MSEs decrease as the sample size increases, for all studied cases.
n | Est. | Est. Par. | Classical | |||||||
MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | |||
15 | BIAS | ˆα | 0.25192877{5}{11} | 0.22405917{2}{8} | 0.30164256{7}{13} | 0.19839734{1}{7} | 0.24557181{4}{10} | 0.32687545{8}{14} | 0.29638657{6}{12} | 0.24157906{3}{9} |
ˆλ | 0.32093518{5}{11} | 0.30428638{2}{8} | 0.39524432{8}{14} | 0.26371696{1}{7} | 0.31652453{4}{10} | 0.34677645{7}{13} | 0.32593945{6}{12} | 0.31219147{3}{9} | ||
MSE | ˆα | 0.16122813{3}{9} | 0.11215242{2}{8} | 0.26608275{8}{14} | 0.06560425{1}{7} | 0.1682729{4}{10} | 0.19013447{6}{12} | 0.22921014{7}{13} | 0.18043259{5}{11} | |
ˆλ | 0.21915477{4}{10} | 0.20639267{2}{8} | 0.34394628{8}{14} | 0.11724707{1}{7} | 0.2237624{5}{11} | 0.2148123{3}{9} | 0.23978318{7}{13} | 0.23922943{6}{12} | ||
MRE | ˆα | 0.33590503{5}{11} | 0.29874556{2}{8} | 0.40219008{7}{13} | 0.26452979{1}{7} | 0.32742908{4}{10} | 0.43583393{8}{14} | 0.3951821{6}{12} | 0.32210541{3}{9} | |
ˆλ | 0.42791357{5}{11} | 0.40571517{2}{8} | 0.52699243{8}{14} | 0.35162261{1}{7} | 0.42203271{4}{10} | 0.4623686{7}{13} | 0.43458594{6}{12} | 0.4162553{3}{9} | ||
∑CRanks | 27{5} | 12{2} | 46{8} | 6{1} | 25{4} | 39{7} | 38{6} | 23{3} | ||
∑C&BRanks | 63{11} | 48{8} | 82{14} | 42{7} | 61{10} | 75{13} | 74{12} | 59{9} | ||
30 | BIAS | ˆα | 0.14405974{3}{9} | 0.13901101{2}{8} | 0.17725422{7}{13} | 0.13213658{1}{7} | 0.16209531{5}{11} | 0.25820992{8}{14} | 0.16964029{6}{12} | 0.14580412{4}{10} |
ˆλ | 0.18969311{2}{8} | 0.19141061{3}{9} | 0.23350009{7}{13} | 0.18115544{1}{7} | 0.22786428{6}{12} | 0.24136118{8}{14} | 0.20026589{4}{10} | 0.20766574{5}{11} | ||
MSE | ˆα | 0.03746839{3}{9} | 0.03635968{2}{8} | 0.06052504{7}{13} | 0.02548745{1}{7} | 0.05095711{5}{11} | 0.10729773{8}{14} | 0.05828137{6}{12} | 0.04260275{4}{10} | |
ˆλ | 0.06746508{3}{9} | 0.06525692{2}{8} | 0.09980727{8}{14} | 0.04907736{1}{7} | 0.09345408{7}{13} | 0.09161708{6}{12} | 0.07713619{4}{10} | 0.0814058{5}{11} | ||
MRE | ˆα | 0.19207965{3}{9} | 0.18534802{2}{8} | 0.23633896{7}{13} | 0.1761821{1}{7} | 0.21612709{5}{11} | 0.34427989{8}{14} | 0.22618705{6}{12} | 0.19440549{4}{10} | |
ˆλ | 0.25292415{2}{8} | 0.25521415{3}{9} | 0.31133346{7}{13} | 0.24154058{1}{7} | 0.30381904{6}{12} | 0.32181491{8}{14} | 0.26702119{4}{10} | 0.27688765{5}{11} | ||
∑CRanks | 16{3} | 14{2} | 43{7} | 6{1} | 34{6} | 46{8} | 30{5} | 27{4} | ||
∑C&BRanks | 52{9} | 50{8} | 79{13} | 42{7} | 70{12} | 82{14} | 66{11} | 63{10} | ||
70 | BIAS | ˆα | 0.08792199{3}{9} | 0.08650543{2}{8} | 0.10310607{6}{12} | 0.08281633{1}{7} | 0.10074083{5}{11} | 0.1753952{8}{14} | 0.10421227{7}{13} | 0.08803723{4}{10} |
ˆλ | 0.11408442{1}{7} | 0.12445549{3}{9} | 0.14143312{7}{13} | 0.1164039{2}{8} | 0.13839689{6}{12} | 0.16478766{8}{14} | 0.12896275{5}{11} | 0.12549479{4}{10} | ||
MSE | ˆα | 0.01336042{3}{9} | 0.01302739{2}{8} | 0.01826087{6}{12} | 0.01051127{1}{7} | 0.01740773{5}{11} | 0.04721909{8}{14} | 0.01897672{7}{13} | 0.01339529{4}{10} | |
ˆλ | 0.02286488{2}{8} | 0.02612201{3}{9} | 0.03569504{7}{13} | 0.02027791{1}{7} | 0.03209949{6}{12} | 0.04224291{8}{14} | 0.02824455{5}{11} | 0.02671826{4}{10} | ||
MRE | ˆα | 0.11722932{3}{9} | 0.11534057{2}{8} | 0.13747476{6}{12} | 0.11042178{1}{7} | 0.13432111{5}{11} | 0.23386027{8}{14} | 0.13894969{7}{13} | 0.11738297{4}{10} | |
ˆλ | 0.15211257{1}{7} | 0.16594066{3}{9} | 0.18857749{7}{13} | 0.1552052{2}{8} | 0.18452919{6}{12} | 0.21971689{8}{14} | 0.17195033{5}{11} | 0.16732638{4}{10} | ||
∑CRanks | 13{2} | 15{3} | 39{7} | 8{1} | 33{5} | 48{8} | 36{6} | 24{4} | ||
∑C&BRanks | 49{8} | 51{9} | 75{13} | 44{7} | 69{11} | 84{14} | 72{12} | 60{10} | ||
100 | BIAS | ˆα | 0.0711708{2}{8} | 0.07361175{3}{9} | 0.08687172{6}{12} | 0.06877471{1}{7} | 0.07956296{5}{11} | 0.15707028{8}{14} | 0.0891824{7}{13} | 0.07485017{4}{10} |
ˆλ | 0.10091505{4}{10} | 0.09963177{2}{8} | 0.11507711{6}{12} | 0.0956997{1}{7} | 0.11614478{7}{13} | 0.14353138{8}{14} | 0.10220272{5}{11} | 0.10079129{3}{9} | ||
MSE | ˆα | 0.00836564{2}{8} | 0.00880658{3}{9} | 0.01255586{7}{13} | 0.0070432{1}{7} | 0.01016903{5}{11} | 0.03872841{8}{14} | 0.01247087{6}{12} | 0.0095693{4}{10} | |
ˆλ | 0.01716988{4}{10} | 0.01679548{2}{8} | 0.02177566{6}{12} | 0.01380793{1}{7} | 0.02250852{7}{13} | 0.03103759{8}{14} | 0.01734026{5}{11} | 0.01694889{3}{9} | ||
MRE | ˆα | 0.09489439{2}{8} | 0.098149{3}{9} | 0.11582897{6}{12} | 0.09169961{1}{7} | 0.10608395{5}{11} | 0.20942704{8}{14} | 0.11890987{7}{13} | 0.09980023{4}{10} | |
ˆλ | 0.13455341{4}{10} | 0.13284236{2}{8} | 0.15343615{6}{12} | 0.1275996{1}{7} | 0.15485971{7}{13} | 0.19137517{8}{14} | 0.1362703{5}{11} | 0.13438838{3}{9} | ||
∑CRanks | 18{3} | 15{2} | 37{7} | 6{1} | 36{6} | 48{8} | 35{5} | 21{4} | ||
∑C&BRanks | 54{9} | 51{8} | 73{13} | 42{7} | 72{12} | 84{14} | 71{11} | 57{10} | ||
200 | BIAS | ˆα | 0.04897082{1}{7} | 0.05135288{3}{9} | 0.05580712{5}{11} | 0.05042855{2}{8} | 0.05620865{6}{12} | 0.11786812{8}{14} | 0.05902749{7}{13} | 0.0514394{4}{10} |
ˆλ | 0.0680904{1}{7} | 0.07177274{3}{9} | 0.08001323{7}{13} | 0.06943586{2}{8} | 0.07996607{6}{12} | 0.10198027{8}{14} | 0.07187114{4}{10} | 0.07208482{5}{11} | ||
MSE | ˆα | 0.00376579{1}{7} | 0.00414776{3}{9} | 0.00504929{5}{11} | 0.00389309{2}{8} | 0.00516812{6}{12} | 0.02119878{8}{14} | 0.0057458{7}{13} | 0.00430278{4}{10} | |
ˆλ | 0.00722093{1}{7} | 0.00838347{3}{9} | 0.01096736{7}{13} | 0.00726195{2}{8} | 0.01032872{6}{12} | 0.01585112{8}{14} | 0.0084817{4}{10} | 0.00865163{5}{11} | ||
MRE | ˆα | 0.06529443{1}{7} | 0.06847051{3}{9} | 0.07440949{5}{11} | 0.06723806{2}{8} | 0.07494487{6}{12} | 0.15715749{8}{14} | 0.07870332{7}{13} | 0.06858586{4}{10} | |
ˆλ | 0.09078719{1}{7} | 0.09569698{3}{9} | 0.10668431{7}{13} | 0.09258115{2}{8} | 0.10662142{6}{12} | 0.1359737{8}{14} | 0.09582819{4}{10} | 0.09611309{5}{11} | ||
∑CRanks | 6{1} | 18{3} | 36{6.5} | 12{2} | 36{6.5} | 48{8} | 33{5} | 27{4} | ||
\sum C&BRanks | 42{7} | 54{9} | 72{12.5} | 48{8} | 72{12.5} | 84{14} | 69{11} | 63{10} | ||
300 | BIAS | ˆα | 0.03667764{1}{6} | 0.03990136{3}{9} | 0.04288476{5}{11} | 0.03760933{2}{7} | 0.04356189{6}{12} | 0.0934606{8}{14} | 0.04654803{7}{13} | 0.040086{4}{10} |
ˆλ | 0.04795812{1}{6} | 0.05338798{3}{9} | 0.05993014{6}{12} | 0.05257793{2}{7} | 0.06112134{7}{13} | 0.07718156{8}{14} | 0.05407786{5}{11} | 0.05393484{4}{10} | ||
MSE | ˆα | 0.00215764{1}{6} | 0.00250001{3}{8} | 0.00296309{6}{12} | 0.00221696{2}{7} | 0.00293099{5}{11} | 0.01343653{8}{14} | 0.00346372{7}{13} | 0.0025318{4}{10} | |
ˆλ | 0.00376997{1}{6} | 0.00453163{3}{8} | 0.00573555{6}{12} | 0.00421602{2}{7} | 0.00580597{7}{13} | 0.0091151{8}{14} | 0.00478321{5}{10} | 0.00471786{4}{9} | ||
MRE | ˆα | 0.04890353{1}{6} | 0.05320181{3}{9} | 0.05717968{5}{11} | 0.05014577{2}{7} | 0.05808252{6}{12} | 0.12461413{8}{14} | 0.06206403{7}{13} | 0.053448{4}{10} | |
ˆλ | 0.06394416{1}{6} | 0.07118398{3}{9} | 0.07990685{6}{12} | 0.07010391{2}{7} | 0.08149512{7}{13} | 0.10290874{8}{14} | 0.07210381{5}{11} | 0.07191312{4}{10} | ||
∑CRanks | 6{1} | 18{3} | 34{5} | 12{2} | 38{7} | 48{8} | 36{6} | 24{4} | ||
∑C&BRanks | 36{6} | 52{8.5} | 70{11} | 42{7} | 74{13} | 84{14} | 71{12} | 59{10} | ||
15 | BIAS | ˆα | 0.07080639{2}{2} | 0.07080648{3}{3} | 0.07079734{1}{1} | 0.10887156{6}{6} | 0.078971{5}{5} | 0.07215014{4}{4} | ||
ˆλ | 0.07334416{2}{2} | 0.07334414{1}{1} | 0.07335074{3}{3} | 0.13371233{6}{6} | 0.12036804{5}{5} | 0.11400132{4}{4} | ||||
MSE | ˆα | 0.00700589{4}{4} | 0.0070059{5}{5} | 0.00700451{3}{3} | 0.01710565{6}{6} | 0.00623642{2}{2} | 0.00520564{1}{1} | |||
ˆλ | 0.00734358{2}{2} | 0.00734357{1}{1} | 0.00734515{3}{3} | 0.02521906{6}{6} | 0.01448847{5}{5} | 0.0129963{4}{4} | ||||
MRE | ˆα | 0.09440852{2}{2} | 0.09440864{3}{3} | 0.09439646{1}{1} | 0.14516208{6}{6} | 0.10529467{5}{5} | 0.09620019{4}{4} | |||
ˆλ | 0.09779221{2}{2} | 0.09779219{1}{1} | 0.09780098{3}{3} | 0.17828311{6}{6} | 0.16049072{5}{5} | 0.15200176{4}{4} | ||||
∑BRanks | 14{2} | 14{2} | 14{2} | 36{6} | 27{5} | 21 ^{\{ 4 \}} | ||||
\sum C \&BRanks | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 36 ^{\{ 6 \}} | 27 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||||
30 | BIAS | \hat{\alpha} | 0.06707577 ^{\{ 4 \}\{ 4 \}} | 0.06707579 ^{\{ 5 \}\{ 5 \}} | 0.06707479 ^{\{ 3 \}\{ 3 \}} | 0.08818954 ^{\{ 6 \}\{ 6 \}} | 0.05398142 ^{\{ 2 \}\{ 2 \}} | 0.0484456 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.07063728 ^{\{ 2 \}\{ 2 \}} | 0.07063729 ^{\{ 3 \}\{ 3 \}} | 0.07063836 ^{\{ 4 \}\{ 4 \}} | 0.09669995 ^{\{ 6 \}\{ 6 \}} | 0.07140666 ^{\{ 5 \}\{ 5 \}} | 0.06590862 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00638429 ^{\{ 3 \}\{ 3 \}} | 0.01167204 ^{\{ 6 \}\{ 6 \}} | 0.00291399 ^{\{ 2 \}\{ 2 \}} | 0.00234698 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00685694 ^{\{ 3 \}\{ 3 \}} | 0.01388726 ^{\{ 6 \}\{ 6 \}} | 0.00509891 ^{\{ 2 \}\{ 2 \}} | 0.00434395 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.08943436 ^{\{ 4 \}\{ 4 \}} | 0.08943439 ^{\{ 5 \}\{ 5 \}} | 0.08943306 ^{\{ 3 \}\{ 3 \}} | 0.11758605 ^{\{ 6 \}\{ 6 \}} | 0.07197522 ^{\{ 2 \}\{ 2 \}} | 0.06459413 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.09418304 ^{\{ 2 \}\{ 2 \}} | 0.09418306 ^{\{ 3 \}\{ 3 \}} | 0.09418448 ^{\{ 4 \}\{ 4 \}} | 0.12893327 ^{\{ 6 \}\{ 6 \}} | 0.09520888 ^{\{ 5 \}\{ 5 \}} | 0.08787816 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 21 ^{\{ 4 \}} | 25 ^{\{ 5 \}} | 20 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 18 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 21 ^{\{ 4 \}} | 25 ^{\{ 5 \}} | 20 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 18 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
70 | BIAS | \hat{\alpha} | 0.0628967 ^{\{ 4 \}\{ 4 \}} | 0.06289672 ^{\{ 5 \}\{ 5 \}} | 0.06289578 ^{\{ 3 \}\{ 3 \}} | 0.06988905 ^{\{ 6 \}\{ 6 \}} | 0.03512338 ^{\{ 2 \}\{ 2 \}} | 0.03097589 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.06382592 ^{\{ 3 \}\{ 3 \}} | 0.06382593 ^{\{ 4 \}\{ 4 \}} | 0.06382623 ^{\{ 5 \}\{ 5 \}} | 0.08500664 ^{\{ 6 \}\{ 6 \}} | 0.04706336 ^{\{ 2 \}\{ 2 \}} | 0.04163393 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00529439 ^{\{ 3 \}\{ 3 \}} | 0.00766215 ^{\{ 6 \}\{ 6 \}} | 0.00123365 ^{\{ 2 \}\{ 2 \}} | 0.00095951 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00577528 ^{\{ 5 \}\{ 5 \}} | 0.01076173 ^{\{ 6 \}\{ 6 \}} | 0.00221496 ^{\{ 2 \}\{ 2 \}} | 0.00173338 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.08386227 ^{\{ 4 \}\{ 4 \}} | 0.08386229 ^{\{ 5 \}\{ 5 \}} | 0.08386104 ^{\{ 3 \}\{ 3 \}} | 0.0931854 ^{\{ 6 \}\{ 6 \}} | 0.04683117 ^{\{ 2 \}\{ 2 \}} | 0.04130118 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08510164 ^{\{ 5 \}\{ 5 \}} | 0.11334219 ^{\{ 6 \}\{ 6 \}} | 0.06275115 ^{\{ 2 \}\{ 2 \}} | 0.0555119 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 22.5 ^{\{ 3 \}} | 25.5 ^{\{ 5 \}} | 24 ^{\{ 4 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 22.5 ^{\{ 3 \}} | 25.5 ^{\{ 5 \}} | 24 ^{\{ 4 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
100 | BIAS | \hat{\alpha} | 0.05470376 ^{\{ 4 \}\{ 4 \}} | 0.05470375 ^{\{ 3 \}\{ 3 \}} | 0.05470411 ^{\{ 5 \}\{ 5 \}} | 0.06296533 ^{\{ 6 \}\{ 6 \}} | 0.02807831 ^{\{ 2 \}\{ 2 \}} | 0.02458989 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} | 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} | 0.0631295 ^{\{ 5 \}\{ 5 \}} | 0.07802856 ^{\{ 6 \}\{ 6 \}} | 0.04616373 ^{\{ 2 \}\{ 2 \}} | 0.04172589 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00439478 ^{\{ 5 \}\{ 5 \}} | 0.00608088 ^{\{ 6 \}\{ 6 \}} | 0.00078839 ^{\{ 2 \}\{ 2 \}} | 0.00060466 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00567383 ^{\{ 3 \}\{ 3 \}} | 0.00900842 ^{\{ 6 \}\{ 6 \}} | 0.00213109 ^{\{ 2 \}\{ 2 \}} | 0.00174105 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} | 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} | 0.07293881 ^{\{ 5 \}\{ 5 \}} | 0.08395377 ^{\{ 6 \}\{ 6 \}} | 0.03743775 ^{\{ 2 \}\{ 2 \}} | 0.03278652 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08417267 ^{\{ 5 \}\{ 5 \}} | 0.10403808 ^{\{ 6 \}\{ 6 \}} | 0.06155164 ^{\{ 2 \}\{ 2 \}} | 0.05563452 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 22.5 ^{\{ 4 \}} | 21.5 ^{\{ 3 \}} | 28 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 22.5 ^{\{ 4 \}} | 21.5 ^{\{ 3 \}} | 28 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
200 | BIAS | \hat{\alpha} | 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04001848 ^{\{ 3 \}\{ 3 \}} | 0.04705698 ^{\{ 6 \}\{ 6 \}} | 0.01733801 ^{\{ 2 \}\{ 2 \}} | 0.01516892 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.05856409 ^{\{ 4 \}\{ 4 \}} | 0.0585641 ^{\{ 5 \}\{ 5 \}} | 0.05856347 ^{\{ 3 \}\{ 3 \}} | 0.06345567 ^{\{ 6 \}\{ 6 \}} | 0.02796569 ^{\{ 2 \}\{ 2 \}} | 0.02441503 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00253076 ^{\{ 3 \}\{ 3 \}} | 0.00362108 ^{\{ 6 \}\{ 6 \}} | 0.00030061 ^{\{ 2 \}\{ 2 \}} | 0.0002301 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} | 0.0047633 ^{\{ 3 \}\{ 3 \}} | 0.00626275 ^{\{ 6 \}\{ 6 \}} | 0.00078208 ^{\{ 2 \}\{ 2 \}} | 0.00059609 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} | 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} | 0.05335798 ^{\{ 3 \}\{ 3 \}} | 0.06274264 ^{\{ 6 \}\{ 6 \}} | 0.02311735 ^{\{ 2 \}\{ 2 \}} | 0.02022522 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.07808545 ^{\{ 4 \}\{ 4 \}} | 0.07808546 ^{\{ 5 \}\{ 5 \}} | 0.07808462 ^{\{ 3 \}\{ 3 \}} | 0.08460756 ^{\{ 6 \}\{ 6 \}} | 0.03728759 ^{\{ 2 \}\{ 2 \}} | 0.03255338 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 26 ^{\{ 4 \}} | 28 ^{\{ 5 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C\&BRanks | 26 ^{\{ 4 \}} | 28 ^{\{ 5 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
300 | BIAS | \hat{\alpha} | 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} | 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} | 0.03245972 ^{\{ 3 \}\{ 3 \}} | 0.03938224 ^{\{ 6 \}\{ 8 \}} | 0.01407489 ^{\{ 2 \}\{ 2 \}} | 0.01252037 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} | 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} | 0.0473218 ^{\{ 5 \}\{ 5 \}} | 0.05290774 ^{\{ 6 \}\{ 8 \}} | 0.02365826 ^{\{ 2 \}\{ 2 \}} | 0.02092282 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00252766 ^{\{ 6 \}\{ 9 \}} | 0.0001981 ^{\{ 2 \}\{ 2 \}} | 0.00015676 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00341069 ^{\{ 5 \}\{ 5 \}} | 0.00482747 ^{\{ 6 \}\{ 11 \}} | 0.00055971 ^{\{ 2 \}\{ 2 \}} | 0.00043776 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04327963 ^{\{ 3 \}\{ 3 \}} | 0.05250965 ^{\{ 6 \}\{ 8 \}} | 0.01876651 ^{\{ 2 \}\{ 2 \}} | 0.01669383 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.06309505 ^{\{ 4 \}\{ 4 \}} | 0.06309504 ^{\{ 3 \}\{ 3 \}} | 0.06309574 ^{\{ 5 \}\{ 5 \}} | 0.07054365 ^{\{ 6 \}\{ 8 \}} | 0.03154434 ^{\{ 2 \}\{ 2 \}} | 0.02789709 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 24 ^{\{ 4 \}} | 23 ^{\{ 3 \}} | 25 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C\&BRanks | 24 ^{\{ 4 \}} | 23 ^{\{ 3 \}} | 25 ^{\{ 5 \}} | 52 ^{\{ 8.5 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} |
n | Est. Par. | MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | Bayesian | ||||||||
L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. CR | ||
15 | \hat{\alpha} | 1.76864 ^{\{ 14 \}} | 1.01231 ^{\{ 5 \}} | 1.23169 ^{\{ 7 \}} | 0.9917 ^{\{ 4 \}} | 2.44613 ^{\{ 16 \}} | 1.42478 ^{\{ 11 \}} | 0.75104 ^{\{ 1 \}} | 0.85626 ^{\{ 3 \}} | 1.37582 ^{\{ 10 \}} | 1.2964 ^{\{ 9 \}} | 1.73329 ^{\{ 13 \}} | 4.52643 ^{\{ 17 \}} | 2.21266 ^{\{ 15 \}} | 1.4343 ^{\{ 12 \}} | 1.26902 ^{\{ 8 \}} | 1.09219 ^{\{ 6 \}} | 0.79185 ^{\{ 2 \}} |
\hat{\lambda} | 1.8179 ^{\{ 13 \}} | 1.21276 ^{\{ 3 \}} | 1.61918 ^{\{ 9 \}} | 1.35754 ^{\{ 6 \}} | 2.45476 ^{\{ 16 \}} | 1.76051 ^{\{ 12 \}} | 1.08184 ^{\{ 2 \}} | 1.21353 ^{\{ 4 \}} | 1.82447 ^{\{ 14 \}} | 1.7064 ^{\{ 10 \}} | 1.51256 ^{\{ 7 \}} | 2.71437 ^{\{ 17 \}} | 1.85662 ^{\{ 15 \}} | 1.32039 ^{\{ 5 \}} | 1.73185 ^{\{ 11 \}} | 1.56473 ^{\{ 8 \}} | 1.02613 ^{\{ 1 \}} | |
30 | \hat{\alpha} | 0.76771 ^{\{ 10 \}} | 0.61941 ^{\{ 3 \}} | 0.69962 ^{\{ 6 \}} | 0.63344 ^{\{ 5 \}} | 0.93483 ^{\{ 14 \}} | 0.73927 ^{\{ 8 \}} | 0.54674 ^{\{ 1 \}} | 0.62416 ^{\{ 4 \}} | 0.8346 ^{\{ 13 \}} | 0.82046 ^{\{ 12 \}} | 1.17514 ^{\{ 16 \}} | 2.60316 ^{\{ 17 \}} | 0.96934 ^{\{ 15 \}} | 0.81431 ^{\{ 11 \}} | 0.75708 ^{\{ 9 \}} | 0.73181 ^{\{ 7 \}} | 0.56731 ^{\{ 2 \}} |
\hat{\lambda} | 1.01832 ^{\{ 9 \}} | 0.85197 ^{\{ 4 \}} | 0.95639 ^{\{ 7 \}} | 0.87947 ^{\{ 6 \}} | 1.2636 ^{\{ 16 \}} | 1.08914 ^{\{ 13 \}} | 0.74985 ^{\{ 2 \}} | 0.85211 ^{\{ 5 \}} | 1.15014 ^{\{ 15 \}} | 1.14232 ^{\{ 14 \}} | 1.0211 ^{\{ 10 \}} | 1.58731 ^{\{ 17 \}} | 1.04276 ^{\{ 12 \}} | 0.81825 ^{\{ 3 \}} | 1.03151 ^{\{ 11 \}} | 1.00314 ^{\{ 8 \}} | 0.73465 ^{\{ 1 \}} | |
70 | \hat{\alpha} | 0.44252 ^{\{ 9 \}} | 0.40638 ^{\{ 3 \}} | 0.43855 ^{\{ 8 \}} | 0.4246 ^{\{ 5 \}} | 0.52287 ^{\{ 15 \}} | 0.47767 ^{\{ 11 \}} | 0.363 ^{\{ 1 \}} | 0.4131 ^{\{ 4 \}} | 0.47865 ^{\{ 12 \}} | 0.47271 ^{\{ 10 \}} | 0.82108 ^{\{ 16 \}} | 1.36637 ^{\{ 17 \}} | 0.51984 ^{\{ 14 \}} | 0.47879 ^{\{ 13 \}} | 0.43536 ^{\{ 6 \}} | 0.43582 ^{\{ 7 \}} | 0.37696 ^{\{ 2 \}} |
\hat{\lambda} | 0.59365 ^{\{ 6 \}} | 0.54695 ^{\{ 4 \}} | 0.61226 ^{\{ 10 \}} | 0.59699 ^{\{ 7 \}} | 0.75869 ^{\{ 16 \}} | 0.69736 ^{\{ 14 \}} | 0.487 ^{\{ 1 \}} | 0.54884 ^{\{ 5 \}} | 0.65062 ^{\{ 12 \}} | 0.6587 ^{\{ 13 \}} | 0.70313 ^{\{ 15 \}} | 0.80559 ^{\{ 17 \}} | 0.60571 ^{\{ 8 \}} | 0.50151 ^{\{ 3 \}} | 0.60658 ^{\{ 9 \}} | 0.61611 ^{\{ 11 \}} | 0.49915 ^{\{ 2 \}} | |
100 | \hat{\alpha} | 0.33944 ^{\{ 5 \}} | 0.31992 ^{\{ 3 \}} | 0.34198 ^{\{ 6 \}} | 0.33375 ^{\{ 4 \}} | 0.42215 ^{\{ 14 \}} | 0.38962 ^{\{ 10 \}} | 0.30229 ^{\{ 1 \}} | 0.34622 ^{\{ 7 \}} | 0.39767 ^{\{ 11 \}} | 0.39816 ^{\{ 12 \}} | 0.68273 ^{\{ 16 \}} | 1.05362 ^{\{ 17 \}} | 0.4355 ^{\{ 15 \}} | 0.41384 ^{\{ 13 \}} | 0.3649 ^{\{ 9 \}} | 0.35835 ^{\{ 8 \}} | 0.31696 ^{\{ 2 \}} |
\hat{\lambda} | 0.47339 ^{\{ 6 \}} | 0.43589 ^{\{ 4 \}} | 0.47704 ^{\{ 7 \}} | 0.47049 ^{\{ 5 \}} | 0.56073 ^{\{ 15 \}} | 0.52885 ^{\{ 12 \}} | 0.40649 ^{\{ 1 \}} | 0.4866 ^{\{ 8 \}} | 0.54784 ^{\{ 13 \}} | 0.55029 ^{\{ 14 \}} | 0.59234 ^{\{ 16 \}} | 0.62163 ^{\{ 17 \}} | 0.52259 ^{\{ 11 \}} | 0.43411 ^{\{ 3 \}} | 0.51049 ^{\{ 10 \}} | 0.5069 ^{\{ 9 \}} | 0.42203 ^{\{ 2 \}} | |
200 | \hat{\alpha} | 0.2389 ^{\{ 4 \}} | 0.23142 ^{\{ 3 \}} | 0.2516 ^{\{ 9 \}} | 0.2482 ^{\{ 8 \}} | 0.27946 ^{\{ 13 \}} | 0.27005 ^{\{ 10 \}} | 0.22294 ^{\{ 1 \}} | 0.24721 ^{\{ 7 \}} | 0.27286 ^{\{ 12 \}} | 0.27282 ^{\{ 11 \}} | 0.52575 ^{\{ 16 \}} | 0.70941 ^{\{ 17 \}} | 0.29224 ^{\{ 15 \}} | 0.2862 ^{\{ 14 \}} | 0.24663 ^{\{ 6 \}} | 0.2461 ^{\{ 5 \}} | 0.2278 ^{\{ 2 \}} |
\hat{\lambda} | 0.32208 ^{\{ 5 \}} | 0.31305 ^{\{ 4 \}} | 0.35705 ^{\{ 11 \}} | 0.3489 ^{\{ 9 \}} | 0.3895 ^{\{ 15 \}} | 0.37969 ^{\{ 12 \}} | 0.30621 ^{\{ 2 \}} | 0.34766 ^{\{ 8 \}} | 0.38153 ^{\{ 14 \}} | 0.3812 ^{\{ 13 \}} | 0.43553 ^{\{ 17 \}} | 0.39775 ^{\{ 16 \}} | 0.35301 ^{\{ 10 \}} | 0.30882 ^{\{ 3 \}} | 0.33943 ^{\{ 6 \}} | 0.34042 ^{\{ 7 \}} | 0.3042 ^{\{ 1 \}} | |
350 | \hat{\alpha} | 0.17441 ^{\{ 4 \}} | 0.17146 ^{\{ 2 \}} | 0.1858 ^{\{ 6 \}} | 0.18336 ^{\{ 5 \}} | 0.20941 ^{\{ 13 \}} | 0.20323 ^{\{ 9 \}} | 0.17002 ^{\{ 1 \}} | 0.21806 ^{\{ 15 \}} | 0.20592 ^{\{ 10 \}} | 0.20694 ^{\{ 11 \}} | 0.40697 ^{\{ 16 \}} | 0.49775 ^{\{ 17 \}} | 0.21169 ^{\{ 14 \}} | 0.20828 ^{\{ 12 \}} | 0.19022 ^{\{ 7 \}} | 0.19045 ^{\{ 8 \}} | 0.17249 ^{\{ 3 \}} |
\hat{\lambda} | 0.24024 ^{\{ 5 \}} | 0.23525 ^{\{ 4 \}} | 0.25748 ^{\{ 8 \}} | 0.2569 ^{\{ 7 \}} | 0.29707 ^{\{ 15 \}} | 0.28529 ^{\{ 12 \}} | 0.23099 ^{\{ 2 \}} | 0.30366 ^{\{ 16 \}} | 0.28776 ^{\{ 13 \}} | 0.29495 ^{\{ 14 \}} | 0.34137 ^{\{ 17 \}} | 0.27981 ^{\{ 11 \}} | 0.25913 ^{\{ 10 \}} | 0.22713 ^{\{ 1 \}} | 0.25778 ^{\{ 9 \}} | 0.25635 ^{\{ 6 \}} | 0.23339 ^{\{ 3 \}} | |
\sum Ranks | 90 ^{\{ 6.5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 9 \}} | 71 ^{\{ 4 \}} | 178 ^{\{ 16 \}} | 134 ^{\{ 11 \}} | 16 ^{\{ 1 \}} | 86 ^{\{ 5 \}} | 149 ^{\{ 13 \}} | 143 ^{\{ 12 \}} | 175 ^{\{ 15 \}} | 197 ^{\{ 17 \}} | 154 ^{\{ 14 \}} | 93 ^{\{ 8 \}} | 101 ^{\{ 10 \}} | 90 ^{\{ 6.5 \}} | 23 ^{\{ 2 \}} |
n | Est. Par. | MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | Bayesian | ||||||||
CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. CR | ||
15 | \hat{\alpha} | 0.8 ^{\{ 1 \}} | 0.85 ^{\{ 3 \}} | 0.93 ^{\{ 10.5 \}} | 0.95 ^{\{ 16 \}} | 0.84 ^{\{ 2 \}} | 0.9 ^{\{ 6 \}} | 0.91 ^{\{ 8 \}} | 0.94 ^{\{ 13.5 \}} | 0.94 ^{\{ 13.5 \}} | 0.93 ^{\{ 10.5 \}} | 0.92 ^{\{ 9 \}} | 0.86 ^{\{ 4 \}} | 0.9 ^{\{ 6 \}} | 0.9 ^{\{ 6 \}} | 0.94 ^{\{ 13.5 \}} | 0.94 ^{\{ 13.5 \}} | 1 ^{\{ 17 \}} |
\hat{\lambda} | 0.82 ^{\{ 1.5 \}} | 0.89 ^{\{ 7 \}} | 0.94 ^{\{ 14.5 \}} | 0.91 ^{\{ 9 \}} | 0.85 ^{\{ 4 \}} | 0.88 ^{\{ 6 \}} | 0.93 ^{\{ 11.5 \}} | 0.97 ^{\{ 16 \}} | 0.94 ^{\{ 14.5 \}} | 0.9 ^{\{ 8 \}} | 0.93 ^{\{ 11.5 \}} | 0.84 ^{\{ 3 \}} | 0.93 ^{\{ 11.5 \}} | 0.82 ^{\{ 1.5 \}} | 0.93 ^{\{ 11.5 \}} | 0.87 ^{\{ 5 \}} | 1 ^{\{ 17 \}} | |
30 | \hat{\alpha} | 0.88 ^{\{ 4 \}} | 0.92 ^{\{ 11 \}} | 0.94 ^{\{ 13.5 \}} | 0.88 ^{\{ 4 \}} | 0.92 ^{\{ 11 \}} | 0.91 ^{\{ 8.5 \}} | 0.85 ^{\{ 1 \}} | 0.88 ^{\{ 4 \}} | 0.89 ^{\{ 6 \}} | 0.91 ^{\{ 8.5 \}} | 0.86 ^{\{ 2 \}} | 0.9 ^{\{ 7 \}} | 0.97 ^{\{ 16 \}} | 0.94 ^{\{ 13.5 \}} | 0.95 ^{\{ 15 \}} | 0.92 ^{\{ 11 \}} | 1 ^{\{ 17 \}} |
\hat{\lambda} | 0.89 ^{\{ 4 \}} | 0.92 ^{\{ 8.5 \}} | 0.98 ^{\{ 16 \}} | 0.91 ^{\{ 6 \}} | 0.93 ^{\{ 11 \}} | 0.92 ^{\{ 8.5 \}} | 0.91 ^{\{ 6 \}} | 0.94 ^{\{ 13 \}} | 0.95 ^{\{ 14.5 \}} | 0.93 ^{\{ 11 \}} | 0.87 ^{\{ 3 \}} | 0.86 ^{\{ 2 \}} | 0.91 ^{\{ 6 \}} | 0.81 ^{\{ 1 \}} | 0.95 ^{\{ 14.5 \}} | 0.93 ^{\{ 11 \}} | 1 ^{\{ 17 \}} | |
70 | \hat{\alpha} | 0.94 ^{\{ 9 \}} | 0.97 ^{\{ 16 \}} | 0.91 ^{\{ 4.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.89 ^{\{ 2.5 \}} | 0.89 ^{\{ 2.5 \}} | 0.84 ^{\{ 1 \}} | 0.94 ^{\{ 9 \}} | 0.93 ^{\{ 6.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.93 ^{\{ 6.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.91 ^{\{ 4.5 \}} | 0.94 ^{\{ 9 \}} | 0.96 ^{\{ 15 \}} | 0.978 ^{\{ 17 \}} |
\hat{\lambda} | 0.87 ^{\{ 2.5 \}} | 0.93 ^{\{ 12 \}} | 0.93 ^{\{ 12 \}} | 0.92 ^{\{ 10 \}} | 0.91 ^{\{ 8.5 \}} | 0.87 ^{\{ 2.5 \}} | 0.88 ^{\{ 4.5 \}} | 0.88 ^{\{ 4.5 \}} | 0.91 ^{\{ 8.5 \}} | 0.9 ^{\{ 6.5 \}} | 0.94 ^{\{ 14 \}} | 0.9 ^{\{ 6.5 \}} | 0.93 ^{\{ 12 \}} | 0.83 ^{\{ 1 \}} | 0.95 ^{\{ 15.5 \}} | 0.95 ^{\{ 15.5 \}} | 0.993 ^{\{ 17 \}} | |
100 | \hat{\alpha} | 0.94 ^{\{ 10.5 \}} | 0.96 ^{\{ 13 \}} | 0.94 ^{\{ 10.5 \}} | 0.92 ^{\{ 5.5 \}} | 0.9 ^{\{ 3 \}} | 0.96 ^{\{ 13 \}} | 0.82 ^{\{ 1 \}} | 0.93 ^{\{ 8 \}} | 0.96 ^{\{ 13 \}} | 0.97 ^{\{ 16.5 \}} | 0.89 ^{\{ 2 \}} | 0.92 ^{\{ 5.5 \}} | 0.97 ^{\{ 16.5 \}} | 0.93 ^{\{ 8 \}} | 0.93 ^{\{ 8 \}} | 0.91 ^{\{ 4 \}} | 0.967 ^{\{ 15 \}} |
\hat{\lambda} | 0.93 ^{\{ 12 \}} | 0.91 ^{\{ 8.5 \}} | 0.9 ^{\{ 6 \}} | 0.96 ^{\{ 16 \}} | 0.93 ^{\{ 12 \}} | 0.93 ^{\{ 12 \}} | 0.86 ^{\{ 2 \}} | 0.9 ^{\{ 6 \}} | 0.95 ^{\{ 15 \}} | 0.91 ^{\{ 8.5 \}} | 0.88 ^{\{ 3.5 \}} | 0.85 ^{\{ 1 \}} | 0.93 ^{\{ 12 \}} | 0.88 ^{\{ 3.5 \}} | 0.93 ^{\{ 12 \}} | 0.9 ^{\{ 6 \}} | 0.984 ^{\{ 17 \}} | |
200 | \hat{\alpha} | 0.93 ^{\{ 9.5 \}} | 0.95 ^{\{ 15 \}} | 0.95 ^{\{ 15 \}} | 0.91 ^{\{ 6.5 \}} | 0.94 ^{\{ 12.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.9 ^{\{ 4.5 \}} | 0.9 ^{\{ 4.5 \}} | 0.91 ^{\{ 6.5 \}} | 0.85 ^{\{ 1 \}} | 0.95 ^{\{ 15 \}} | 0.94 ^{\{ 12.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.88 ^{\{ 3 \}} | 0.86 ^{\{ 2 \}} | 0.972 ^{\{ 17 \}} |
\hat{\lambda} | 0.9 ^{\{ 6 \}} | 0.88 ^{\{ 5 \}} | 0.95 ^{\{ 14 \}} | 0.93 ^{\{ 11.5 \}} | 0.96 ^{\{ 15 \}} | 0.97 ^{\{ 16 \}} | 0.87 ^{\{ 3.5 \}} | 0.91 ^{\{ 7.5 \}} | 0.93 ^{\{ 11.5 \}} | 0.91 ^{\{ 7.5 \}} | 0.86 ^{\{ 2 \}} | 0.81 ^{\{ 1 \}} | 0.92 ^{\{ 9.5 \}} | 0.87 ^{\{ 3.5 \}} | 0.98 ^{\{ 17 \}} | 0.92 ^{\{ 9.5 \}} | 0.949 ^{\{ 13 \}} | |
350 | \hat{\alpha} | 0.92 ^{\{ 9 \}} | 0.91 ^{\{ 7 \}} | 0.89 ^{\{ 4.5 \}} | 0.89 ^{\{ 4.5 \}} | 0.94 ^{\{ 13 \}} | 0.91 ^{\{ 7 \}} | 0.93 ^{\{ 11 \}} | 0.93 ^{\{ 11 \}} | 0.98 ^{\{ 17 \}} | 0.97 ^{\{ 16 \}} | 0.87 ^{\{ 1 \}} | 0.96 ^{\{ 14 \}} | 0.88 ^{\{ 2.5 \}} | 0.88 ^{\{ 2.5 \}} | 0.93 ^{\{ 11 \}} | 0.91 ^{\{ 7 \}} | 0.962 ^{\{ 15 \}} |
\hat{\lambda} | 0.95 ^{\{ 15 \}} | 0.97 ^{\{ 17 \}} | 0.92 ^{\{ 5 \}} | 0.94 ^{\{ 11 \}} | 0.94 ^{\{ 11 \}} | 0.94 ^{\{ 11 \}} | 0.91 ^{\{ 3 \}} | 0.92 ^{\{ 5 \}} | 0.94 ^{\{ 11 \}} | 0.95 ^{\{ 15 \}} | 0.92 ^{\{ 5 \}} | 0.83 ^{\{ 1 \}} | 0.93 ^{\{ 7 \}} | 0.88 ^{\{ 2 \}} | 0.94 ^{\{ 11 \}} | 0.95 ^{\{ 15 \}} | 0.936 ^{\{ 8 \}} | |
\sum Ranks | 84 ^{\{ 5 \}} | 123 ^{\{ 11 \}} | 126 ^{\{ 13 \}} | 112.5 ^{\{ 9 \}} | 105.5 ^{\{ 8 \}} | 102.5 ^{\{ 7 \}} | 62 ^{\{ 3 \}} | 102 ^{\{ 6 \}} | 135.5 ^{\{ 15 \}} | 127 ^{\{ 14 \}} | 60.5 ^{\{ 2 \}} | 72.5 ^{\{ 4 \}} | 124 ^{\{ 12 \}} | 56.5 ^{\{ 1 \}} | 141 ^{\{ 16 \}} | 114.5 ^{\{ 10 \}} | 187 ^{\{ 17 \}} |
Here, we analyze a data set from the insurance sector to illustrate the utility of the WDEx distribution. This data set reflects the monthly unemployment insurance metrics from July 2008 to April 2013, and it includes 58 observations as recorded by the department of labor, state of Maryland, USA. The data frame consists of 21 variables and the variable number 9 is fitted using the WDEx model. Data is listed below and it can be found at: https://catalog.data.gov/dataset/unemployment-insurance-data-from-July-2008-to-April-2013.
48.2 | 48.2 | 55.6 | 49.4 | 54.7 | 84.4 | 85.6 | 92.1 | 115.7 | 92.7 |
87.4 | 104.1 | 86.6 | 96.7 | 74.1 | 70.4 | 84 | 80.3 | 86.5 | 86.9 |
104.7 | 74.3 | 66.7 | 79.1 | 65.7 | 78.6 | 59.9 | 59 | 72.6 | 66.6 |
89.9 | 75.2 | 72.1 | 63.2 | 70.3 | 58.9 | 59.7 | 72.6 | 55.3 | 62.6 |
55.5 | 60.4 | 84.2 | 68.9 | 65.2 | 70 | 56.6 | 56.3 | 71.9 | 60.3 |
54 | 65.2 | 56.3 | 69.6 | 68.8 | 66 | 63.5 | 64.9 |
We compare the WDEx distribution with some well-known competing distributions including the beta exponential (BEx) [25], gamma (G), exponentiated Weibull (EW) [26], Harris extend exponential (HEEx) [27], alpha power exponentiated-exponential (APEEx) [28], Frechet–Weibull mixture exponential (FWMEx) [29], Marshall–Olkin alpha-power exponential (MOAPEx) [30], Marshall Olkin exponential (MOEx) [31], Frechet–Weibull (FW) [32], Weibull (W), alpha-power exponential (APEx) [33], transmuted exponential (TEx) [34], EEx, and Ex distributions. The competing models are compared by using some discrimination measures such as Anderson–Darling (AD), Cramér–von Mises (CM), and Kolmogorov–Smirnov (KS) with its p -value (KS p -value).
The MLEs and the statistical metrics are calculated using the R software©. Table 6 provides analytical metrics along with the MLEs and their standard errors (SEs). The findings in Table 6 suggest that the WDEx offers better fits than other competitive models and it can be selected as an appropriate model to evaluate the analyzed insurance data.
Model | AD | CM | KS | KS p -value | Estimates (SEs) |
WDEx | 0.22888 | 0.03088 | 0.05815 | 0.98949 | \hat{\alpha}=132.362\ (56.1205) |
\hat{\lambda}=0.07249\ (0.00691) | |||||
FW | 0.38156 | 0.04884 | 0.06949 | 0.94209 | \hat{\alpha}=4.46474\ (66.2443) |
\hat{\beta}=3.17550\ (115.269) | |||||
\hat{\lambda}=25.3428\ (579.785) | |||||
\hat{k}=1.25626\ (18.6392) | |||||
BEx | 0.27609 | 0.04162 | 0.07932 | 0.85886 | \hat{a}=75.9965\ (84.8089) |
\hat{b}=1.91398\ (1.80320) | |||||
\hat{\lambda}=0.05573\ (0.03166) | |||||
EEx | 0.23791 | 0.03101 | 0.08120 | 0.83898 | \hat{\alpha}=232.474\ (126.888) |
\hat{\lambda}=0.08431\ (0.00884) | |||||
G | 0.45378 | 0.07394 | 0.08162 | 0.83451 | \hat{a}=24.6226\ (4.54042) |
\hat{b}=0.34427\ (0.06413) | |||||
EW | 0.23348 | 0.03278 | 0.08179 | 0.83263 | \hat{\beta}=1.15364\ (0.11836) |
\hat{\lambda}=0.03802\ (0.02282) | |||||
\hat{\theta}=106.742\ (69.8959) | |||||
HEEx | 0.31048 | 0.04283 | 0.08205 | 0.82975 | \hat{\alpha}=3.80452\ (0.75598) |
\hat{\lambda}=0.00662\ (0.00113) | |||||
\hat{\theta}=2115870\ (11864.4) | |||||
APEEx | 0.22899 | 0.03147 | 0.08234 | 0.82653 | \hat{\alpha}=1.22817\ (1.95307) |
\hat{a}=0.08631\ (0.01593) | |||||
\hat{c}=248.897\ (168.117) | |||||
FWMEx | 0.43428 | 0.06586 | 0.09245 | 0.70449 | \hat{a}=0.01001\ (0.01317) |
\hat{\alpha}=18.1993\ (114.082) | |||||
\hat{\lambda}=40.6229\ (6.75603) | |||||
\hat{k}=0.47024\ (2.94764) | |||||
MOAPEx | 0.77269 | 0.12783 | 0.09341 | 0.69217 | \hat{\alpha}=413.107\ (876.070) |
\hat{\lambda}=0.11824\ (0.01269) | |||||
\hat{\theta}=674.591\ (637.159) | |||||
MOEx | 0.77594 | 0.12836 | 0.09397 | 0.68499 | \hat{\alpha}=4174.02\ (3747.42) |
\hat{\lambda}=0.11858\ (0.01261) | |||||
W | 1.19149 | 0.18595 | 0.12496 | 0.32540 | \hat{a}=4.88793\ (0.46156) |
\hat{b}=77.6595\ (2.21593) | |||||
APEx | 0.42964 | 0.06957 | 0.28502 | 0.00016 | \hat{\alpha}=1432.64\ (802.869) |
\hat{\lambda}=0.00352\ (0.00233) | |||||
TEx | 0.43477 | 0.07062 | 0.39111 | #60;0.00001 | \hat{\lambda}= -1.00000 \ (0.51995) |
\hat{\theta}=0.02028\ (0.00262) | |||||
Ex | 0.45213 | 0.07366 | 0.49029 | #60;0.00001 | \hat{\lambda}=0.01398\ (0.00183) |
The fitted PDF, CDF, SF, and probability-probability (P-P) graphs of the WDEx model are displayed in Figure 6, whereas the total time on test (TTT) and WDEx HRF plots for the analyzed data are depicted in Figure 7. The TTT plots confirms that the data has an increasing HRF. We conclude that the WDEx distribution is suitable for modeling the insurance data.
Moreover, the nine estimation approaches mentioned before in Section 5 are adopted to estimate the WDEx parameters. Table 7 records the calculations of the WDEx parameters using such estimation techniques and the empirical values for insurance data.
Method | \hat{\alpha} | \hat{\lambda} | AD | CM | KS | KS p -value |
MLE | 132.36153 | 0.07249 | 0.22888 | 0.03088 | 0.05815 | 0.98949 |
WLSE | 132.36153 | 0.07269 | 0.22855 | 0.03084 | 0.06117 | 0.98173 |
CVME | 132.36173 | 0.07270 | 0.22853 | 0.03083 | 0.06138 | 0.98107 |
OLSE | 132.36145 | 0.07273 | 0.22849 | 0.03083 | 0.06173 | 0.97992 |
PCE | 132.36153 | 0.07295 | 0.22812 | 0.03078 | 0.06516 | 0.96630 |
ADE | 155.92600 | 0.07513 | 0.22928 | 0.03068 | 0.06857 | 0.94795 |
MPS | 130.36158 | 0.07244 | 0.22857 | 0.03086 | 0.06015 | 0.98469 |
RTADE | 157.11897 | 0.07521 | 0.22939 | 0.03068 | 0.06846 | 0.94860 |
BMC | 194.1689 | 0.07856 | 0.23413 | 0.03148 | 0.08025 | 0.84907 |
BTK | 160.4825 | 0.07402 | 0.49763 | 0.07956 | 0.08157 | 0.83500 |
The P-P graphs and histogram of insurance data with the fitted WDEx density for different estimation techniques are shown in Figure 8. Figure 9 shows the histogram of the data with the fitted WDEx PDF for different estimators.
In this paper, we studied a new extension of the exponential model that exhibits upside-down bathtub, decreasing, decreasing-constant, increasing, and increasing-constant hazard rates. The studied model is called the weighted-exponential (WDEx) distribution. Some basic distributional characteristics are derived. Five risk measures are calculated for the WDEx distribution. Eight classical estimation methods along with the Bayesian estimation are utilized to estimate the WDEx parameters. The simulation results show that the proposed estimators provide good performance. Moreover, the practical applicability of the WDEx distribution is addressed using a real-life insurance data set, showing its superiority fit over fourteen competing exponential models.
The authors thanks the respected editors for supporting us in the review process.
The authors declare there is no conflict of interest.
[1] | L. V. Bertalanffy, Quantitative laws in metabolism and growth, Quarterly Rev. Biol., 32 (1957), 217–231. |
[2] |
M. Kühleitner, N. Brunner, W. Nowak, K. Renner-Martin, K. Scheicher, Best-fitting growth curves of the von Bertalanffy-Pütter type, Poultry Sci., 98 (2019), 3587–3592. https://doi.org/10.3382/ps/pez122 doi: 10.3382/ps/pez122
![]() |
[3] |
P. Román-Román, D. Romero, F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data, J. Theoret. Biol., 263 (2010), 59–69. https://doi.org/10.1016/j.jtbi.2009.12.009 doi: 10.1016/j.jtbi.2009.12.009
![]() |
[4] | J. Calatayud, T. Caraballo, J. C. Cortés, M. Jornet, Mathematical methods for the randomized non-autonomous Bertalanffy model, Electron. J. Differ. Equat., 2020, 50. |
[5] |
M. P. Edwards, R. S. Anderssen, Symmetries and solutions of the non-autonomous von Bertalanffy equation, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1062–1067. https://doi.org/10.1016/j.cnsns.2014.08.033 doi: 10.1016/j.cnsns.2014.08.033
![]() |
[6] | J. Brzdęk, D. Popa, I. Rașa, B. Xu, Ulam stability of operators, Mathematical analysis and its applications, Academic Press, London, 2018. |
[7] |
M. Onitsuka, Hyers–Ulam stability of first order linear differential equations of Carathéodory type and its application, Appl. Math. Lett., 90 (2019), 61–68. https://doi.org/10.1016/j.aml.2018.10.013 doi: 10.1016/j.aml.2018.10.013
![]() |
[8] |
M. Onitsuka, T. Shoji, Hyers–Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient, Appl. Math. Lett., 63 (2017), 102–108. http://dx.doi.org/10.1016/j.aml.2016.07.020 doi: 10.1016/j.aml.2016.07.020
![]() |
[9] |
R. Fukutaka, M. Onitsuka, Best constant in Hyers–Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient, J. Math. Anal. Appl., 473 (2019), 1432–1446. https://doi.org/10.1016/j.jmaa.2019.01.030 doi: 10.1016/j.jmaa.2019.01.030
![]() |
[10] |
R. Fukutaka, M. Onitsuka, A necessary and sufficient condition for Hyers–Ulam stability of first-order periodic linear differential equations, Appl. Math. Lett., 100 (2020), 106040. https://doi.org/10.1016/j.aml.2019.106040 doi: 10.1016/j.aml.2019.106040
![]() |
[11] |
D. Popa, I. Rașa, On the Hyers–Ulam stability of the linear differential equation, J. Math. Anal. Appl., 381 (2011), 530–537. https://doi.org/10.1016/j.jmaa.2011.02.051 doi: 10.1016/j.jmaa.2011.02.051
![]() |
[12] |
G. Wang, M. Zhou, L. Sun, Hyers–Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024–1028. https://doi.org/10.1016/j.aml.2007.10.020 doi: 10.1016/j.aml.2007.10.020
![]() |
[13] |
A. Zada, O. Shah, R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. https://doi.org/10.1016/j.amc.2015.09.040 doi: 10.1016/j.amc.2015.09.040
![]() |
[14] |
D. Dragičević, Hyers–Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2021). https://doi.org/10.1007/s00025-021-01442-1 doi: 10.1007/s00025-021-01442-1
![]() |
[15] |
R. Fukutaka, M. Onitsuka, Best constant for Ulam stability of Hill's equations, Bull. Sci. Math., 163 (2020), 102888. https://doi.org/10.1016/j.bulsci.2020.102888 doi: 10.1016/j.bulsci.2020.102888
![]() |
[16] |
M. Onitsuka, Hyers–Ulam stability for second order linear differential equations of Carathéodory type, J. Math. Inequal., 15 (2021), 1499–1518. https://doi.org/10.7153/jmi-2021-15-103 doi: 10.7153/jmi-2021-15-103
![]() |
[17] |
A. Akgül, A. Cordero, J. R. Torregrosa, A fractional Newton method with 2\alphath-order of convergence and its stability, Appl. Math. Lett., 98 (2019), 344–351. https://doi.org/10.1016/j.aml.2019.06.028 doi: 10.1016/j.aml.2019.06.028
![]() |
[18] | N. Bouteraa, M. Inc, A. Akgül, Stability analysis of time-fractional differential equations with initial data, Math. Methods Appl. Sci., https://doi.org/10.1002/mma.7782 |
[19] |
D. Dragičević, Hyers–Ulam stability for nonautonomous semilinear dynamics on bounded intervals, Mediterr. J. Math., 18 (2021), 71. https://doi.org/10.1007/s00009-021-01729-1 doi: 10.1007/s00009-021-01729-1
![]() |
[20] |
J. Huang, S-M. Jung, Y. Li, On Hyers–Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52 (2015), 685–697. https://doi.org/10.4134/BKMS.2015.52.2.685 doi: 10.4134/BKMS.2015.52.2.685
![]() |
[21] | I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babeș-Bolyai Math., 54 (2009), 125–133. |
[22] | I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107. |
[23] |
M. Choubin, H. Javanshiri, A new approach to the Hyers–Ulam–Rassias stability of differential equations, Results Math., 76 (2021), 11. https://doi.org/10.1007/s00025-020-01318-w doi: 10.1007/s00025-020-01318-w
![]() |
[24] | S.-M. Jung, A fixed point approach to the stability of differential equations y' = F(x, y), Bull. Malays. Math. Sci. Soc., 33 (2010), 47–56. |
[25] |
R. Murali, C. Park, A. Ponmana Selvan, Hyers–Ulam stability for an nth order differential equation using fixed point approach, J. Appl. Anal. Comput., 11 (2021), 614–631. https://doi.org/10.11948/20190093 doi: 10.11948/20190093
![]() |
[26] |
D. Popa, I. Rașa, A. Viorel, Approximate solutions of the logistic equation and Ulam stability, Appl. Math. Lett., 85 (2018), 64–69. https://doi.org/10.1016/j.aml.2018.05.018 doi: 10.1016/j.aml.2018.05.018
![]() |
[27] |
M. Onitsuka, Conditional Ulam stability and its application to the logistic model, Appl. Math. Lett., 122 (2021), 107565. https://doi.org/10.1016/j.aml.2021.107565 doi: 10.1016/j.aml.2021.107565
![]() |
1. | Muqrin A. Almuqrin, Ahmed M. Gemeay, M. M. Abd El-Raouf, Mutua Kilai, Ramy Aldallal, Eslam Hussam, Fathalla A. Rihan, A Flexible Extension of Reduced Kies Distribution: Properties, Inference, and Applications in Biology, 2022, 2022, 1099-0526, 1, 10.1155/2022/6078567 | |
2. | Huda M. Alshanbari, Omalsad Hamood Odhah, Ehab M. Almetwally, Eslam Hussam, Mutua Kilai, Abdal-Aziz H. El-Bagoury, Sania Qureshi, Novel Type I Half Logistic Burr-Weibull Distribution: Application to COVID-19 Data, 2022, 2022, 1748-6718, 1, 10.1155/2022/1444859 | |
3. | Muqrin A. Almuqrin, A new flexible distribution with applications to engineering data, 2023, 69, 11100168, 371, 10.1016/j.aej.2023.01.046 | |
4. | M. E. Bakr, Abdulhakim A. Al-Babtain, Zafar Mahmood, R. A. Aldallal, Saima Khan Khosa, M. M. Abd El-Raouf, Eslam Hussam, Ahmed M. Gemeay, Statistical modelling for a new family of generalized distributions with real data applications, 2022, 19, 1551-0018, 8705, 10.3934/mbe.2022404 | |
5. | Yinghui Zhou, Zubair Ahmad, Zahra Almaspoor, Faridoon Khan, Elsayed tag-Eldin, Zahoor Iqbal, Mahmoud El-Morshedy, On the implementation of a new version of the Weibull distribution and machine learning approach to model the COVID-19 data, 2022, 20, 1551-0018, 337, 10.3934/mbe.2023016 | |
6. | Mahdi Rasekhi, Mohammad Mehdi Saber, G. G Hamedani, M. M.Abd El-Raouf, Ramy Aldallal, Ahmed M. Gemeay, Melike Kaplan, Approximate Maximum Likelihood Estimations for the Parameters of the Generalized Gudermannian Distribution and Its Characterizations, 2022, 2022, 2314-4785, 1, 10.1155/2022/4092576 | |
7. | Najwan Alsadat, A new modified model with application to engineering data sets, 2023, 72, 11100168, 1, 10.1016/j.aej.2023.03.050 | |
8. | Marwa M. Mohie El-Din, M.A. Meraou, Najwan Alsadat, Anoop Kumar, M.M. Abd El-Raouf, Mahmoud Mohamed Bahloul, Modeling insurance loss data using novel approach of moment exponential model: Inference, actuarial measures and application, 2024, 106, 11100168, 544, 10.1016/j.aej.2024.08.060 | |
9. | M.M. Abd El-Raouf, Mohammed AbaOud, A novel extension of generalized Rayleigh model with engineering applications, 2023, 73, 11100168, 269, 10.1016/j.aej.2023.04.063 | |
10. | Eslam Hussam, Mohamed A. Sabry, M. M. Abd El-Raouf, Ehab M. Almetwally, Fuzzy vs. Traditional Reliability Model for Inverse Weibull Distribution, 2023, 12, 2075-1680, 582, 10.3390/axioms12060582 | |
11. | Muqrin A. Almuqrin, Bayesian and non-Bayesian inference for the compound Poisson log-normal model with application in finance, 2024, 90, 11100168, 24, 10.1016/j.aej.2024.01.031 | |
12. | Hassan M. Aljohani, Statistical inference for a novel distribution using ranked set sampling with applications, 2024, 10, 24058440, e26893, 10.1016/j.heliyon.2024.e26893 | |
13. | Mohammed AbaOud, Muqrin A. Almuqrin, The weighted inverse Weibull distribution: Heavy-tailed characteristics, Monte Carlo simulation with medical application, 2024, 102, 11100168, 99, 10.1016/j.aej.2024.05.056 | |
14. | Aijaz Ahmad, Najwan Alsadat, Mintodê Nicodème Atchadé, S. Qurat ul Ain, Ahmed M. Gemeay, Mohammed Amine Meraou, Ehab M. Almetwally, Md. Moyazzem Hossain, Eslam Hussam, New hyperbolic sine-generator with an example of Rayleigh distribution: Simulation and data analysis in industry, 2023, 73, 11100168, 415, 10.1016/j.aej.2023.04.048 | |
15. | Aijaz Ahmad, Fatimah M. Alghamdi, Afaq Ahmad, Olayan Albalawi, Abdullah A. Zaagan, Mohammed Zakarya, Ehab M. Almetwally, Getachew Tekle Mekiso, New Arctan-generator family of distributions with an example of Frechet distribution: Simulation and analysis to strength of glass and carbon fiber data, 2024, 100, 11100168, 42, 10.1016/j.aej.2024.05.021 | |
16. | Ibrahim Alkhairy, A new approach of generalized Rayleigh distribution with analysis of asymmetric data sets, 2024, 100, 11100168, 1, 10.1016/j.aej.2024.04.070 | |
17. | Mohd Irfan, A. K. Sharma, 2024, Chapter 22, 978-3-031-54546-7, 284, 10.1007/978-3-031-54547-4_22 | |
18. | Meshayil M. Alsolmi, Fatimah A. Almulhim, Meraou Mohammed Amine, Hassan M. Aljohani, Amani Alrumayh, Fateh Belouadah, Statistical Analysis and Several Estimation Methods of New Alpha Power-Transformed Pareto Model with Applications in Insurance, 2024, 16, 2073-8994, 1367, 10.3390/sym16101367 |
Distribution | parameter | Significance level | VaR | TVaR | TV | TVP | ES |
WDEx | \alpha=3, \, \lambda=0.5 | 0.60 | 3.24353 | 5.32312 | 4.07298 | 7.83746 | 1.89911 |
0.65 | 3.53435 | 5.59982 | 4.08566 | 8.30964 | 2.01350 | ||
0.70 | 3.86421 | 5.91721 | 4.09951 | 8.82180 | 2.13364 | ||
0.75 | 4.24850 | 6.29046 | 4.11464 | 9.38883 | 2.26146 | ||
0.80 | 4.71278 | 6.74496 | 4.13115 | 10.03667 | 2.39965 | ||
0.85 | 5.30475 | 7.32825 | 4.14941 | 10.81284 | 2.55232 | ||
0.90 | 6.13120 | 8.14701 | 4.16895 | 11.82411 | 2.72668 | ||
0.95 | 7.53258 | 9.54158 | 4.19058 | 13.41092 | 2.93856 | ||
EEx | \alpha=3, \, \lambda=0.5 | 0.60 | 0.49017 | 2.04260 | 3.25950 | 3.99830 | 0.11832 |
0.65 | 0.64444 | 2.25379 | 3.35743 | 4.43611 | 0.15262 | ||
0.70 | 0.84081 | 2.50632 | 3.45651 | 4.92587 | 0.19448 | ||
0.75 | 1.09436 | 2.81518 | 3.55661 | 5.48264 | 0.24565 | ||
0.80 | 1.43025 | 3.20549 | 3.65760 | 6.13157 | 0.30867 | ||
0.85 | 1.89560 | 3.72427 | 3.75935 | 6.91972 | 0.38752 | ||
0.90 | 2.59602 | 4.47711 | 3.86176 | 7.95269 | 0.48924 | ||
0.95 | 3.86842 | 5.80090 | 3.96470 | 9.56736 | 0.62946 | ||
Ex | \lambda=0.5 | 0.60 | 1.83505 | 3.83774 | 4.05243 | 6.26920 | 0.77933 |
0.65 | 2.10247 | 4.10516 | 4.05243 | 6.73924 | 0.87059 | ||
0.70 | 2.41119 | 4.41388 | 4.05243 | 7.25058 | 0.96933 | ||
0.75 | 2.77632 | 4.77901 | 4.05243 | 7.81833 | 1.07725 | ||
0.80 | 3.22321 | 5.22590 | 4.05243 | 8.46784 | 1.19689 | ||
0.85 | 3.79935 | 5.80204 | 4.05243 | 9.24660 | 1.33222 | ||
0.90 | 4.61137 | 6.61406 | 4.05243 | 10.26125 | 1.49032 | ||
0.95 | 5.99953 | 8.00222 | 4.05243 | 11.85203 | 1.68693 |
Distribution | Parameter | Significance level | VaR | TVaR | TV | TVP | ES |
WDEx | \alpha=2, \, \lambda=0.75 | 0.60 | 1.68889 | 3.03197 | 1.78964 | 4.11200 | 0.89027 |
0.65 | 1.87191 | 3.21103 | 1.78988 | 4.37915 | 0.95860 | ||
0.70 | 2.08127 | 3.41720 | 1.79047 | 4.67351 | 1.03113 | ||
0.75 | 2.32712 | 3.66052 | 1.79145 | 5.00516 | 1.10910 | ||
0.80 | 2.62636 | 3.95782 | 1.79286 | 5.39098 | 1.19423 | ||
0.85 | 3.01058 | 4.34064 | 1.79474 | 5.86253 | 1.28924 | ||
0.90 | 3.55059 | 4.87971 | 1.79711 | 6.49060 | 1.39887 | ||
0.95 | 4.47215 | 5.80076 | 1.80005 | 7.50092 | 1.53359 | ||
EEx | \alpha=2, \, \lambda=0.75 | 0.60 | 0.59547 | 1.76160 | 1.59250 | 2.71710 | 0.18354 |
0.65 | 0.73107 | 1.91880 | 1.61759 | 2.97024 | 0.22029 | ||
0.70 | 0.89504 | 2.10354 | 1.64237 | 3.25320 | 0.26243 | ||
0.75 | 1.09725 | 2.32577 | 1.66681 | 3.57588 | 0.31110 | ||
0.80 | 1.35434 | 2.60215 | 1.69096 | 3.95491 | 0.36792 | ||
0.85 | 1.69752 | 2.96394 | 1.71477 | 4.42150 | 0.43550 | ||
0.90 | 2.19695 | 3.48134 | 1.73829 | 5.04581 | 0.51848 | ||
0.95 | 3.07660 | 4.37836 | 1.76151 | 6.05179 | 0.62721 | ||
Ex | \lambda=0.75 | 0.60 | 1.13884 | 2.38172 | 1.56099 | 3.31832 | 0.48365 |
0.65 | 1.30481 | 2.54769 | 1.56099 | 3.56233 | 0.54029 | ||
0.70 | 1.49640 | 2.73928 | 1.56100 | 3.83198 | 0.60157 | ||
0.75 | 1.72300 | 2.96588 | 1.56099 | 4.13662 | 0.66855 | ||
0.80 | 2.00034 | 3.24322 | 1.56099 | 4.49202 | 0.74280 | ||
0.85 | 2.35790 | 3.60078 | 1.56099 | 4.92762 | 0.82678 | ||
0.90 | 2.86184 | 4.10472 | 1.56099 | 5.50962 | 0.92490 | ||
0.95 | 3.72334 | 4.96623 | 1.56099 | 6.44917 | 1.04692 |
Algorithm 1 The MCMC for BE |
1. First we will start with initial values for the two parameters \alpha^{(0)}=\hat{\alpha}_{MLE}, \lambda^{(0)}=\hat{\lambda}_{MLE}, |
2. Start the first iteration with counter i=1. |
3. Now we will generate a random value for \alpha^{*} from proposal distribution \textbf{N}(\alpha^{(i-1)}, var(\alpha^{(i-1)})) ., where var(\alpha^{(i-1)}) is the variance of the parameter \alpha |
4. We will use the following equation A(\alpha^{(i-1)}|\alpha^{*})=\min\left[1, \frac{\pi^{*}(\alpha^{*}|\lambda^{(i-1)})} {\pi^{*}(\alpha^{(i-1)}|\lambda^{(i-1)})}\right] , the value of this equation donates the acceptance probability. |
5. Now we will generate a random value that follows the uniform distribution U\thicksim U(0, 1) that ranges from 0 to 1. |
6. If U\leq A(\alpha^{(i-1)}|\alpha^{*}), put \alpha^{(i)}=\alpha^{*} , else put \alpha^{(i)}=\alpha^{(i-1)} . |
7. In order to evaluate the other parameter \lambda we will repeat the steps from ((2)–(6)) for \lambda . |
8. Now increase the counter by one such that i=i+1 . |
9. To avoid any correlation between the initial values and the estimated values we will repeat the steps from ((3)–(8)), N=10, 000 times to obtain (\alpha^{(1)}, \lambda^{(1)}) , ..., (\alpha^{(N)}, \beta^{(N)}) . |
Then, the BEs of u(\alpha, \beta) using the MCMC under the three LFs are, respectively, given by |
\tilde{u}_{SE}=\frac{1}{N-M}\sum\limits_{i=M+1}^{N}u(\alpha^{(i)}, \lambda^{(i)}), |
\tilde{u}_{LINEX}=-\frac{1}{c}\log\left[\frac{1}{N-M}\sum\limits_{i=M+1}^{N}\exp\{-c\; u(\alpha^{(i)}, \lambda^{(i)})\}\right] |
and |
\tilde{u}_{GE}=\left[\frac{1}{N-M}\sum\limits_{i=M+1}^{N}(u(\alpha^{(i)}, \lambda^{(i)}))^{-q}\right]^{-1/q}, |
where M=2000 is the burn-in period. |
n | Est. | Est. Par. | Classical | |||||||
MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | |||
15 | BIAS | \hat{\alpha} | 0.25192877 ^{\{ 5 \}\{ 11 \}} | 0.22405917 ^{\{ 2 \}\{ 8 \}} | 0.30164256 ^{\{ 7 \}\{ 13 \}} | 0.19839734 ^{\{ 1 \}\{ 7 \}} | 0.24557181 ^{\{ 4 \}\{ 10 \}} | 0.32687545 ^{\{ 8 \}\{ 14 \}} | 0.29638657 ^{\{ 6 \}\{ 12 \}} | 0.24157906 ^{\{ 3 \}\{ 9 \}} |
\hat{\lambda} | 0.32093518 ^{\{ 5 \}\{ 11 \}} | 0.30428638 ^{\{ 2 \}\{ 8 \}} | 0.39524432 ^{\{ 8 \}\{ 14 \}} | 0.26371696 ^{\{ 1 \}\{ 7 \}} | 0.31652453 ^{\{ 4 \}\{ 10 \}} | 0.34677645 ^{\{ 7 \}\{ 13 \}} | 0.32593945 ^{\{ 6 \}\{ 12 \}} | 0.31219147 ^{\{ 3 \}\{ 9 \}} | ||
MSE | \hat{\alpha} | 0.16122813 ^{\{ 3 \}\{ 9 \}} | 0.11215242 ^{\{ 2 \}\{ 8 \}} | 0.26608275 ^{\{ 8 \}\{ 14 \}} | 0.06560425 ^{\{ 1 \}\{ 7 \}} | 0.1682729 ^{\{ 4 \}\{ 10 \}} | 0.19013447 ^{\{ 6 \}\{ 12 \}} | 0.22921014 ^{\{ 7 \}\{ 13 \}} | 0.18043259 ^{\{ 5 \}\{ 11 \}} | |
\hat{\lambda} | 0.21915477 ^{\{ 4 \}\{ 10 \}} | 0.20639267 ^{\{ 2 \}\{ 8 \}} | 0.34394628 ^{\{ 8 \}\{ 14 \}} | 0.11724707 ^{\{ 1 \}\{ 7 \}} | 0.2237624 ^{\{ 5 \}\{ 11 \}} | 0.2148123 ^{\{ 3 \}\{ 9 \}} | 0.23978318 ^{\{ 7 \}\{ 13 \}} | 0.23922943 ^{\{ 6 \}\{ 12 \}} | ||
MRE | \hat{\alpha} | 0.33590503 ^{\{ 5 \}\{ 11 \}} | 0.29874556 ^{\{ 2 \}\{ 8 \}} | 0.40219008 ^{\{ 7 \}\{ 13 \}} | 0.26452979 ^{\{ 1 \}\{ 7 \}} | 0.32742908 ^{\{ 4 \}\{ 10 \}} | 0.43583393 ^{\{ 8 \}\{ 14 \}} | 0.3951821 ^{\{ 6 \}\{ 12 \}} | 0.32210541 ^{\{ 3 \}\{ 9 \}} | |
\hat{\lambda} | 0.42791357 ^{\{ 5 \}\{ 11 \}} | 0.40571517 ^{\{ 2 \}\{ 8 \}} | 0.52699243 ^{\{ 8 \}\{ 14 \}} | 0.35162261 ^{\{ 1 \}\{ 7 \}} | 0.42203271 ^{\{ 4 \}\{ 10 \}} | 0.4623686 ^{\{ 7 \}\{ 13 \}} | 0.43458594 ^{\{ 6 \}\{ 12 \}} | 0.4162553 ^{\{ 3 \}\{ 9 \}} | ||
\sum CRanks | 27 ^{\{ 5 \}} | 12 ^{\{ 2 \}} | 46 ^{\{ 8 \}} | 6 ^{\{ 1 \}} | 25 ^{\{ 4 \}} | 39 ^{\{ 7 \}} | 38 ^{\{ 6 \}} | 23 ^{\{ 3 \}} | ||
\sum C\&BRanks | 63 ^{\{ 11 \}} | 48 ^{\{ 8 \}} | 82 ^{\{ 14 \}} | 42 ^{\{ 7 \}} | 61 ^{\{ 10 \}} | 75 ^{\{ 13 \}} | 74 ^{\{ 12 \}} | 59 ^{\{ 9 \}} | ||
30 | BIAS | \hat{\alpha} | 0.14405974 ^{\{ 3 \}\{ 9 \}} | 0.13901101 ^{\{ 2 \}\{ 8 \}} | 0.17725422 ^{\{ 7 \}\{ 13 \}} | 0.13213658 ^{\{ 1 \}\{ 7 \}} | 0.16209531 ^{\{ 5 \}\{ 11 \}} | 0.25820992 ^{\{ 8 \}\{ 14 \}} | 0.16964029 ^{\{ 6 \}\{ 12 \}} | 0.14580412 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.18969311 ^{\{ 2 \}\{ 8 \}} | 0.19141061 ^{\{ 3 \}\{ 9 \}} | 0.23350009 ^{\{ 7 \}\{ 13 \}} | 0.18115544 ^{\{ 1 \}\{ 7 \}} | 0.22786428 ^{\{ 6 \}\{ 12 \}} | 0.24136118 ^{\{ 8 \}\{ 14 \}} | 0.20026589 ^{\{ 4 \}\{ 10 \}} | 0.20766574 ^{\{ 5 \}\{ 11 \}} | ||
MSE | \hat{\alpha} | 0.03746839 ^{\{ 3 \}\{ 9 \}} | 0.03635968 ^{\{ 2 \}\{ 8 \}} | 0.06052504 ^{\{ 7 \}\{ 13 \}} | 0.02548745 ^{\{ 1 \}\{ 7 \}} | 0.05095711 ^{\{ 5 \}\{ 11 \}} | 0.10729773 ^{\{ 8 \}\{ 14 \}} | 0.05828137 ^{\{ 6 \}\{ 12 \}} | 0.04260275 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.06746508 ^{\{ 3 \}\{ 9 \}} | 0.06525692 ^{\{ 2 \}\{ 8 \}} | 0.09980727 ^{\{ 8 \}\{ 14 \}} | 0.04907736 ^{\{ 1 \}\{ 7 \}} | 0.09345408 ^{\{ 7 \}\{ 13 \}} | 0.09161708 ^{\{ 6 \}\{ 12 \}} | 0.07713619 ^{\{ 4 \}\{ 10 \}} | 0.0814058 ^{\{ 5 \}\{ 11 \}} | ||
MRE | \hat{\alpha} | 0.19207965 ^{\{ 3 \}\{ 9 \}} | 0.18534802 ^{\{ 2 \}\{ 8 \}} | 0.23633896 ^{\{ 7 \}\{ 13 \}} | 0.1761821 ^{\{ 1 \}\{ 7 \}} | 0.21612709 ^{\{ 5 \}\{ 11 \}} | 0.34427989 ^{\{ 8 \}\{ 14 \}} | 0.22618705 ^{\{ 6 \}\{ 12 \}} | 0.19440549 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.25292415 ^{\{ 2 \}\{ 8 \}} | 0.25521415 ^{\{ 3 \}\{ 9 \}} | 0.31133346 ^{\{ 7 \}\{ 13 \}} | 0.24154058 ^{\{ 1 \}\{ 7 \}} | 0.30381904 ^{\{ 6 \}\{ 12 \}} | 0.32181491 ^{\{ 8 \}\{ 14 \}} | 0.26702119 ^{\{ 4 \}\{ 10 \}} | 0.27688765 ^{\{ 5 \}\{ 11 \}} | ||
\sum CRanks | 16 ^{\{ 3 \}} | 14 ^{\{ 2 \}} | 43 ^{\{ 7 \}} | 6 ^{\{ 1 \}} | 34 ^{\{ 6 \}} | 46 ^{\{ 8 \}} | 30 ^{\{ 5 \}} | 27 ^{\{ 4 \}} | ||
\sum C\&BRanks | 52 ^{\{ 9 \}} | 50 ^{\{ 8 \}} | 79 ^{\{ 13 \}} | 42 ^{\{ 7 \}} | 70 ^{\{ 12 \}} | 82 ^{\{ 14 \}} | 66 ^{\{ 11 \}} | 63 ^{\{ 10 \}} | ||
70 | BIAS | \hat{\alpha} | 0.08792199 ^{\{ 3 \}\{ 9 \}} | 0.08650543 ^{\{ 2 \}\{ 8 \}} | 0.10310607 ^{\{ 6 \}\{ 12 \}} | 0.08281633 ^{\{ 1 \}\{ 7 \}} | 0.10074083 ^{\{ 5 \}\{ 11 \}} | 0.1753952 ^{\{ 8 \}\{ 14 \}} | 0.10421227 ^{\{ 7 \}\{ 13 \}} | 0.08803723 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.11408442 ^{\{ 1 \}\{ 7 \}} | 0.12445549 ^{\{ 3 \}\{ 9 \}} | 0.14143312 ^{\{ 7 \}\{ 13 \}} | 0.1164039 ^{\{ 2 \}\{ 8 \}} | 0.13839689 ^{\{ 6 \}\{ 12 \}} | 0.16478766 ^{\{ 8 \}\{ 14 \}} | 0.12896275 ^{\{ 5 \}\{ 11 \}} | 0.12549479 ^{\{ 4 \}\{ 10 \}} | ||
MSE | \hat{\alpha} | 0.01336042 ^{\{ 3 \}\{ 9 \}} | 0.01302739 ^{\{ 2 \}\{ 8 \}} | 0.01826087 ^{\{ 6 \}\{ 12 \}} | 0.01051127 ^{\{ 1 \}\{ 7 \}} | 0.01740773 ^{\{ 5 \}\{ 11 \}} | 0.04721909 ^{\{ 8 \}\{ 14 \}} | 0.01897672 ^{\{ 7 \}\{ 13 \}} | 0.01339529 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.02286488 ^{\{ 2 \}\{ 8 \}} | 0.02612201 ^{\{ 3 \}\{ 9 \}} | 0.03569504 ^{\{ 7 \}\{ 13 \}} | 0.02027791 ^{\{ 1 \}\{ 7 \}} | 0.03209949 ^{\{ 6 \}\{ 12 \}} | 0.04224291 ^{\{ 8 \}\{ 14 \}} | 0.02824455 ^{\{ 5 \}\{ 11 \}} | 0.02671826 ^{\{ 4 \}\{ 10 \}} | ||
MRE | \hat{\alpha} | 0.11722932 ^{\{ 3 \}\{ 9 \}} | 0.11534057 ^{\{ 2 \}\{ 8 \}} | 0.13747476 ^{\{ 6 \}\{ 12 \}} | 0.11042178 ^{\{ 1 \}\{ 7 \}} | 0.13432111 ^{\{ 5 \}\{ 11 \}} | 0.23386027 ^{\{ 8 \}\{ 14 \}} | 0.13894969 ^{\{ 7 \}\{ 13 \}} | 0.11738297 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.15211257 ^{\{ 1 \}\{ 7 \}} | 0.16594066 ^{\{ 3 \}\{ 9 \}} | 0.18857749 ^{\{ 7 \}\{ 13 \}} | 0.1552052 ^{\{ 2 \}\{ 8 \}} | 0.18452919 ^{\{ 6 \}\{ 12 \}} | 0.21971689 ^{\{ 8 \}\{ 14 \}} | 0.17195033 ^{\{ 5 \}\{ 11 \}} | 0.16732638 ^{\{ 4 \}\{ 10 \}} | ||
\sum CRanks | 13 ^{\{ 2 \}} | 15 ^{\{ 3 \}} | 39 ^{\{ 7 \}} | 8 ^{\{ 1 \}} | 33 ^{\{ 5 \}} | 48 ^{\{ 8 \}} | 36 ^{\{ 6 \}} | 24 ^{\{ 4 \}} | ||
\sum C\&BRanks | 49 ^{\{ 8 \}} | 51 ^{\{ 9 \}} | 75 ^{\{ 13 \}} | 44 ^{\{ 7 \}} | 69 ^{\{ 11 \}} | 84 ^{\{ 14 \}} | 72 ^{\{ 12 \}} | 60 ^{\{ 10 \}} | ||
100 | BIAS | \hat{\alpha} | 0.0711708 ^{\{ 2 \}\{ 8 \}} | 0.07361175 ^{\{ 3 \}\{ 9 \}} | 0.08687172 ^{\{ 6 \}\{ 12 \}} | 0.06877471 ^{\{ 1 \}\{ 7 \}} | 0.07956296 ^{\{ 5 \}\{ 11 \}} | 0.15707028 ^{\{ 8 \}\{ 14 \}} | 0.0891824 ^{\{ 7 \}\{ 13 \}} | 0.07485017 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.10091505 ^{\{ 4 \}\{ 10 \}} | 0.09963177 ^{\{ 2 \}\{ 8 \}} | 0.11507711 ^{\{ 6 \}\{ 12 \}} | 0.0956997 ^{\{ 1 \}\{ 7 \}} | 0.11614478 ^{\{ 7 \}\{ 13 \}} | 0.14353138 ^{\{ 8 \}\{ 14 \}} | 0.10220272 ^{\{ 5 \}\{ 11 \}} | 0.10079129 ^{\{ 3 \}\{ 9 \}} | ||
MSE | \hat{\alpha} | 0.00836564 ^{\{ 2 \}\{ 8 \}} | 0.00880658 ^{\{ 3 \}\{ 9 \}} | 0.01255586 ^{\{ 7 \}\{ 13 \}} | 0.0070432 ^{\{ 1 \}\{ 7 \}} | 0.01016903 ^{\{ 5 \}\{ 11 \}} | 0.03872841 ^{\{ 8 \}\{ 14 \}} | 0.01247087 ^{\{ 6 \}\{ 12 \}} | 0.0095693 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.01716988 ^{\{ 4 \}\{ 10 \}} | 0.01679548 ^{\{ 2 \}\{ 8 \}} | 0.02177566 ^{\{ 6 \}\{ 12 \}} | 0.01380793 ^{\{ 1 \}\{ 7 \}} | 0.02250852 ^{\{ 7 \}\{ 13 \}} | 0.03103759 ^{\{ 8 \}\{ 14 \}} | 0.01734026 ^{\{ 5 \}\{ 11 \}} | 0.01694889 ^{\{ 3 \}\{ 9 \}} | ||
MRE | \hat{\alpha} | 0.09489439 ^{\{ 2 \}\{ 8 \}} | 0.098149 ^{\{ 3 \}\{ 9 \}} | 0.11582897 ^{\{ 6 \}\{ 12 \}} | 0.09169961 ^{\{ 1 \}\{ 7 \}} | 0.10608395 ^{\{ 5 \}\{ 11 \}} | 0.20942704 ^{\{ 8 \}\{ 14 \}} | 0.11890987 ^{\{ 7 \}\{ 13 \}} | 0.09980023 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.13455341 ^{\{ 4 \}\{ 10 \}} | 0.13284236 ^{\{ 2 \}\{ 8 \}} | 0.15343615 ^{\{ 6 \}\{ 12 \}} | 0.1275996 ^{\{ 1 \}\{ 7 \}} | 0.15485971 ^{\{ 7 \}\{ 13 \}} | 0.19137517 ^{\{ 8 \}\{ 14 \}} | 0.1362703 ^{\{ 5 \}\{ 11 \}} | 0.13438838 ^{\{ 3 \}\{ 9 \}} | ||
\sum CRanks | 18 ^{\{ 3 \}} | 15 ^{\{ 2 \}} | 37 ^{\{ 7 \}} | 6 ^{\{ 1 \}} | 36 ^{\{ 6 \}} | 48 ^{\{ 8 \}} | 35 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||
\sum C\&BRanks | 54 ^{\{ 9 \}} | 51 ^{\{ 8 \}} | 73 ^{\{ 13 \}} | 42 ^{\{ 7 \}} | 72 ^{\{ 12 \}} | 84 ^{\{ 14 \}} | 71 ^{\{ 11 \}} | 57 ^{\{ 10 \}} | ||
200 | BIAS | \hat{\alpha} | 0.04897082 ^{\{ 1 \}\{ 7 \}} | 0.05135288 ^{\{ 3 \}\{ 9 \}} | 0.05580712 ^{\{ 5 \}\{ 11 \}} | 0.05042855 ^{\{ 2 \}\{ 8 \}} | 0.05620865 ^{\{ 6 \}\{ 12 \}} | 0.11786812 ^{\{ 8 \}\{ 14 \}} | 0.05902749 ^{\{ 7 \}\{ 13 \}} | 0.0514394 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.0680904 ^{\{ 1 \}\{ 7 \}} | 0.07177274 ^{\{ 3 \}\{ 9 \}} | 0.08001323 ^{\{ 7 \}\{ 13 \}} | 0.06943586 ^{\{ 2 \}\{ 8 \}} | 0.07996607 ^{\{ 6 \}\{ 12 \}} | 0.10198027 ^{\{ 8 \}\{ 14 \}} | 0.07187114 ^{\{ 4 \}\{ 10 \}} | 0.07208482 ^{\{ 5 \}\{ 11 \}} | ||
MSE | \hat{\alpha} | 0.00376579 ^{\{ 1 \}\{ 7 \}} | 0.00414776 ^{\{ 3 \}\{ 9 \}} | 0.00504929 ^{\{ 5 \}\{ 11 \}} | 0.00389309 ^{\{ 2 \}\{ 8 \}} | 0.00516812 ^{\{ 6 \}\{ 12 \}} | 0.02119878 ^{\{ 8 \}\{ 14 \}} | 0.0057458 ^{\{ 7 \}\{ 13 \}} | 0.00430278 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.00722093 ^{\{ 1 \}\{ 7 \}} | 0.00838347 ^{\{ 3 \}\{ 9 \}} | 0.01096736 ^{\{ 7 \}\{ 13 \}} | 0.00726195 ^{\{ 2 \}\{ 8 \}} | 0.01032872 ^{\{ 6 \}\{ 12 \}} | 0.01585112 ^{\{ 8 \}\{ 14 \}} | 0.0084817 ^{\{ 4 \}\{ 10 \}} | 0.00865163 ^{\{ 5 \}\{ 11 \}} | ||
MRE | \hat{\alpha} | 0.06529443 ^{\{ 1 \}\{ 7 \}} | 0.06847051 ^{\{ 3 \}\{ 9 \}} | 0.07440949 ^{\{ 5 \}\{ 11 \}} | 0.06723806 ^{\{ 2 \}\{ 8 \}} | 0.07494487 ^{\{ 6 \}\{ 12 \}} | 0.15715749 ^{\{ 8 \}\{ 14 \}} | 0.07870332 ^{\{ 7 \}\{ 13 \}} | 0.06858586 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.09078719 ^{\{ 1 \}\{ 7 \}} | 0.09569698 ^{\{ 3 \}\{ 9 \}} | 0.10668431 ^{\{ 7 \}\{ 13 \}} | 0.09258115 ^{\{ 2 \}\{ 8 \}} | 0.10662142 ^{\{ 6 \}\{ 12 \}} | 0.1359737 ^{\{ 8 \}\{ 14 \}} | 0.09582819 ^{\{ 4 \}\{ 10 \}} | 0.09611309 ^{\{ 5 \}\{ 11 \}} | ||
\sum CRanks | 6 ^{\{ 1 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6.5 \}} | 12 ^{\{ 2 \}} | 36 ^{\{ 6.5 \}} | 48 ^{\{ 8 \}} | 33 ^{\{ 5 \}} | 27 ^{\{ 4 \}} | ||
\sum C&BRanks | 42 ^{\{ 7 \}} | 54 ^{\{ 9 \}} | 72 ^{\{ 12.5 \}} | 48 ^{\{ 8 \}} | 72 ^{\{ 12.5 \}} | 84 ^{\{ 14 \}} | 69 ^{\{ 11 \}} | 63 ^{\{ 10 \}} | ||
300 | BIAS | \hat{\alpha} | 0.03667764 ^{\{ 1 \}\{ 6 \}} | 0.03990136 ^{\{ 3 \}\{ 9 \}} | 0.04288476 ^{\{ 5 \}\{ 11 \}} | 0.03760933 ^{\{ 2 \}\{ 7 \}} | 0.04356189 ^{\{ 6 \}\{ 12 \}} | 0.0934606 ^{\{ 8 \}\{ 14 \}} | 0.04654803 ^{\{ 7 \}\{ 13 \}} | 0.040086 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.04795812 ^{\{ 1 \}\{ 6 \}} | 0.05338798 ^{\{ 3 \}\{ 9 \}} | 0.05993014 ^{\{ 6 \}\{ 12 \}} | 0.05257793 ^{\{ 2 \}\{ 7 \}} | 0.06112134 ^{\{ 7 \}\{ 13 \}} | 0.07718156 ^{\{ 8 \}\{ 14 \}} | 0.05407786 ^{\{ 5 \}\{ 11 \}} | 0.05393484 ^{\{ 4 \}\{ 10 \}} | ||
MSE | \hat{\alpha} | 0.00215764 ^{\{ 1 \}\{ 6 \}} | 0.00250001 ^{\{ 3 \}\{ 8 \}} | 0.00296309 ^{\{ 6 \}\{ 12 \}} | 0.00221696 ^{\{ 2 \}\{ 7 \}} | 0.00293099 ^{\{ 5 \}\{ 11 \}} | 0.01343653 ^{\{ 8 \}\{ 14 \}} | 0.00346372 ^{\{ 7 \}\{ 13 \}} | 0.0025318 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.00376997 ^{\{ 1 \}\{ 6 \}} | 0.00453163 ^{\{ 3 \}\{ 8 \}} | 0.00573555 ^{\{ 6 \}\{ 12 \}} | 0.00421602 ^{\{ 2 \}\{ 7 \}} | 0.00580597 ^{\{ 7 \}\{ 13 \}} | 0.0091151 ^{\{ 8 \}\{ 14 \}} | 0.00478321 ^{\{ 5 \}\{ 10 \}} | 0.00471786 ^{\{ 4 \}\{ 9 \}} | ||
MRE | \hat{\alpha} | 0.04890353 ^{\{ 1 \}\{ 6 \}} | 0.05320181 ^{\{ 3 \}\{ 9 \}} | 0.05717968 ^{\{ 5 \}\{ 11 \}} | 0.05014577 ^{\{ 2 \}\{ 7 \}} | 0.05808252 ^{\{ 6 \}\{ 12 \}} | 0.12461413 ^{\{ 8 \}\{ 14 \}} | 0.06206403 ^{\{ 7 \}\{ 13 \}} | 0.053448 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.06394416 ^{\{ 1 \}\{ 6 \}} | 0.07118398 ^{\{ 3 \}\{ 9 \}} | 0.07990685 ^{\{ 6 \}\{ 12 \}} | 0.07010391 ^{\{ 2 \}\{ 7 \}} | 0.08149512 ^{\{ 7 \}\{ 13 \}} | 0.10290874 ^{\{ 8 \}\{ 14 \}} | 0.07210381 ^{\{ 5 \}\{ 11 \}} | 0.07191312 ^{\{ 4 \}\{ 10 \}} | ||
\sum CRanks | 6 ^{\{ 1 \}} | 18 ^{\{ 3 \}} | 34 ^{\{ 5 \}} | 12 ^{\{ 2 \}} | 38 ^{\{ 7 \}} | 48 ^{\{ 8 \}} | 36 ^{\{ 6 \}} | 24 ^{\{ 4 \}} | ||
\sum C\& BRanks | 36 ^{\{ 6 \}} | 52 ^{\{ 8.5 \}} | 70 ^{\{ 11 \}} | 42 ^{\{ 7 \}} | 74 ^{\{ 13 \}} | 84 ^{\{ 14 \}} | 71 ^{\{ 12 \}} | 59 ^{\{ 10 \}} | ||
15 | BIAS | \hat{\alpha} | 0.07080639 ^{\{ 2 \}\{ 2 \}} | 0.07080648 ^{\{ 3 \}\{ 3 \}} | 0.07079734 ^{\{ 1 \}\{ 1 \}} | 0.10887156 ^{\{ 6 \}\{ 6 \}} | 0.078971 ^{\{ 5 \}\{ 5 \}} | 0.07215014 ^{\{ 4 \}\{ 4 \}} | ||
\hat{\lambda} | 0.07334416 ^{\{ 2 \}\{ 2 \}} | 0.07334414 ^{\{ 1 \}\{ 1 \}} | 0.07335074 ^{\{ 3 \}\{ 3 \}} | 0.13371233 ^{\{ 6 \}\{ 6 \}} | 0.12036804 ^{\{ 5 \}\{ 5 \}} | 0.11400132 ^{\{ 4 \}\{ 4 \}} | ||||
MSE | \hat{\alpha} | 0.00700589 ^{\{ 4 \}\{ 4 \}} | 0.0070059 ^{\{ 5 \}\{ 5 \}} | 0.00700451 ^{\{ 3 \}\{ 3 \}} | 0.01710565 ^{\{ 6 \}\{ 6 \}} | 0.00623642 ^{\{ 2 \}\{ 2 \}} | 0.00520564 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00734358 ^{\{ 2 \}\{ 2 \}} | 0.00734357 ^{\{ 1 \}\{ 1 \}} | 0.00734515 ^{\{ 3 \}\{ 3 \}} | 0.02521906 ^{\{ 6 \}\{ 6 \}} | 0.01448847 ^{\{ 5 \}\{ 5 \}} | 0.0129963 ^{\{ 4 \}\{ 4 \}} | ||||
MRE | \hat{\alpha} | 0.09440852 ^{\{ 2 \}\{ 2 \}} | 0.09440864 ^{\{ 3 \}\{ 3 \}} | 0.09439646 ^{\{ 1 \}\{ 1 \}} | 0.14516208 ^{\{ 6 \}\{ 6 \}} | 0.10529467 ^{\{ 5 \}\{ 5 \}} | 0.09620019 ^{\{ 4 \}\{ 4 \}} | |||
\hat{\lambda} | 0.09779221 ^{\{ 2 \}\{ 2 \}} | 0.09779219 ^{\{ 1 \}\{ 1 \}} | 0.09780098 ^{\{ 3 \}\{ 3 \}} | 0.17828311 ^{\{ 6 \}\{ 6 \}} | 0.16049072 ^{\{ 5 \}\{ 5 \}} | 0.15200176 ^{\{ 4 \}\{ 4 \}} | ||||
\sum BRanks | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 36 ^{\{ 6 \}} | 27 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||||
\sum C \&BRanks | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 36 ^{\{ 6 \}} | 27 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||||
30 | BIAS | \hat{\alpha} | 0.06707577 ^{\{ 4 \}\{ 4 \}} | 0.06707579 ^{\{ 5 \}\{ 5 \}} | 0.06707479 ^{\{ 3 \}\{ 3 \}} | 0.08818954 ^{\{ 6 \}\{ 6 \}} | 0.05398142 ^{\{ 2 \}\{ 2 \}} | 0.0484456 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.07063728 ^{\{ 2 \}\{ 2 \}} | 0.07063729 ^{\{ 3 \}\{ 3 \}} | 0.07063836 ^{\{ 4 \}\{ 4 \}} | 0.09669995 ^{\{ 6 \}\{ 6 \}} | 0.07140666 ^{\{ 5 \}\{ 5 \}} | 0.06590862 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00638429 ^{\{ 3 \}\{ 3 \}} | 0.01167204 ^{\{ 6 \}\{ 6 \}} | 0.00291399 ^{\{ 2 \}\{ 2 \}} | 0.00234698 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00685694 ^{\{ 3 \}\{ 3 \}} | 0.01388726 ^{\{ 6 \}\{ 6 \}} | 0.00509891 ^{\{ 2 \}\{ 2 \}} | 0.00434395 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.08943436 ^{\{ 4 \}\{ 4 \}} | 0.08943439 ^{\{ 5 \}\{ 5 \}} | 0.08943306 ^{\{ 3 \}\{ 3 \}} | 0.11758605 ^{\{ 6 \}\{ 6 \}} | 0.07197522 ^{\{ 2 \}\{ 2 \}} | 0.06459413 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.09418304 ^{\{ 2 \}\{ 2 \}} | 0.09418306 ^{\{ 3 \}\{ 3 \}} | 0.09418448 ^{\{ 4 \}\{ 4 \}} | 0.12893327 ^{\{ 6 \}\{ 6 \}} | 0.09520888 ^{\{ 5 \}\{ 5 \}} | 0.08787816 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 21 ^{\{ 4 \}} | 25 ^{\{ 5 \}} | 20 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 18 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 21 ^{\{ 4 \}} | 25 ^{\{ 5 \}} | 20 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 18 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
70 | BIAS | \hat{\alpha} | 0.0628967 ^{\{ 4 \}\{ 4 \}} | 0.06289672 ^{\{ 5 \}\{ 5 \}} | 0.06289578 ^{\{ 3 \}\{ 3 \}} | 0.06988905 ^{\{ 6 \}\{ 6 \}} | 0.03512338 ^{\{ 2 \}\{ 2 \}} | 0.03097589 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.06382592 ^{\{ 3 \}\{ 3 \}} | 0.06382593 ^{\{ 4 \}\{ 4 \}} | 0.06382623 ^{\{ 5 \}\{ 5 \}} | 0.08500664 ^{\{ 6 \}\{ 6 \}} | 0.04706336 ^{\{ 2 \}\{ 2 \}} | 0.04163393 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00529439 ^{\{ 3 \}\{ 3 \}} | 0.00766215 ^{\{ 6 \}\{ 6 \}} | 0.00123365 ^{\{ 2 \}\{ 2 \}} | 0.00095951 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00577528 ^{\{ 5 \}\{ 5 \}} | 0.01076173 ^{\{ 6 \}\{ 6 \}} | 0.00221496 ^{\{ 2 \}\{ 2 \}} | 0.00173338 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.08386227 ^{\{ 4 \}\{ 4 \}} | 0.08386229 ^{\{ 5 \}\{ 5 \}} | 0.08386104 ^{\{ 3 \}\{ 3 \}} | 0.0931854 ^{\{ 6 \}\{ 6 \}} | 0.04683117 ^{\{ 2 \}\{ 2 \}} | 0.04130118 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08510164 ^{\{ 5 \}\{ 5 \}} | 0.11334219 ^{\{ 6 \}\{ 6 \}} | 0.06275115 ^{\{ 2 \}\{ 2 \}} | 0.0555119 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 22.5 ^{\{ 3 \}} | 25.5 ^{\{ 5 \}} | 24 ^{\{ 4 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 22.5 ^{\{ 3 \}} | 25.5 ^{\{ 5 \}} | 24 ^{\{ 4 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
100 | BIAS | \hat{\alpha} | 0.05470376 ^{\{ 4 \}\{ 4 \}} | 0.05470375 ^{\{ 3 \}\{ 3 \}} | 0.05470411 ^{\{ 5 \}\{ 5 \}} | 0.06296533 ^{\{ 6 \}\{ 6 \}} | 0.02807831 ^{\{ 2 \}\{ 2 \}} | 0.02458989 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} | 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} | 0.0631295 ^{\{ 5 \}\{ 5 \}} | 0.07802856 ^{\{ 6 \}\{ 6 \}} | 0.04616373 ^{\{ 2 \}\{ 2 \}} | 0.04172589 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00439478 ^{\{ 5 \}\{ 5 \}} | 0.00608088 ^{\{ 6 \}\{ 6 \}} | 0.00078839 ^{\{ 2 \}\{ 2 \}} | 0.00060466 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00567383 ^{\{ 3 \}\{ 3 \}} | 0.00900842 ^{\{ 6 \}\{ 6 \}} | 0.00213109 ^{\{ 2 \}\{ 2 \}} | 0.00174105 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} | 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} | 0.07293881 ^{\{ 5 \}\{ 5 \}} | 0.08395377 ^{\{ 6 \}\{ 6 \}} | 0.03743775 ^{\{ 2 \}\{ 2 \}} | 0.03278652 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08417267 ^{\{ 5 \}\{ 5 \}} | 0.10403808 ^{\{ 6 \}\{ 6 \}} | 0.06155164 ^{\{ 2 \}\{ 2 \}} | 0.05563452 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 22.5 ^{\{ 4 \}} | 21.5 ^{\{ 3 \}} | 28 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 22.5 ^{\{ 4 \}} | 21.5 ^{\{ 3 \}} | 28 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
200 | BIAS | \hat{\alpha} | 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04001848 ^{\{ 3 \}\{ 3 \}} | 0.04705698 ^{\{ 6 \}\{ 6 \}} | 0.01733801 ^{\{ 2 \}\{ 2 \}} | 0.01516892 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.05856409 ^{\{ 4 \}\{ 4 \}} | 0.0585641 ^{\{ 5 \}\{ 5 \}} | 0.05856347 ^{\{ 3 \}\{ 3 \}} | 0.06345567 ^{\{ 6 \}\{ 6 \}} | 0.02796569 ^{\{ 2 \}\{ 2 \}} | 0.02441503 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00253076 ^{\{ 3 \}\{ 3 \}} | 0.00362108 ^{\{ 6 \}\{ 6 \}} | 0.00030061 ^{\{ 2 \}\{ 2 \}} | 0.0002301 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} | 0.0047633 ^{\{ 3 \}\{ 3 \}} | 0.00626275 ^{\{ 6 \}\{ 6 \}} | 0.00078208 ^{\{ 2 \}\{ 2 \}} | 0.00059609 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} | 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} | 0.05335798 ^{\{ 3 \}\{ 3 \}} | 0.06274264 ^{\{ 6 \}\{ 6 \}} | 0.02311735 ^{\{ 2 \}\{ 2 \}} | 0.02022522 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.07808545 ^{\{ 4 \}\{ 4 \}} | 0.07808546 ^{\{ 5 \}\{ 5 \}} | 0.07808462 ^{\{ 3 \}\{ 3 \}} | 0.08460756 ^{\{ 6 \}\{ 6 \}} | 0.03728759 ^{\{ 2 \}\{ 2 \}} | 0.03255338 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 26 ^{\{ 4 \}} | 28 ^{\{ 5 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C\&BRanks | 26 ^{\{ 4 \}} | 28 ^{\{ 5 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
300 | BIAS | \hat{\alpha} | 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} | 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} | 0.03245972 ^{\{ 3 \}\{ 3 \}} | 0.03938224 ^{\{ 6 \}\{ 8 \}} | 0.01407489 ^{\{ 2 \}\{ 2 \}} | 0.01252037 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} | 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} | 0.0473218 ^{\{ 5 \}\{ 5 \}} | 0.05290774 ^{\{ 6 \}\{ 8 \}} | 0.02365826 ^{\{ 2 \}\{ 2 \}} | 0.02092282 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00252766 ^{\{ 6 \}\{ 9 \}} | 0.0001981 ^{\{ 2 \}\{ 2 \}} | 0.00015676 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00341069 ^{\{ 5 \}\{ 5 \}} | 0.00482747 ^{\{ 6 \}\{ 11 \}} | 0.00055971 ^{\{ 2 \}\{ 2 \}} | 0.00043776 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04327963 ^{\{ 3 \}\{ 3 \}} | 0.05250965 ^{\{ 6 \}\{ 8 \}} | 0.01876651 ^{\{ 2 \}\{ 2 \}} | 0.01669383 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.06309505 ^{\{ 4 \}\{ 4 \}} | 0.06309504 ^{\{ 3 \}\{ 3 \}} | 0.06309574 ^{\{ 5 \}\{ 5 \}} | 0.07054365 ^{\{ 6 \}\{ 8 \}} | 0.03154434 ^{\{ 2 \}\{ 2 \}} | 0.02789709 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 24 ^{\{ 4 \}} | 23 ^{\{ 3 \}} | 25 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C\&BRanks | 24 ^{\{ 4 \}} | 23 ^{\{ 3 \}} | 25 ^{\{ 5 \}} | 52 ^{\{ 8.5 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} |
n | Est. Par. | MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | Bayesian | ||||||||
L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. CR | ||
15 | \hat{\alpha} | 1.76864 ^{\{ 14 \}} | 1.01231 ^{\{ 5 \}} | 1.23169 ^{\{ 7 \}} | 0.9917 ^{\{ 4 \}} | 2.44613 ^{\{ 16 \}} | 1.42478 ^{\{ 11 \}} | 0.75104 ^{\{ 1 \}} | 0.85626 ^{\{ 3 \}} | 1.37582 ^{\{ 10 \}} | 1.2964 ^{\{ 9 \}} | 1.73329 ^{\{ 13 \}} | 4.52643 ^{\{ 17 \}} | 2.21266 ^{\{ 15 \}} | 1.4343 ^{\{ 12 \}} | 1.26902 ^{\{ 8 \}} | 1.09219 ^{\{ 6 \}} | 0.79185 ^{\{ 2 \}} |
\hat{\lambda} | 1.8179 ^{\{ 13 \}} | 1.21276 ^{\{ 3 \}} | 1.61918 ^{\{ 9 \}} | 1.35754 ^{\{ 6 \}} | 2.45476 ^{\{ 16 \}} | 1.76051 ^{\{ 12 \}} | 1.08184 ^{\{ 2 \}} | 1.21353 ^{\{ 4 \}} | 1.82447 ^{\{ 14 \}} | 1.7064 ^{\{ 10 \}} | 1.51256 ^{\{ 7 \}} | 2.71437 ^{\{ 17 \}} | 1.85662 ^{\{ 15 \}} | 1.32039 ^{\{ 5 \}} | 1.73185 ^{\{ 11 \}} | 1.56473 ^{\{ 8 \}} | 1.02613 ^{\{ 1 \}} | |
30 | \hat{\alpha} | 0.76771 ^{\{ 10 \}} | 0.61941 ^{\{ 3 \}} | 0.69962 ^{\{ 6 \}} | 0.63344 ^{\{ 5 \}} | 0.93483 ^{\{ 14 \}} | 0.73927 ^{\{ 8 \}} | 0.54674 ^{\{ 1 \}} | 0.62416 ^{\{ 4 \}} | 0.8346 ^{\{ 13 \}} | 0.82046 ^{\{ 12 \}} | 1.17514 ^{\{ 16 \}} | 2.60316 ^{\{ 17 \}} | 0.96934 ^{\{ 15 \}} | 0.81431 ^{\{ 11 \}} | 0.75708 ^{\{ 9 \}} | 0.73181 ^{\{ 7 \}} | 0.56731 ^{\{ 2 \}} |
\hat{\lambda} | 1.01832 ^{\{ 9 \}} | 0.85197 ^{\{ 4 \}} | 0.95639 ^{\{ 7 \}} | 0.87947 ^{\{ 6 \}} | 1.2636 ^{\{ 16 \}} | 1.08914 ^{\{ 13 \}} | 0.74985 ^{\{ 2 \}} | 0.85211 ^{\{ 5 \}} | 1.15014 ^{\{ 15 \}} | 1.14232 ^{\{ 14 \}} | 1.0211 ^{\{ 10 \}} | 1.58731 ^{\{ 17 \}} | 1.04276 ^{\{ 12 \}} | 0.81825 ^{\{ 3 \}} | 1.03151 ^{\{ 11 \}} | 1.00314 ^{\{ 8 \}} | 0.73465 ^{\{ 1 \}} | |
70 | \hat{\alpha} | 0.44252 ^{\{ 9 \}} | 0.40638 ^{\{ 3 \}} | 0.43855 ^{\{ 8 \}} | 0.4246 ^{\{ 5 \}} | 0.52287 ^{\{ 15 \}} | 0.47767 ^{\{ 11 \}} | 0.363 ^{\{ 1 \}} | 0.4131 ^{\{ 4 \}} | 0.47865 ^{\{ 12 \}} | 0.47271 ^{\{ 10 \}} | 0.82108 ^{\{ 16 \}} | 1.36637 ^{\{ 17 \}} | 0.51984 ^{\{ 14 \}} | 0.47879 ^{\{ 13 \}} | 0.43536 ^{\{ 6 \}} | 0.43582 ^{\{ 7 \}} | 0.37696 ^{\{ 2 \}} |
\hat{\lambda} | 0.59365 ^{\{ 6 \}} | 0.54695 ^{\{ 4 \}} | 0.61226 ^{\{ 10 \}} | 0.59699 ^{\{ 7 \}} | 0.75869 ^{\{ 16 \}} | 0.69736 ^{\{ 14 \}} | 0.487 ^{\{ 1 \}} | 0.54884 ^{\{ 5 \}} | 0.65062 ^{\{ 12 \}} | 0.6587 ^{\{ 13 \}} | 0.70313 ^{\{ 15 \}} | 0.80559 ^{\{ 17 \}} | 0.60571 ^{\{ 8 \}} | 0.50151 ^{\{ 3 \}} | 0.60658 ^{\{ 9 \}} | 0.61611 ^{\{ 11 \}} | 0.49915 ^{\{ 2 \}} | |
100 | \hat{\alpha} | 0.33944 ^{\{ 5 \}} | 0.31992 ^{\{ 3 \}} | 0.34198 ^{\{ 6 \}} | 0.33375 ^{\{ 4 \}} | 0.42215 ^{\{ 14 \}} | 0.38962 ^{\{ 10 \}} | 0.30229 ^{\{ 1 \}} | 0.34622 ^{\{ 7 \}} | 0.39767 ^{\{ 11 \}} | 0.39816 ^{\{ 12 \}} | 0.68273 ^{\{ 16 \}} | 1.05362 ^{\{ 17 \}} | 0.4355 ^{\{ 15 \}} | 0.41384 ^{\{ 13 \}} | 0.3649 ^{\{ 9 \}} | 0.35835 ^{\{ 8 \}} | 0.31696 ^{\{ 2 \}} |
\hat{\lambda} | 0.47339 ^{\{ 6 \}} | 0.43589 ^{\{ 4 \}} | 0.47704 ^{\{ 7 \}} | 0.47049 ^{\{ 5 \}} | 0.56073 ^{\{ 15 \}} | 0.52885 ^{\{ 12 \}} | 0.40649 ^{\{ 1 \}} | 0.4866 ^{\{ 8 \}} | 0.54784 ^{\{ 13 \}} | 0.55029 ^{\{ 14 \}} | 0.59234 ^{\{ 16 \}} | 0.62163 ^{\{ 17 \}} | 0.52259 ^{\{ 11 \}} | 0.43411 ^{\{ 3 \}} | 0.51049 ^{\{ 10 \}} | 0.5069 ^{\{ 9 \}} | 0.42203 ^{\{ 2 \}} | |
200 | \hat{\alpha} | 0.2389 ^{\{ 4 \}} | 0.23142 ^{\{ 3 \}} | 0.2516 ^{\{ 9 \}} | 0.2482 ^{\{ 8 \}} | 0.27946 ^{\{ 13 \}} | 0.27005 ^{\{ 10 \}} | 0.22294 ^{\{ 1 \}} | 0.24721 ^{\{ 7 \}} | 0.27286 ^{\{ 12 \}} | 0.27282 ^{\{ 11 \}} | 0.52575 ^{\{ 16 \}} | 0.70941 ^{\{ 17 \}} | 0.29224 ^{\{ 15 \}} | 0.2862 ^{\{ 14 \}} | 0.24663 ^{\{ 6 \}} | 0.2461 ^{\{ 5 \}} | 0.2278 ^{\{ 2 \}} |
\hat{\lambda} | 0.32208 ^{\{ 5 \}} | 0.31305 ^{\{ 4 \}} | 0.35705 ^{\{ 11 \}} | 0.3489 ^{\{ 9 \}} | 0.3895 ^{\{ 15 \}} | 0.37969 ^{\{ 12 \}} | 0.30621 ^{\{ 2 \}} | 0.34766 ^{\{ 8 \}} | 0.38153 ^{\{ 14 \}} | 0.3812 ^{\{ 13 \}} | 0.43553 ^{\{ 17 \}} | 0.39775 ^{\{ 16 \}} | 0.35301 ^{\{ 10 \}} | 0.30882 ^{\{ 3 \}} | 0.33943 ^{\{ 6 \}} | 0.34042 ^{\{ 7 \}} | 0.3042 ^{\{ 1 \}} | |
350 | \hat{\alpha} | 0.17441 ^{\{ 4 \}} | 0.17146 ^{\{ 2 \}} | 0.1858 ^{\{ 6 \}} | 0.18336 ^{\{ 5 \}} | 0.20941 ^{\{ 13 \}} | 0.20323 ^{\{ 9 \}} | 0.17002 ^{\{ 1 \}} | 0.21806 ^{\{ 15 \}} | 0.20592 ^{\{ 10 \}} | 0.20694 ^{\{ 11 \}} | 0.40697 ^{\{ 16 \}} | 0.49775 ^{\{ 17 \}} | 0.21169 ^{\{ 14 \}} | 0.20828 ^{\{ 12 \}} | 0.19022 ^{\{ 7 \}} | 0.19045 ^{\{ 8 \}} | 0.17249 ^{\{ 3 \}} |
\hat{\lambda} | 0.24024 ^{\{ 5 \}} | 0.23525 ^{\{ 4 \}} | 0.25748 ^{\{ 8 \}} | 0.2569 ^{\{ 7 \}} | 0.29707 ^{\{ 15 \}} | 0.28529 ^{\{ 12 \}} | 0.23099 ^{\{ 2 \}} | 0.30366 ^{\{ 16 \}} | 0.28776 ^{\{ 13 \}} | 0.29495 ^{\{ 14 \}} | 0.34137 ^{\{ 17 \}} | 0.27981 ^{\{ 11 \}} | 0.25913 ^{\{ 10 \}} | 0.22713 ^{\{ 1 \}} | 0.25778 ^{\{ 9 \}} | 0.25635 ^{\{ 6 \}} | 0.23339 ^{\{ 3 \}} | |
\sum Ranks | 90 ^{\{ 6.5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 9 \}} | 71 ^{\{ 4 \}} | 178 ^{\{ 16 \}} | 134 ^{\{ 11 \}} | 16 ^{\{ 1 \}} | 86 ^{\{ 5 \}} | 149 ^{\{ 13 \}} | 143 ^{\{ 12 \}} | 175 ^{\{ 15 \}} | 197 ^{\{ 17 \}} | 154 ^{\{ 14 \}} | 93 ^{\{ 8 \}} | 101 ^{\{ 10 \}} | 90 ^{\{ 6.5 \}} | 23 ^{\{ 2 \}} |
n | Est. Par. | MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | Bayesian | ||||||||
CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. CR | ||
15 | \hat{\alpha} | 0.8 ^{\{ 1 \}} | 0.85 ^{\{ 3 \}} | 0.93 ^{\{ 10.5 \}} | 0.95 ^{\{ 16 \}} | 0.84 ^{\{ 2 \}} | 0.9 ^{\{ 6 \}} | 0.91 ^{\{ 8 \}} | 0.94 ^{\{ 13.5 \}} | 0.94 ^{\{ 13.5 \}} | 0.93 ^{\{ 10.5 \}} | 0.92 ^{\{ 9 \}} | 0.86 ^{\{ 4 \}} | 0.9 ^{\{ 6 \}} | 0.9 ^{\{ 6 \}} | 0.94 ^{\{ 13.5 \}} | 0.94 ^{\{ 13.5 \}} | 1 ^{\{ 17 \}} |
\hat{\lambda} | 0.82 ^{\{ 1.5 \}} | 0.89 ^{\{ 7 \}} | 0.94 ^{\{ 14.5 \}} | 0.91 ^{\{ 9 \}} | 0.85 ^{\{ 4 \}} | 0.88 ^{\{ 6 \}} | 0.93 ^{\{ 11.5 \}} | 0.97 ^{\{ 16 \}} | 0.94 ^{\{ 14.5 \}} | 0.9 ^{\{ 8 \}} | 0.93 ^{\{ 11.5 \}} | 0.84 ^{\{ 3 \}} | 0.93 ^{\{ 11.5 \}} | 0.82 ^{\{ 1.5 \}} | 0.93 ^{\{ 11.5 \}} | 0.87 ^{\{ 5 \}} | 1 ^{\{ 17 \}} | |
30 | \hat{\alpha} | 0.88 ^{\{ 4 \}} | 0.92 ^{\{ 11 \}} | 0.94 ^{\{ 13.5 \}} | 0.88 ^{\{ 4 \}} | 0.92 ^{\{ 11 \}} | 0.91 ^{\{ 8.5 \}} | 0.85 ^{\{ 1 \}} | 0.88 ^{\{ 4 \}} | 0.89 ^{\{ 6 \}} | 0.91 ^{\{ 8.5 \}} | 0.86 ^{\{ 2 \}} | 0.9 ^{\{ 7 \}} | 0.97 ^{\{ 16 \}} | 0.94 ^{\{ 13.5 \}} | 0.95 ^{\{ 15 \}} | 0.92 ^{\{ 11 \}} | 1 ^{\{ 17 \}} |
\hat{\lambda} | 0.89 ^{\{ 4 \}} | 0.92 ^{\{ 8.5 \}} | 0.98 ^{\{ 16 \}} | 0.91 ^{\{ 6 \}} | 0.93 ^{\{ 11 \}} | 0.92 ^{\{ 8.5 \}} | 0.91 ^{\{ 6 \}} | 0.94 ^{\{ 13 \}} | 0.95 ^{\{ 14.5 \}} | 0.93 ^{\{ 11 \}} | 0.87 ^{\{ 3 \}} | 0.86 ^{\{ 2 \}} | 0.91 ^{\{ 6 \}} | 0.81 ^{\{ 1 \}} | 0.95 ^{\{ 14.5 \}} | 0.93 ^{\{ 11 \}} | 1 ^{\{ 17 \}} | |
70 | \hat{\alpha} | 0.94 ^{\{ 9 \}} | 0.97 ^{\{ 16 \}} | 0.91 ^{\{ 4.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.89 ^{\{ 2.5 \}} | 0.89 ^{\{ 2.5 \}} | 0.84 ^{\{ 1 \}} | 0.94 ^{\{ 9 \}} | 0.93 ^{\{ 6.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.93 ^{\{ 6.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.91 ^{\{ 4.5 \}} | 0.94 ^{\{ 9 \}} | 0.96 ^{\{ 15 \}} | 0.978 ^{\{ 17 \}} |
\hat{\lambda} | 0.87 ^{\{ 2.5 \}} | 0.93 ^{\{ 12 \}} | 0.93 ^{\{ 12 \}} | 0.92 ^{\{ 10 \}} | 0.91 ^{\{ 8.5 \}} | 0.87 ^{\{ 2.5 \}} | 0.88 ^{\{ 4.5 \}} | 0.88 ^{\{ 4.5 \}} | 0.91 ^{\{ 8.5 \}} | 0.9 ^{\{ 6.5 \}} | 0.94 ^{\{ 14 \}} | 0.9 ^{\{ 6.5 \}} | 0.93 ^{\{ 12 \}} | 0.83 ^{\{ 1 \}} | 0.95 ^{\{ 15.5 \}} | 0.95 ^{\{ 15.5 \}} | 0.993 ^{\{ 17 \}} | |
100 | \hat{\alpha} | 0.94 ^{\{ 10.5 \}} | 0.96 ^{\{ 13 \}} | 0.94 ^{\{ 10.5 \}} | 0.92 ^{\{ 5.5 \}} | 0.9 ^{\{ 3 \}} | 0.96 ^{\{ 13 \}} | 0.82 ^{\{ 1 \}} | 0.93 ^{\{ 8 \}} | 0.96 ^{\{ 13 \}} | 0.97 ^{\{ 16.5 \}} | 0.89 ^{\{ 2 \}} | 0.92 ^{\{ 5.5 \}} | 0.97 ^{\{ 16.5 \}} | 0.93 ^{\{ 8 \}} | 0.93 ^{\{ 8 \}} | 0.91 ^{\{ 4 \}} | 0.967 ^{\{ 15 \}} |
\hat{\lambda} | 0.93 ^{\{ 12 \}} | 0.91 ^{\{ 8.5 \}} | 0.9 ^{\{ 6 \}} | 0.96 ^{\{ 16 \}} | 0.93 ^{\{ 12 \}} | 0.93 ^{\{ 12 \}} | 0.86 ^{\{ 2 \}} | 0.9 ^{\{ 6 \}} | 0.95 ^{\{ 15 \}} | 0.91 ^{\{ 8.5 \}} | 0.88 ^{\{ 3.5 \}} | 0.85 ^{\{ 1 \}} | 0.93 ^{\{ 12 \}} | 0.88 ^{\{ 3.5 \}} | 0.93 ^{\{ 12 \}} | 0.9 ^{\{ 6 \}} | 0.984 ^{\{ 17 \}} | |
200 | \hat{\alpha} | 0.93 ^{\{ 9.5 \}} | 0.95 ^{\{ 15 \}} | 0.95 ^{\{ 15 \}} | 0.91 ^{\{ 6.5 \}} | 0.94 ^{\{ 12.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.9 ^{\{ 4.5 \}} | 0.9 ^{\{ 4.5 \}} | 0.91 ^{\{ 6.5 \}} | 0.85 ^{\{ 1 \}} | 0.95 ^{\{ 15 \}} | 0.94 ^{\{ 12.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.88 ^{\{ 3 \}} | 0.86 ^{\{ 2 \}} | 0.972 ^{\{ 17 \}} |
\hat{\lambda} | 0.9 ^{\{ 6 \}} | 0.88 ^{\{ 5 \}} | 0.95 ^{\{ 14 \}} | 0.93 ^{\{ 11.5 \}} | 0.96 ^{\{ 15 \}} | 0.97 ^{\{ 16 \}} | 0.87 ^{\{ 3.5 \}} | 0.91 ^{\{ 7.5 \}} | 0.93 ^{\{ 11.5 \}} | 0.91 ^{\{ 7.5 \}} | 0.86 ^{\{ 2 \}} | 0.81 ^{\{ 1 \}} | 0.92 ^{\{ 9.5 \}} | 0.87 ^{\{ 3.5 \}} | 0.98 ^{\{ 17 \}} | 0.92 ^{\{ 9.5 \}} | 0.949 ^{\{ 13 \}} | |
350 | \hat{\alpha} | 0.92 ^{\{ 9 \}} | 0.91 ^{\{ 7 \}} | 0.89 ^{\{ 4.5 \}} | 0.89 ^{\{ 4.5 \}} | 0.94 ^{\{ 13 \}} | 0.91 ^{\{ 7 \}} | 0.93 ^{\{ 11 \}} | 0.93 ^{\{ 11 \}} | 0.98 ^{\{ 17 \}} | 0.97 ^{\{ 16 \}} | 0.87 ^{\{ 1 \}} | 0.96 ^{\{ 14 \}} | 0.88 ^{\{ 2.5 \}} | 0.88 ^{\{ 2.5 \}} | 0.93 ^{\{ 11 \}} | 0.91 ^{\{ 7 \}} | 0.962 ^{\{ 15 \}} |
\hat{\lambda} | 0.95 ^{\{ 15 \}} | 0.97 ^{\{ 17 \}} | 0.92 ^{\{ 5 \}} | 0.94 ^{\{ 11 \}} | 0.94 ^{\{ 11 \}} | 0.94 ^{\{ 11 \}} | 0.91 ^{\{ 3 \}} | 0.92 ^{\{ 5 \}} | 0.94 ^{\{ 11 \}} | 0.95 ^{\{ 15 \}} | 0.92 ^{\{ 5 \}} | 0.83 ^{\{ 1 \}} | 0.93 ^{\{ 7 \}} | 0.88 ^{\{ 2 \}} | 0.94 ^{\{ 11 \}} | 0.95 ^{\{ 15 \}} | 0.936 ^{\{ 8 \}} | |
\sum Ranks | 84 ^{\{ 5 \}} | 123 ^{\{ 11 \}} | 126 ^{\{ 13 \}} | 112.5 ^{\{ 9 \}} | 105.5 ^{\{ 8 \}} | 102.5 ^{\{ 7 \}} | 62 ^{\{ 3 \}} | 102 ^{\{ 6 \}} | 135.5 ^{\{ 15 \}} | 127 ^{\{ 14 \}} | 60.5 ^{\{ 2 \}} | 72.5 ^{\{ 4 \}} | 124 ^{\{ 12 \}} | 56.5 ^{\{ 1 \}} | 141 ^{\{ 16 \}} | 114.5 ^{\{ 10 \}} | 187 ^{\{ 17 \}} |
48.2 | 48.2 | 55.6 | 49.4 | 54.7 | 84.4 | 85.6 | 92.1 | 115.7 | 92.7 |
87.4 | 104.1 | 86.6 | 96.7 | 74.1 | 70.4 | 84 | 80.3 | 86.5 | 86.9 |
104.7 | 74.3 | 66.7 | 79.1 | 65.7 | 78.6 | 59.9 | 59 | 72.6 | 66.6 |
89.9 | 75.2 | 72.1 | 63.2 | 70.3 | 58.9 | 59.7 | 72.6 | 55.3 | 62.6 |
55.5 | 60.4 | 84.2 | 68.9 | 65.2 | 70 | 56.6 | 56.3 | 71.9 | 60.3 |
54 | 65.2 | 56.3 | 69.6 | 68.8 | 66 | 63.5 | 64.9 |
Model | AD | CM | KS | KS p -value | Estimates (SEs) |
WDEx | 0.22888 | 0.03088 | 0.05815 | 0.98949 | \hat{\alpha}=132.362\ (56.1205) |
\hat{\lambda}=0.07249\ (0.00691) | |||||
FW | 0.38156 | 0.04884 | 0.06949 | 0.94209 | \hat{\alpha}=4.46474\ (66.2443) |
\hat{\beta}=3.17550\ (115.269) | |||||
\hat{\lambda}=25.3428\ (579.785) | |||||
\hat{k}=1.25626\ (18.6392) | |||||
BEx | 0.27609 | 0.04162 | 0.07932 | 0.85886 | \hat{a}=75.9965\ (84.8089) |
\hat{b}=1.91398\ (1.80320) | |||||
\hat{\lambda}=0.05573\ (0.03166) | |||||
EEx | 0.23791 | 0.03101 | 0.08120 | 0.83898 | \hat{\alpha}=232.474\ (126.888) |
\hat{\lambda}=0.08431\ (0.00884) | |||||
G | 0.45378 | 0.07394 | 0.08162 | 0.83451 | \hat{a}=24.6226\ (4.54042) |
\hat{b}=0.34427\ (0.06413) | |||||
EW | 0.23348 | 0.03278 | 0.08179 | 0.83263 | \hat{\beta}=1.15364\ (0.11836) |
\hat{\lambda}=0.03802\ (0.02282) | |||||
\hat{\theta}=106.742\ (69.8959) | |||||
HEEx | 0.31048 | 0.04283 | 0.08205 | 0.82975 | \hat{\alpha}=3.80452\ (0.75598) |
\hat{\lambda}=0.00662\ (0.00113) | |||||
\hat{\theta}=2115870\ (11864.4) | |||||
APEEx | 0.22899 | 0.03147 | 0.08234 | 0.82653 | \hat{\alpha}=1.22817\ (1.95307) |
\hat{a}=0.08631\ (0.01593) | |||||
\hat{c}=248.897\ (168.117) | |||||
FWMEx | 0.43428 | 0.06586 | 0.09245 | 0.70449 | \hat{a}=0.01001\ (0.01317) |
\hat{\alpha}=18.1993\ (114.082) | |||||
\hat{\lambda}=40.6229\ (6.75603) | |||||
\hat{k}=0.47024\ (2.94764) | |||||
MOAPEx | 0.77269 | 0.12783 | 0.09341 | 0.69217 | \hat{\alpha}=413.107\ (876.070) |
\hat{\lambda}=0.11824\ (0.01269) | |||||
\hat{\theta}=674.591\ (637.159) | |||||
MOEx | 0.77594 | 0.12836 | 0.09397 | 0.68499 | \hat{\alpha}=4174.02\ (3747.42) |
\hat{\lambda}=0.11858\ (0.01261) | |||||
W | 1.19149 | 0.18595 | 0.12496 | 0.32540 | \hat{a}=4.88793\ (0.46156) |
\hat{b}=77.6595\ (2.21593) | |||||
APEx | 0.42964 | 0.06957 | 0.28502 | 0.00016 | \hat{\alpha}=1432.64\ (802.869) |
\hat{\lambda}=0.00352\ (0.00233) | |||||
TEx | 0.43477 | 0.07062 | 0.39111 | #60;0.00001 | \hat{\lambda}= -1.00000 \ (0.51995) |
\hat{\theta}=0.02028\ (0.00262) | |||||
Ex | 0.45213 | 0.07366 | 0.49029 | #60;0.00001 | \hat{\lambda}=0.01398\ (0.00183) |
Method | \hat{\alpha} | \hat{\lambda} | AD | CM | KS | KS p -value |
MLE | 132.36153 | 0.07249 | 0.22888 | 0.03088 | 0.05815 | 0.98949 |
WLSE | 132.36153 | 0.07269 | 0.22855 | 0.03084 | 0.06117 | 0.98173 |
CVME | 132.36173 | 0.07270 | 0.22853 | 0.03083 | 0.06138 | 0.98107 |
OLSE | 132.36145 | 0.07273 | 0.22849 | 0.03083 | 0.06173 | 0.97992 |
PCE | 132.36153 | 0.07295 | 0.22812 | 0.03078 | 0.06516 | 0.96630 |
ADE | 155.92600 | 0.07513 | 0.22928 | 0.03068 | 0.06857 | 0.94795 |
MPS | 130.36158 | 0.07244 | 0.22857 | 0.03086 | 0.06015 | 0.98469 |
RTADE | 157.11897 | 0.07521 | 0.22939 | 0.03068 | 0.06846 | 0.94860 |
BMC | 194.1689 | 0.07856 | 0.23413 | 0.03148 | 0.08025 | 0.84907 |
BTK | 160.4825 | 0.07402 | 0.49763 | 0.07956 | 0.08157 | 0.83500 |
Distribution | parameter | Significance level | VaR | TVaR | TV | TVP | ES |
WDEx | \alpha=3, \, \lambda=0.5 | 0.60 | 3.24353 | 5.32312 | 4.07298 | 7.83746 | 1.89911 |
0.65 | 3.53435 | 5.59982 | 4.08566 | 8.30964 | 2.01350 | ||
0.70 | 3.86421 | 5.91721 | 4.09951 | 8.82180 | 2.13364 | ||
0.75 | 4.24850 | 6.29046 | 4.11464 | 9.38883 | 2.26146 | ||
0.80 | 4.71278 | 6.74496 | 4.13115 | 10.03667 | 2.39965 | ||
0.85 | 5.30475 | 7.32825 | 4.14941 | 10.81284 | 2.55232 | ||
0.90 | 6.13120 | 8.14701 | 4.16895 | 11.82411 | 2.72668 | ||
0.95 | 7.53258 | 9.54158 | 4.19058 | 13.41092 | 2.93856 | ||
EEx | \alpha=3, \, \lambda=0.5 | 0.60 | 0.49017 | 2.04260 | 3.25950 | 3.99830 | 0.11832 |
0.65 | 0.64444 | 2.25379 | 3.35743 | 4.43611 | 0.15262 | ||
0.70 | 0.84081 | 2.50632 | 3.45651 | 4.92587 | 0.19448 | ||
0.75 | 1.09436 | 2.81518 | 3.55661 | 5.48264 | 0.24565 | ||
0.80 | 1.43025 | 3.20549 | 3.65760 | 6.13157 | 0.30867 | ||
0.85 | 1.89560 | 3.72427 | 3.75935 | 6.91972 | 0.38752 | ||
0.90 | 2.59602 | 4.47711 | 3.86176 | 7.95269 | 0.48924 | ||
0.95 | 3.86842 | 5.80090 | 3.96470 | 9.56736 | 0.62946 | ||
Ex | \lambda=0.5 | 0.60 | 1.83505 | 3.83774 | 4.05243 | 6.26920 | 0.77933 |
0.65 | 2.10247 | 4.10516 | 4.05243 | 6.73924 | 0.87059 | ||
0.70 | 2.41119 | 4.41388 | 4.05243 | 7.25058 | 0.96933 | ||
0.75 | 2.77632 | 4.77901 | 4.05243 | 7.81833 | 1.07725 | ||
0.80 | 3.22321 | 5.22590 | 4.05243 | 8.46784 | 1.19689 | ||
0.85 | 3.79935 | 5.80204 | 4.05243 | 9.24660 | 1.33222 | ||
0.90 | 4.61137 | 6.61406 | 4.05243 | 10.26125 | 1.49032 | ||
0.95 | 5.99953 | 8.00222 | 4.05243 | 11.85203 | 1.68693 |
Distribution | Parameter | Significance level | VaR | TVaR | TV | TVP | ES |
WDEx | \alpha=2, \, \lambda=0.75 | 0.60 | 1.68889 | 3.03197 | 1.78964 | 4.11200 | 0.89027 |
0.65 | 1.87191 | 3.21103 | 1.78988 | 4.37915 | 0.95860 | ||
0.70 | 2.08127 | 3.41720 | 1.79047 | 4.67351 | 1.03113 | ||
0.75 | 2.32712 | 3.66052 | 1.79145 | 5.00516 | 1.10910 | ||
0.80 | 2.62636 | 3.95782 | 1.79286 | 5.39098 | 1.19423 | ||
0.85 | 3.01058 | 4.34064 | 1.79474 | 5.86253 | 1.28924 | ||
0.90 | 3.55059 | 4.87971 | 1.79711 | 6.49060 | 1.39887 | ||
0.95 | 4.47215 | 5.80076 | 1.80005 | 7.50092 | 1.53359 | ||
EEx | \alpha=2, \, \lambda=0.75 | 0.60 | 0.59547 | 1.76160 | 1.59250 | 2.71710 | 0.18354 |
0.65 | 0.73107 | 1.91880 | 1.61759 | 2.97024 | 0.22029 | ||
0.70 | 0.89504 | 2.10354 | 1.64237 | 3.25320 | 0.26243 | ||
0.75 | 1.09725 | 2.32577 | 1.66681 | 3.57588 | 0.31110 | ||
0.80 | 1.35434 | 2.60215 | 1.69096 | 3.95491 | 0.36792 | ||
0.85 | 1.69752 | 2.96394 | 1.71477 | 4.42150 | 0.43550 | ||
0.90 | 2.19695 | 3.48134 | 1.73829 | 5.04581 | 0.51848 | ||
0.95 | 3.07660 | 4.37836 | 1.76151 | 6.05179 | 0.62721 | ||
Ex | \lambda=0.75 | 0.60 | 1.13884 | 2.38172 | 1.56099 | 3.31832 | 0.48365 |
0.65 | 1.30481 | 2.54769 | 1.56099 | 3.56233 | 0.54029 | ||
0.70 | 1.49640 | 2.73928 | 1.56100 | 3.83198 | 0.60157 | ||
0.75 | 1.72300 | 2.96588 | 1.56099 | 4.13662 | 0.66855 | ||
0.80 | 2.00034 | 3.24322 | 1.56099 | 4.49202 | 0.74280 | ||
0.85 | 2.35790 | 3.60078 | 1.56099 | 4.92762 | 0.82678 | ||
0.90 | 2.86184 | 4.10472 | 1.56099 | 5.50962 | 0.92490 | ||
0.95 | 3.72334 | 4.96623 | 1.56099 | 6.44917 | 1.04692 |
Algorithm 1 The MCMC for BE |
1. First we will start with initial values for the two parameters \alpha^{(0)}=\hat{\alpha}_{MLE}, \lambda^{(0)}=\hat{\lambda}_{MLE}, |
2. Start the first iteration with counter i=1. |
3. Now we will generate a random value for \alpha^{*} from proposal distribution \textbf{N}(\alpha^{(i-1)}, var(\alpha^{(i-1)})) ., where var(\alpha^{(i-1)}) is the variance of the parameter \alpha |
4. We will use the following equation A(\alpha^{(i-1)}|\alpha^{*})=\min\left[1, \frac{\pi^{*}(\alpha^{*}|\lambda^{(i-1)})} {\pi^{*}(\alpha^{(i-1)}|\lambda^{(i-1)})}\right] , the value of this equation donates the acceptance probability. |
5. Now we will generate a random value that follows the uniform distribution U\thicksim U(0, 1) that ranges from 0 to 1. |
6. If U\leq A(\alpha^{(i-1)}|\alpha^{*}), put \alpha^{(i)}=\alpha^{*} , else put \alpha^{(i)}=\alpha^{(i-1)} . |
7. In order to evaluate the other parameter \lambda we will repeat the steps from ((2)–(6)) for \lambda . |
8. Now increase the counter by one such that i=i+1 . |
9. To avoid any correlation between the initial values and the estimated values we will repeat the steps from ((3)–(8)), N=10, 000 times to obtain (\alpha^{(1)}, \lambda^{(1)}) , ..., (\alpha^{(N)}, \beta^{(N)}) . |
Then, the BEs of u(\alpha, \beta) using the MCMC under the three LFs are, respectively, given by |
\tilde{u}_{SE}=\frac{1}{N-M}\sum\limits_{i=M+1}^{N}u(\alpha^{(i)}, \lambda^{(i)}), |
\tilde{u}_{LINEX}=-\frac{1}{c}\log\left[\frac{1}{N-M}\sum\limits_{i=M+1}^{N}\exp\{-c\; u(\alpha^{(i)}, \lambda^{(i)})\}\right] |
and |
\tilde{u}_{GE}=\left[\frac{1}{N-M}\sum\limits_{i=M+1}^{N}(u(\alpha^{(i)}, \lambda^{(i)}))^{-q}\right]^{-1/q}, |
where M=2000 is the burn-in period. |
n | Est. | Est. Par. | Classical | |||||||
MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | |||
15 | BIAS | \hat{\alpha} | 0.25192877 ^{\{ 5 \}\{ 11 \}} | 0.22405917 ^{\{ 2 \}\{ 8 \}} | 0.30164256 ^{\{ 7 \}\{ 13 \}} | 0.19839734 ^{\{ 1 \}\{ 7 \}} | 0.24557181 ^{\{ 4 \}\{ 10 \}} | 0.32687545 ^{\{ 8 \}\{ 14 \}} | 0.29638657 ^{\{ 6 \}\{ 12 \}} | 0.24157906 ^{\{ 3 \}\{ 9 \}} |
\hat{\lambda} | 0.32093518 ^{\{ 5 \}\{ 11 \}} | 0.30428638 ^{\{ 2 \}\{ 8 \}} | 0.39524432 ^{\{ 8 \}\{ 14 \}} | 0.26371696 ^{\{ 1 \}\{ 7 \}} | 0.31652453 ^{\{ 4 \}\{ 10 \}} | 0.34677645 ^{\{ 7 \}\{ 13 \}} | 0.32593945 ^{\{ 6 \}\{ 12 \}} | 0.31219147 ^{\{ 3 \}\{ 9 \}} | ||
MSE | \hat{\alpha} | 0.16122813 ^{\{ 3 \}\{ 9 \}} | 0.11215242 ^{\{ 2 \}\{ 8 \}} | 0.26608275 ^{\{ 8 \}\{ 14 \}} | 0.06560425 ^{\{ 1 \}\{ 7 \}} | 0.1682729 ^{\{ 4 \}\{ 10 \}} | 0.19013447 ^{\{ 6 \}\{ 12 \}} | 0.22921014 ^{\{ 7 \}\{ 13 \}} | 0.18043259 ^{\{ 5 \}\{ 11 \}} | |
\hat{\lambda} | 0.21915477 ^{\{ 4 \}\{ 10 \}} | 0.20639267 ^{\{ 2 \}\{ 8 \}} | 0.34394628 ^{\{ 8 \}\{ 14 \}} | 0.11724707 ^{\{ 1 \}\{ 7 \}} | 0.2237624 ^{\{ 5 \}\{ 11 \}} | 0.2148123 ^{\{ 3 \}\{ 9 \}} | 0.23978318 ^{\{ 7 \}\{ 13 \}} | 0.23922943 ^{\{ 6 \}\{ 12 \}} | ||
MRE | \hat{\alpha} | 0.33590503 ^{\{ 5 \}\{ 11 \}} | 0.29874556 ^{\{ 2 \}\{ 8 \}} | 0.40219008 ^{\{ 7 \}\{ 13 \}} | 0.26452979 ^{\{ 1 \}\{ 7 \}} | 0.32742908 ^{\{ 4 \}\{ 10 \}} | 0.43583393 ^{\{ 8 \}\{ 14 \}} | 0.3951821 ^{\{ 6 \}\{ 12 \}} | 0.32210541 ^{\{ 3 \}\{ 9 \}} | |
\hat{\lambda} | 0.42791357 ^{\{ 5 \}\{ 11 \}} | 0.40571517 ^{\{ 2 \}\{ 8 \}} | 0.52699243 ^{\{ 8 \}\{ 14 \}} | 0.35162261 ^{\{ 1 \}\{ 7 \}} | 0.42203271 ^{\{ 4 \}\{ 10 \}} | 0.4623686 ^{\{ 7 \}\{ 13 \}} | 0.43458594 ^{\{ 6 \}\{ 12 \}} | 0.4162553 ^{\{ 3 \}\{ 9 \}} | ||
\sum CRanks | 27 ^{\{ 5 \}} | 12 ^{\{ 2 \}} | 46 ^{\{ 8 \}} | 6 ^{\{ 1 \}} | 25 ^{\{ 4 \}} | 39 ^{\{ 7 \}} | 38 ^{\{ 6 \}} | 23 ^{\{ 3 \}} | ||
\sum C\&BRanks | 63 ^{\{ 11 \}} | 48 ^{\{ 8 \}} | 82 ^{\{ 14 \}} | 42 ^{\{ 7 \}} | 61 ^{\{ 10 \}} | 75 ^{\{ 13 \}} | 74 ^{\{ 12 \}} | 59 ^{\{ 9 \}} | ||
30 | BIAS | \hat{\alpha} | 0.14405974 ^{\{ 3 \}\{ 9 \}} | 0.13901101 ^{\{ 2 \}\{ 8 \}} | 0.17725422 ^{\{ 7 \}\{ 13 \}} | 0.13213658 ^{\{ 1 \}\{ 7 \}} | 0.16209531 ^{\{ 5 \}\{ 11 \}} | 0.25820992 ^{\{ 8 \}\{ 14 \}} | 0.16964029 ^{\{ 6 \}\{ 12 \}} | 0.14580412 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.18969311 ^{\{ 2 \}\{ 8 \}} | 0.19141061 ^{\{ 3 \}\{ 9 \}} | 0.23350009 ^{\{ 7 \}\{ 13 \}} | 0.18115544 ^{\{ 1 \}\{ 7 \}} | 0.22786428 ^{\{ 6 \}\{ 12 \}} | 0.24136118 ^{\{ 8 \}\{ 14 \}} | 0.20026589 ^{\{ 4 \}\{ 10 \}} | 0.20766574 ^{\{ 5 \}\{ 11 \}} | ||
MSE | \hat{\alpha} | 0.03746839 ^{\{ 3 \}\{ 9 \}} | 0.03635968 ^{\{ 2 \}\{ 8 \}} | 0.06052504 ^{\{ 7 \}\{ 13 \}} | 0.02548745 ^{\{ 1 \}\{ 7 \}} | 0.05095711 ^{\{ 5 \}\{ 11 \}} | 0.10729773 ^{\{ 8 \}\{ 14 \}} | 0.05828137 ^{\{ 6 \}\{ 12 \}} | 0.04260275 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.06746508 ^{\{ 3 \}\{ 9 \}} | 0.06525692 ^{\{ 2 \}\{ 8 \}} | 0.09980727 ^{\{ 8 \}\{ 14 \}} | 0.04907736 ^{\{ 1 \}\{ 7 \}} | 0.09345408 ^{\{ 7 \}\{ 13 \}} | 0.09161708 ^{\{ 6 \}\{ 12 \}} | 0.07713619 ^{\{ 4 \}\{ 10 \}} | 0.0814058 ^{\{ 5 \}\{ 11 \}} | ||
MRE | \hat{\alpha} | 0.19207965 ^{\{ 3 \}\{ 9 \}} | 0.18534802 ^{\{ 2 \}\{ 8 \}} | 0.23633896 ^{\{ 7 \}\{ 13 \}} | 0.1761821 ^{\{ 1 \}\{ 7 \}} | 0.21612709 ^{\{ 5 \}\{ 11 \}} | 0.34427989 ^{\{ 8 \}\{ 14 \}} | 0.22618705 ^{\{ 6 \}\{ 12 \}} | 0.19440549 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.25292415 ^{\{ 2 \}\{ 8 \}} | 0.25521415 ^{\{ 3 \}\{ 9 \}} | 0.31133346 ^{\{ 7 \}\{ 13 \}} | 0.24154058 ^{\{ 1 \}\{ 7 \}} | 0.30381904 ^{\{ 6 \}\{ 12 \}} | 0.32181491 ^{\{ 8 \}\{ 14 \}} | 0.26702119 ^{\{ 4 \}\{ 10 \}} | 0.27688765 ^{\{ 5 \}\{ 11 \}} | ||
\sum CRanks | 16 ^{\{ 3 \}} | 14 ^{\{ 2 \}} | 43 ^{\{ 7 \}} | 6 ^{\{ 1 \}} | 34 ^{\{ 6 \}} | 46 ^{\{ 8 \}} | 30 ^{\{ 5 \}} | 27 ^{\{ 4 \}} | ||
\sum C\&BRanks | 52 ^{\{ 9 \}} | 50 ^{\{ 8 \}} | 79 ^{\{ 13 \}} | 42 ^{\{ 7 \}} | 70 ^{\{ 12 \}} | 82 ^{\{ 14 \}} | 66 ^{\{ 11 \}} | 63 ^{\{ 10 \}} | ||
70 | BIAS | \hat{\alpha} | 0.08792199 ^{\{ 3 \}\{ 9 \}} | 0.08650543 ^{\{ 2 \}\{ 8 \}} | 0.10310607 ^{\{ 6 \}\{ 12 \}} | 0.08281633 ^{\{ 1 \}\{ 7 \}} | 0.10074083 ^{\{ 5 \}\{ 11 \}} | 0.1753952 ^{\{ 8 \}\{ 14 \}} | 0.10421227 ^{\{ 7 \}\{ 13 \}} | 0.08803723 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.11408442 ^{\{ 1 \}\{ 7 \}} | 0.12445549 ^{\{ 3 \}\{ 9 \}} | 0.14143312 ^{\{ 7 \}\{ 13 \}} | 0.1164039 ^{\{ 2 \}\{ 8 \}} | 0.13839689 ^{\{ 6 \}\{ 12 \}} | 0.16478766 ^{\{ 8 \}\{ 14 \}} | 0.12896275 ^{\{ 5 \}\{ 11 \}} | 0.12549479 ^{\{ 4 \}\{ 10 \}} | ||
MSE | \hat{\alpha} | 0.01336042 ^{\{ 3 \}\{ 9 \}} | 0.01302739 ^{\{ 2 \}\{ 8 \}} | 0.01826087 ^{\{ 6 \}\{ 12 \}} | 0.01051127 ^{\{ 1 \}\{ 7 \}} | 0.01740773 ^{\{ 5 \}\{ 11 \}} | 0.04721909 ^{\{ 8 \}\{ 14 \}} | 0.01897672 ^{\{ 7 \}\{ 13 \}} | 0.01339529 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.02286488 ^{\{ 2 \}\{ 8 \}} | 0.02612201 ^{\{ 3 \}\{ 9 \}} | 0.03569504 ^{\{ 7 \}\{ 13 \}} | 0.02027791 ^{\{ 1 \}\{ 7 \}} | 0.03209949 ^{\{ 6 \}\{ 12 \}} | 0.04224291 ^{\{ 8 \}\{ 14 \}} | 0.02824455 ^{\{ 5 \}\{ 11 \}} | 0.02671826 ^{\{ 4 \}\{ 10 \}} | ||
MRE | \hat{\alpha} | 0.11722932 ^{\{ 3 \}\{ 9 \}} | 0.11534057 ^{\{ 2 \}\{ 8 \}} | 0.13747476 ^{\{ 6 \}\{ 12 \}} | 0.11042178 ^{\{ 1 \}\{ 7 \}} | 0.13432111 ^{\{ 5 \}\{ 11 \}} | 0.23386027 ^{\{ 8 \}\{ 14 \}} | 0.13894969 ^{\{ 7 \}\{ 13 \}} | 0.11738297 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.15211257 ^{\{ 1 \}\{ 7 \}} | 0.16594066 ^{\{ 3 \}\{ 9 \}} | 0.18857749 ^{\{ 7 \}\{ 13 \}} | 0.1552052 ^{\{ 2 \}\{ 8 \}} | 0.18452919 ^{\{ 6 \}\{ 12 \}} | 0.21971689 ^{\{ 8 \}\{ 14 \}} | 0.17195033 ^{\{ 5 \}\{ 11 \}} | 0.16732638 ^{\{ 4 \}\{ 10 \}} | ||
\sum CRanks | 13 ^{\{ 2 \}} | 15 ^{\{ 3 \}} | 39 ^{\{ 7 \}} | 8 ^{\{ 1 \}} | 33 ^{\{ 5 \}} | 48 ^{\{ 8 \}} | 36 ^{\{ 6 \}} | 24 ^{\{ 4 \}} | ||
\sum C\&BRanks | 49 ^{\{ 8 \}} | 51 ^{\{ 9 \}} | 75 ^{\{ 13 \}} | 44 ^{\{ 7 \}} | 69 ^{\{ 11 \}} | 84 ^{\{ 14 \}} | 72 ^{\{ 12 \}} | 60 ^{\{ 10 \}} | ||
100 | BIAS | \hat{\alpha} | 0.0711708 ^{\{ 2 \}\{ 8 \}} | 0.07361175 ^{\{ 3 \}\{ 9 \}} | 0.08687172 ^{\{ 6 \}\{ 12 \}} | 0.06877471 ^{\{ 1 \}\{ 7 \}} | 0.07956296 ^{\{ 5 \}\{ 11 \}} | 0.15707028 ^{\{ 8 \}\{ 14 \}} | 0.0891824 ^{\{ 7 \}\{ 13 \}} | 0.07485017 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.10091505 ^{\{ 4 \}\{ 10 \}} | 0.09963177 ^{\{ 2 \}\{ 8 \}} | 0.11507711 ^{\{ 6 \}\{ 12 \}} | 0.0956997 ^{\{ 1 \}\{ 7 \}} | 0.11614478 ^{\{ 7 \}\{ 13 \}} | 0.14353138 ^{\{ 8 \}\{ 14 \}} | 0.10220272 ^{\{ 5 \}\{ 11 \}} | 0.10079129 ^{\{ 3 \}\{ 9 \}} | ||
MSE | \hat{\alpha} | 0.00836564 ^{\{ 2 \}\{ 8 \}} | 0.00880658 ^{\{ 3 \}\{ 9 \}} | 0.01255586 ^{\{ 7 \}\{ 13 \}} | 0.0070432 ^{\{ 1 \}\{ 7 \}} | 0.01016903 ^{\{ 5 \}\{ 11 \}} | 0.03872841 ^{\{ 8 \}\{ 14 \}} | 0.01247087 ^{\{ 6 \}\{ 12 \}} | 0.0095693 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.01716988 ^{\{ 4 \}\{ 10 \}} | 0.01679548 ^{\{ 2 \}\{ 8 \}} | 0.02177566 ^{\{ 6 \}\{ 12 \}} | 0.01380793 ^{\{ 1 \}\{ 7 \}} | 0.02250852 ^{\{ 7 \}\{ 13 \}} | 0.03103759 ^{\{ 8 \}\{ 14 \}} | 0.01734026 ^{\{ 5 \}\{ 11 \}} | 0.01694889 ^{\{ 3 \}\{ 9 \}} | ||
MRE | \hat{\alpha} | 0.09489439 ^{\{ 2 \}\{ 8 \}} | 0.098149 ^{\{ 3 \}\{ 9 \}} | 0.11582897 ^{\{ 6 \}\{ 12 \}} | 0.09169961 ^{\{ 1 \}\{ 7 \}} | 0.10608395 ^{\{ 5 \}\{ 11 \}} | 0.20942704 ^{\{ 8 \}\{ 14 \}} | 0.11890987 ^{\{ 7 \}\{ 13 \}} | 0.09980023 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.13455341 ^{\{ 4 \}\{ 10 \}} | 0.13284236 ^{\{ 2 \}\{ 8 \}} | 0.15343615 ^{\{ 6 \}\{ 12 \}} | 0.1275996 ^{\{ 1 \}\{ 7 \}} | 0.15485971 ^{\{ 7 \}\{ 13 \}} | 0.19137517 ^{\{ 8 \}\{ 14 \}} | 0.1362703 ^{\{ 5 \}\{ 11 \}} | 0.13438838 ^{\{ 3 \}\{ 9 \}} | ||
\sum CRanks | 18 ^{\{ 3 \}} | 15 ^{\{ 2 \}} | 37 ^{\{ 7 \}} | 6 ^{\{ 1 \}} | 36 ^{\{ 6 \}} | 48 ^{\{ 8 \}} | 35 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||
\sum C\&BRanks | 54 ^{\{ 9 \}} | 51 ^{\{ 8 \}} | 73 ^{\{ 13 \}} | 42 ^{\{ 7 \}} | 72 ^{\{ 12 \}} | 84 ^{\{ 14 \}} | 71 ^{\{ 11 \}} | 57 ^{\{ 10 \}} | ||
200 | BIAS | \hat{\alpha} | 0.04897082 ^{\{ 1 \}\{ 7 \}} | 0.05135288 ^{\{ 3 \}\{ 9 \}} | 0.05580712 ^{\{ 5 \}\{ 11 \}} | 0.05042855 ^{\{ 2 \}\{ 8 \}} | 0.05620865 ^{\{ 6 \}\{ 12 \}} | 0.11786812 ^{\{ 8 \}\{ 14 \}} | 0.05902749 ^{\{ 7 \}\{ 13 \}} | 0.0514394 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.0680904 ^{\{ 1 \}\{ 7 \}} | 0.07177274 ^{\{ 3 \}\{ 9 \}} | 0.08001323 ^{\{ 7 \}\{ 13 \}} | 0.06943586 ^{\{ 2 \}\{ 8 \}} | 0.07996607 ^{\{ 6 \}\{ 12 \}} | 0.10198027 ^{\{ 8 \}\{ 14 \}} | 0.07187114 ^{\{ 4 \}\{ 10 \}} | 0.07208482 ^{\{ 5 \}\{ 11 \}} | ||
MSE | \hat{\alpha} | 0.00376579 ^{\{ 1 \}\{ 7 \}} | 0.00414776 ^{\{ 3 \}\{ 9 \}} | 0.00504929 ^{\{ 5 \}\{ 11 \}} | 0.00389309 ^{\{ 2 \}\{ 8 \}} | 0.00516812 ^{\{ 6 \}\{ 12 \}} | 0.02119878 ^{\{ 8 \}\{ 14 \}} | 0.0057458 ^{\{ 7 \}\{ 13 \}} | 0.00430278 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.00722093 ^{\{ 1 \}\{ 7 \}} | 0.00838347 ^{\{ 3 \}\{ 9 \}} | 0.01096736 ^{\{ 7 \}\{ 13 \}} | 0.00726195 ^{\{ 2 \}\{ 8 \}} | 0.01032872 ^{\{ 6 \}\{ 12 \}} | 0.01585112 ^{\{ 8 \}\{ 14 \}} | 0.0084817 ^{\{ 4 \}\{ 10 \}} | 0.00865163 ^{\{ 5 \}\{ 11 \}} | ||
MRE | \hat{\alpha} | 0.06529443 ^{\{ 1 \}\{ 7 \}} | 0.06847051 ^{\{ 3 \}\{ 9 \}} | 0.07440949 ^{\{ 5 \}\{ 11 \}} | 0.06723806 ^{\{ 2 \}\{ 8 \}} | 0.07494487 ^{\{ 6 \}\{ 12 \}} | 0.15715749 ^{\{ 8 \}\{ 14 \}} | 0.07870332 ^{\{ 7 \}\{ 13 \}} | 0.06858586 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.09078719 ^{\{ 1 \}\{ 7 \}} | 0.09569698 ^{\{ 3 \}\{ 9 \}} | 0.10668431 ^{\{ 7 \}\{ 13 \}} | 0.09258115 ^{\{ 2 \}\{ 8 \}} | 0.10662142 ^{\{ 6 \}\{ 12 \}} | 0.1359737 ^{\{ 8 \}\{ 14 \}} | 0.09582819 ^{\{ 4 \}\{ 10 \}} | 0.09611309 ^{\{ 5 \}\{ 11 \}} | ||
\sum CRanks | 6 ^{\{ 1 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6.5 \}} | 12 ^{\{ 2 \}} | 36 ^{\{ 6.5 \}} | 48 ^{\{ 8 \}} | 33 ^{\{ 5 \}} | 27 ^{\{ 4 \}} | ||
\sum C&BRanks | 42 ^{\{ 7 \}} | 54 ^{\{ 9 \}} | 72 ^{\{ 12.5 \}} | 48 ^{\{ 8 \}} | 72 ^{\{ 12.5 \}} | 84 ^{\{ 14 \}} | 69 ^{\{ 11 \}} | 63 ^{\{ 10 \}} | ||
300 | BIAS | \hat{\alpha} | 0.03667764 ^{\{ 1 \}\{ 6 \}} | 0.03990136 ^{\{ 3 \}\{ 9 \}} | 0.04288476 ^{\{ 5 \}\{ 11 \}} | 0.03760933 ^{\{ 2 \}\{ 7 \}} | 0.04356189 ^{\{ 6 \}\{ 12 \}} | 0.0934606 ^{\{ 8 \}\{ 14 \}} | 0.04654803 ^{\{ 7 \}\{ 13 \}} | 0.040086 ^{\{ 4 \}\{ 10 \}} |
\hat{\lambda} | 0.04795812 ^{\{ 1 \}\{ 6 \}} | 0.05338798 ^{\{ 3 \}\{ 9 \}} | 0.05993014 ^{\{ 6 \}\{ 12 \}} | 0.05257793 ^{\{ 2 \}\{ 7 \}} | 0.06112134 ^{\{ 7 \}\{ 13 \}} | 0.07718156 ^{\{ 8 \}\{ 14 \}} | 0.05407786 ^{\{ 5 \}\{ 11 \}} | 0.05393484 ^{\{ 4 \}\{ 10 \}} | ||
MSE | \hat{\alpha} | 0.00215764 ^{\{ 1 \}\{ 6 \}} | 0.00250001 ^{\{ 3 \}\{ 8 \}} | 0.00296309 ^{\{ 6 \}\{ 12 \}} | 0.00221696 ^{\{ 2 \}\{ 7 \}} | 0.00293099 ^{\{ 5 \}\{ 11 \}} | 0.01343653 ^{\{ 8 \}\{ 14 \}} | 0.00346372 ^{\{ 7 \}\{ 13 \}} | 0.0025318 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.00376997 ^{\{ 1 \}\{ 6 \}} | 0.00453163 ^{\{ 3 \}\{ 8 \}} | 0.00573555 ^{\{ 6 \}\{ 12 \}} | 0.00421602 ^{\{ 2 \}\{ 7 \}} | 0.00580597 ^{\{ 7 \}\{ 13 \}} | 0.0091151 ^{\{ 8 \}\{ 14 \}} | 0.00478321 ^{\{ 5 \}\{ 10 \}} | 0.00471786 ^{\{ 4 \}\{ 9 \}} | ||
MRE | \hat{\alpha} | 0.04890353 ^{\{ 1 \}\{ 6 \}} | 0.05320181 ^{\{ 3 \}\{ 9 \}} | 0.05717968 ^{\{ 5 \}\{ 11 \}} | 0.05014577 ^{\{ 2 \}\{ 7 \}} | 0.05808252 ^{\{ 6 \}\{ 12 \}} | 0.12461413 ^{\{ 8 \}\{ 14 \}} | 0.06206403 ^{\{ 7 \}\{ 13 \}} | 0.053448 ^{\{ 4 \}\{ 10 \}} | |
\hat{\lambda} | 0.06394416 ^{\{ 1 \}\{ 6 \}} | 0.07118398 ^{\{ 3 \}\{ 9 \}} | 0.07990685 ^{\{ 6 \}\{ 12 \}} | 0.07010391 ^{\{ 2 \}\{ 7 \}} | 0.08149512 ^{\{ 7 \}\{ 13 \}} | 0.10290874 ^{\{ 8 \}\{ 14 \}} | 0.07210381 ^{\{ 5 \}\{ 11 \}} | 0.07191312 ^{\{ 4 \}\{ 10 \}} | ||
\sum CRanks | 6 ^{\{ 1 \}} | 18 ^{\{ 3 \}} | 34 ^{\{ 5 \}} | 12 ^{\{ 2 \}} | 38 ^{\{ 7 \}} | 48 ^{\{ 8 \}} | 36 ^{\{ 6 \}} | 24 ^{\{ 4 \}} | ||
\sum C\& BRanks | 36 ^{\{ 6 \}} | 52 ^{\{ 8.5 \}} | 70 ^{\{ 11 \}} | 42 ^{\{ 7 \}} | 74 ^{\{ 13 \}} | 84 ^{\{ 14 \}} | 71 ^{\{ 12 \}} | 59 ^{\{ 10 \}} | ||
15 | BIAS | \hat{\alpha} | 0.07080639 ^{\{ 2 \}\{ 2 \}} | 0.07080648 ^{\{ 3 \}\{ 3 \}} | 0.07079734 ^{\{ 1 \}\{ 1 \}} | 0.10887156 ^{\{ 6 \}\{ 6 \}} | 0.078971 ^{\{ 5 \}\{ 5 \}} | 0.07215014 ^{\{ 4 \}\{ 4 \}} | ||
\hat{\lambda} | 0.07334416 ^{\{ 2 \}\{ 2 \}} | 0.07334414 ^{\{ 1 \}\{ 1 \}} | 0.07335074 ^{\{ 3 \}\{ 3 \}} | 0.13371233 ^{\{ 6 \}\{ 6 \}} | 0.12036804 ^{\{ 5 \}\{ 5 \}} | 0.11400132 ^{\{ 4 \}\{ 4 \}} | ||||
MSE | \hat{\alpha} | 0.00700589 ^{\{ 4 \}\{ 4 \}} | 0.0070059 ^{\{ 5 \}\{ 5 \}} | 0.00700451 ^{\{ 3 \}\{ 3 \}} | 0.01710565 ^{\{ 6 \}\{ 6 \}} | 0.00623642 ^{\{ 2 \}\{ 2 \}} | 0.00520564 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00734358 ^{\{ 2 \}\{ 2 \}} | 0.00734357 ^{\{ 1 \}\{ 1 \}} | 0.00734515 ^{\{ 3 \}\{ 3 \}} | 0.02521906 ^{\{ 6 \}\{ 6 \}} | 0.01448847 ^{\{ 5 \}\{ 5 \}} | 0.0129963 ^{\{ 4 \}\{ 4 \}} | ||||
MRE | \hat{\alpha} | 0.09440852 ^{\{ 2 \}\{ 2 \}} | 0.09440864 ^{\{ 3 \}\{ 3 \}} | 0.09439646 ^{\{ 1 \}\{ 1 \}} | 0.14516208 ^{\{ 6 \}\{ 6 \}} | 0.10529467 ^{\{ 5 \}\{ 5 \}} | 0.09620019 ^{\{ 4 \}\{ 4 \}} | |||
\hat{\lambda} | 0.09779221 ^{\{ 2 \}\{ 2 \}} | 0.09779219 ^{\{ 1 \}\{ 1 \}} | 0.09780098 ^{\{ 3 \}\{ 3 \}} | 0.17828311 ^{\{ 6 \}\{ 6 \}} | 0.16049072 ^{\{ 5 \}\{ 5 \}} | 0.15200176 ^{\{ 4 \}\{ 4 \}} | ||||
\sum BRanks | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 36 ^{\{ 6 \}} | 27 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||||
\sum C \&BRanks | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 14 ^{\{ 2 \}} | 36 ^{\{ 6 \}} | 27 ^{\{ 5 \}} | 21 ^{\{ 4 \}} | ||||
30 | BIAS | \hat{\alpha} | 0.06707577 ^{\{ 4 \}\{ 4 \}} | 0.06707579 ^{\{ 5 \}\{ 5 \}} | 0.06707479 ^{\{ 3 \}\{ 3 \}} | 0.08818954 ^{\{ 6 \}\{ 6 \}} | 0.05398142 ^{\{ 2 \}\{ 2 \}} | 0.0484456 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.07063728 ^{\{ 2 \}\{ 2 \}} | 0.07063729 ^{\{ 3 \}\{ 3 \}} | 0.07063836 ^{\{ 4 \}\{ 4 \}} | 0.09669995 ^{\{ 6 \}\{ 6 \}} | 0.07140666 ^{\{ 5 \}\{ 5 \}} | 0.06590862 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00638449 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00638429 ^{\{ 3 \}\{ 3 \}} | 0.01167204 ^{\{ 6 \}\{ 6 \}} | 0.00291399 ^{\{ 2 \}\{ 2 \}} | 0.00234698 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00685741 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00685694 ^{\{ 3 \}\{ 3 \}} | 0.01388726 ^{\{ 6 \}\{ 6 \}} | 0.00509891 ^{\{ 2 \}\{ 2 \}} | 0.00434395 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.08943436 ^{\{ 4 \}\{ 4 \}} | 0.08943439 ^{\{ 5 \}\{ 5 \}} | 0.08943306 ^{\{ 3 \}\{ 3 \}} | 0.11758605 ^{\{ 6 \}\{ 6 \}} | 0.07197522 ^{\{ 2 \}\{ 2 \}} | 0.06459413 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.09418304 ^{\{ 2 \}\{ 2 \}} | 0.09418306 ^{\{ 3 \}\{ 3 \}} | 0.09418448 ^{\{ 4 \}\{ 4 \}} | 0.12893327 ^{\{ 6 \}\{ 6 \}} | 0.09520888 ^{\{ 5 \}\{ 5 \}} | 0.08787816 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 21 ^{\{ 4 \}} | 25 ^{\{ 5 \}} | 20 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 18 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 21 ^{\{ 4 \}} | 25 ^{\{ 5 \}} | 20 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 18 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
70 | BIAS | \hat{\alpha} | 0.0628967 ^{\{ 4 \}\{ 4 \}} | 0.06289672 ^{\{ 5 \}\{ 5 \}} | 0.06289578 ^{\{ 3 \}\{ 3 \}} | 0.06988905 ^{\{ 6 \}\{ 6 \}} | 0.03512338 ^{\{ 2 \}\{ 2 \}} | 0.03097589 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.06382592 ^{\{ 3 \}\{ 3 \}} | 0.06382593 ^{\{ 4 \}\{ 4 \}} | 0.06382623 ^{\{ 5 \}\{ 5 \}} | 0.08500664 ^{\{ 6 \}\{ 6 \}} | 0.04706336 ^{\{ 2 \}\{ 2 \}} | 0.04163393 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00529453 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00529439 ^{\{ 3 \}\{ 3 \}} | 0.00766215 ^{\{ 6 \}\{ 6 \}} | 0.00123365 ^{\{ 2 \}\{ 2 \}} | 0.00095951 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00577517 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00577528 ^{\{ 5 \}\{ 5 \}} | 0.01076173 ^{\{ 6 \}\{ 6 \}} | 0.00221496 ^{\{ 2 \}\{ 2 \}} | 0.00173338 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.08386227 ^{\{ 4 \}\{ 4 \}} | 0.08386229 ^{\{ 5 \}\{ 5 \}} | 0.08386104 ^{\{ 3 \}\{ 3 \}} | 0.0931854 ^{\{ 6 \}\{ 6 \}} | 0.04683117 ^{\{ 2 \}\{ 2 \}} | 0.04130118 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08510123 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08510164 ^{\{ 5 \}\{ 5 \}} | 0.11334219 ^{\{ 6 \}\{ 6 \}} | 0.06275115 ^{\{ 2 \}\{ 2 \}} | 0.0555119 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 22.5 ^{\{ 3 \}} | 25.5 ^{\{ 5 \}} | 24 ^{\{ 4 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 22.5 ^{\{ 3 \}} | 25.5 ^{\{ 5 \}} | 24 ^{\{ 4 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
100 | BIAS | \hat{\alpha} | 0.05470376 ^{\{ 4 \}\{ 4 \}} | 0.05470375 ^{\{ 3 \}\{ 3 \}} | 0.05470411 ^{\{ 5 \}\{ 5 \}} | 0.06296533 ^{\{ 6 \}\{ 6 \}} | 0.02807831 ^{\{ 2 \}\{ 2 \}} | 0.02458989 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} | 0.06312911 ^{\{ 3.5 \}\{ 3.5 \}} | 0.0631295 ^{\{ 5 \}\{ 5 \}} | 0.07802856 ^{\{ 6 \}\{ 6 \}} | 0.04616373 ^{\{ 2 \}\{ 2 \}} | 0.04172589 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00439471 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00439478 ^{\{ 5 \}\{ 5 \}} | 0.00608088 ^{\{ 6 \}\{ 6 \}} | 0.00078839 ^{\{ 2 \}\{ 2 \}} | 0.00060466 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00567389 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00567383 ^{\{ 3 \}\{ 3 \}} | 0.00900842 ^{\{ 6 \}\{ 6 \}} | 0.00213109 ^{\{ 2 \}\{ 2 \}} | 0.00174105 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} | 0.07293834 ^{\{ 3.5 \}\{ 3.5 \}} | 0.07293881 ^{\{ 5 \}\{ 5 \}} | 0.08395377 ^{\{ 6 \}\{ 6 \}} | 0.03743775 ^{\{ 2 \}\{ 2 \}} | 0.03278652 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08417215 ^{\{ 3.5 \}\{ 3.5 \}} | 0.08417267 ^{\{ 5 \}\{ 5 \}} | 0.10403808 ^{\{ 6 \}\{ 6 \}} | 0.06155164 ^{\{ 2 \}\{ 2 \}} | 0.05563452 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 22.5 ^{\{ 4 \}} | 21.5 ^{\{ 3 \}} | 28 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C \&BRanks | 22.5 ^{\{ 4 \}} | 21.5 ^{\{ 3 \}} | 28 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
200 | BIAS | \hat{\alpha} | 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04001852 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04001848 ^{\{ 3 \}\{ 3 \}} | 0.04705698 ^{\{ 6 \}\{ 6 \}} | 0.01733801 ^{\{ 2 \}\{ 2 \}} | 0.01516892 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.05856409 ^{\{ 4 \}\{ 4 \}} | 0.0585641 ^{\{ 5 \}\{ 5 \}} | 0.05856347 ^{\{ 3 \}\{ 3 \}} | 0.06345567 ^{\{ 6 \}\{ 6 \}} | 0.02796569 ^{\{ 2 \}\{ 2 \}} | 0.02441503 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00253077 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00253076 ^{\{ 3 \}\{ 3 \}} | 0.00362108 ^{\{ 6 \}\{ 6 \}} | 0.00030061 ^{\{ 2 \}\{ 2 \}} | 0.0002301 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} | 0.00476338 ^{\{ 4.5 \}\{ 4.5 \}} | 0.0047633 ^{\{ 3 \}\{ 3 \}} | 0.00626275 ^{\{ 6 \}\{ 6 \}} | 0.00078208 ^{\{ 2 \}\{ 2 \}} | 0.00059609 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} | 0.05335802 ^{\{ 4.5 \}\{ 4.5 \}} | 0.05335798 ^{\{ 3 \}\{ 3 \}} | 0.06274264 ^{\{ 6 \}\{ 6 \}} | 0.02311735 ^{\{ 2 \}\{ 2 \}} | 0.02022522 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.07808545 ^{\{ 4 \}\{ 4 \}} | 0.07808546 ^{\{ 5 \}\{ 5 \}} | 0.07808462 ^{\{ 3 \}\{ 3 \}} | 0.08460756 ^{\{ 6 \}\{ 6 \}} | 0.03728759 ^{\{ 2 \}\{ 2 \}} | 0.03255338 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 26 ^{\{ 4 \}} | 28 ^{\{ 5 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C\&BRanks | 26 ^{\{ 4 \}} | 28 ^{\{ 5 \}} | 18 ^{\{ 3 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
300 | BIAS | \hat{\alpha} | 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} | 0.03245976 ^{\{ 4.5 \}\{ 4.5 \}} | 0.03245972 ^{\{ 3 \}\{ 3 \}} | 0.03938224 ^{\{ 6 \}\{ 8 \}} | 0.01407489 ^{\{ 2 \}\{ 2 \}} | 0.01252037 ^{\{ 1 \}\{ 1 \}} | ||
\hat{\lambda} | 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} | 0.04732128 ^{\{ 3.5 \}\{ 3.5 \}} | 0.0473218 ^{\{ 5 \}\{ 5 \}} | 0.05290774 ^{\{ 6 \}\{ 8 \}} | 0.02365826 ^{\{ 2 \}\{ 2 \}} | 0.02092282 ^{\{ 1 \}\{ 1 \}} | ||||
MSE | \hat{\alpha} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00166778 ^{\{ 4 \}\{ 4 \}} | 0.00252766 ^{\{ 6 \}\{ 9 \}} | 0.0001981 ^{\{ 2 \}\{ 2 \}} | 0.00015676 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00341064 ^{\{ 3.5 \}\{ 3.5 \}} | 0.00341069 ^{\{ 5 \}\{ 5 \}} | 0.00482747 ^{\{ 6 \}\{ 11 \}} | 0.00055971 ^{\{ 2 \}\{ 2 \}} | 0.00043776 ^{\{ 1 \}\{ 1 \}} | ||||
MRE | \hat{\alpha} | 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04327968 ^{\{ 4.5 \}\{ 4.5 \}} | 0.04327963 ^{\{ 3 \}\{ 3 \}} | 0.05250965 ^{\{ 6 \}\{ 8 \}} | 0.01876651 ^{\{ 2 \}\{ 2 \}} | 0.01669383 ^{\{ 1 \}\{ 1 \}} | |||
\hat{\lambda} | 0.06309505 ^{\{ 4 \}\{ 4 \}} | 0.06309504 ^{\{ 3 \}\{ 3 \}} | 0.06309574 ^{\{ 5 \}\{ 5 \}} | 0.07054365 ^{\{ 6 \}\{ 8 \}} | 0.03154434 ^{\{ 2 \}\{ 2 \}} | 0.02789709 ^{\{ 1 \}\{ 1 \}} | ||||
\sum BRanks | 24 ^{\{ 4 \}} | 23 ^{\{ 3 \}} | 25 ^{\{ 5 \}} | 36 ^{\{ 6 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} | ||||
\sum C\&BRanks | 24 ^{\{ 4 \}} | 23 ^{\{ 3 \}} | 25 ^{\{ 5 \}} | 52 ^{\{ 8.5 \}} | 12 ^{\{ 2 \}} | 6 ^{\{ 1 \}} |
n | Est. Par. | MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | Bayesian | ||||||||
L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. BP | L. BT | L. CR | ||
15 | \hat{\alpha} | 1.76864 ^{\{ 14 \}} | 1.01231 ^{\{ 5 \}} | 1.23169 ^{\{ 7 \}} | 0.9917 ^{\{ 4 \}} | 2.44613 ^{\{ 16 \}} | 1.42478 ^{\{ 11 \}} | 0.75104 ^{\{ 1 \}} | 0.85626 ^{\{ 3 \}} | 1.37582 ^{\{ 10 \}} | 1.2964 ^{\{ 9 \}} | 1.73329 ^{\{ 13 \}} | 4.52643 ^{\{ 17 \}} | 2.21266 ^{\{ 15 \}} | 1.4343 ^{\{ 12 \}} | 1.26902 ^{\{ 8 \}} | 1.09219 ^{\{ 6 \}} | 0.79185 ^{\{ 2 \}} |
\hat{\lambda} | 1.8179 ^{\{ 13 \}} | 1.21276 ^{\{ 3 \}} | 1.61918 ^{\{ 9 \}} | 1.35754 ^{\{ 6 \}} | 2.45476 ^{\{ 16 \}} | 1.76051 ^{\{ 12 \}} | 1.08184 ^{\{ 2 \}} | 1.21353 ^{\{ 4 \}} | 1.82447 ^{\{ 14 \}} | 1.7064 ^{\{ 10 \}} | 1.51256 ^{\{ 7 \}} | 2.71437 ^{\{ 17 \}} | 1.85662 ^{\{ 15 \}} | 1.32039 ^{\{ 5 \}} | 1.73185 ^{\{ 11 \}} | 1.56473 ^{\{ 8 \}} | 1.02613 ^{\{ 1 \}} | |
30 | \hat{\alpha} | 0.76771 ^{\{ 10 \}} | 0.61941 ^{\{ 3 \}} | 0.69962 ^{\{ 6 \}} | 0.63344 ^{\{ 5 \}} | 0.93483 ^{\{ 14 \}} | 0.73927 ^{\{ 8 \}} | 0.54674 ^{\{ 1 \}} | 0.62416 ^{\{ 4 \}} | 0.8346 ^{\{ 13 \}} | 0.82046 ^{\{ 12 \}} | 1.17514 ^{\{ 16 \}} | 2.60316 ^{\{ 17 \}} | 0.96934 ^{\{ 15 \}} | 0.81431 ^{\{ 11 \}} | 0.75708 ^{\{ 9 \}} | 0.73181 ^{\{ 7 \}} | 0.56731 ^{\{ 2 \}} |
\hat{\lambda} | 1.01832 ^{\{ 9 \}} | 0.85197 ^{\{ 4 \}} | 0.95639 ^{\{ 7 \}} | 0.87947 ^{\{ 6 \}} | 1.2636 ^{\{ 16 \}} | 1.08914 ^{\{ 13 \}} | 0.74985 ^{\{ 2 \}} | 0.85211 ^{\{ 5 \}} | 1.15014 ^{\{ 15 \}} | 1.14232 ^{\{ 14 \}} | 1.0211 ^{\{ 10 \}} | 1.58731 ^{\{ 17 \}} | 1.04276 ^{\{ 12 \}} | 0.81825 ^{\{ 3 \}} | 1.03151 ^{\{ 11 \}} | 1.00314 ^{\{ 8 \}} | 0.73465 ^{\{ 1 \}} | |
70 | \hat{\alpha} | 0.44252 ^{\{ 9 \}} | 0.40638 ^{\{ 3 \}} | 0.43855 ^{\{ 8 \}} | 0.4246 ^{\{ 5 \}} | 0.52287 ^{\{ 15 \}} | 0.47767 ^{\{ 11 \}} | 0.363 ^{\{ 1 \}} | 0.4131 ^{\{ 4 \}} | 0.47865 ^{\{ 12 \}} | 0.47271 ^{\{ 10 \}} | 0.82108 ^{\{ 16 \}} | 1.36637 ^{\{ 17 \}} | 0.51984 ^{\{ 14 \}} | 0.47879 ^{\{ 13 \}} | 0.43536 ^{\{ 6 \}} | 0.43582 ^{\{ 7 \}} | 0.37696 ^{\{ 2 \}} |
\hat{\lambda} | 0.59365 ^{\{ 6 \}} | 0.54695 ^{\{ 4 \}} | 0.61226 ^{\{ 10 \}} | 0.59699 ^{\{ 7 \}} | 0.75869 ^{\{ 16 \}} | 0.69736 ^{\{ 14 \}} | 0.487 ^{\{ 1 \}} | 0.54884 ^{\{ 5 \}} | 0.65062 ^{\{ 12 \}} | 0.6587 ^{\{ 13 \}} | 0.70313 ^{\{ 15 \}} | 0.80559 ^{\{ 17 \}} | 0.60571 ^{\{ 8 \}} | 0.50151 ^{\{ 3 \}} | 0.60658 ^{\{ 9 \}} | 0.61611 ^{\{ 11 \}} | 0.49915 ^{\{ 2 \}} | |
100 | \hat{\alpha} | 0.33944 ^{\{ 5 \}} | 0.31992 ^{\{ 3 \}} | 0.34198 ^{\{ 6 \}} | 0.33375 ^{\{ 4 \}} | 0.42215 ^{\{ 14 \}} | 0.38962 ^{\{ 10 \}} | 0.30229 ^{\{ 1 \}} | 0.34622 ^{\{ 7 \}} | 0.39767 ^{\{ 11 \}} | 0.39816 ^{\{ 12 \}} | 0.68273 ^{\{ 16 \}} | 1.05362 ^{\{ 17 \}} | 0.4355 ^{\{ 15 \}} | 0.41384 ^{\{ 13 \}} | 0.3649 ^{\{ 9 \}} | 0.35835 ^{\{ 8 \}} | 0.31696 ^{\{ 2 \}} |
\hat{\lambda} | 0.47339 ^{\{ 6 \}} | 0.43589 ^{\{ 4 \}} | 0.47704 ^{\{ 7 \}} | 0.47049 ^{\{ 5 \}} | 0.56073 ^{\{ 15 \}} | 0.52885 ^{\{ 12 \}} | 0.40649 ^{\{ 1 \}} | 0.4866 ^{\{ 8 \}} | 0.54784 ^{\{ 13 \}} | 0.55029 ^{\{ 14 \}} | 0.59234 ^{\{ 16 \}} | 0.62163 ^{\{ 17 \}} | 0.52259 ^{\{ 11 \}} | 0.43411 ^{\{ 3 \}} | 0.51049 ^{\{ 10 \}} | 0.5069 ^{\{ 9 \}} | 0.42203 ^{\{ 2 \}} | |
200 | \hat{\alpha} | 0.2389 ^{\{ 4 \}} | 0.23142 ^{\{ 3 \}} | 0.2516 ^{\{ 9 \}} | 0.2482 ^{\{ 8 \}} | 0.27946 ^{\{ 13 \}} | 0.27005 ^{\{ 10 \}} | 0.22294 ^{\{ 1 \}} | 0.24721 ^{\{ 7 \}} | 0.27286 ^{\{ 12 \}} | 0.27282 ^{\{ 11 \}} | 0.52575 ^{\{ 16 \}} | 0.70941 ^{\{ 17 \}} | 0.29224 ^{\{ 15 \}} | 0.2862 ^{\{ 14 \}} | 0.24663 ^{\{ 6 \}} | 0.2461 ^{\{ 5 \}} | 0.2278 ^{\{ 2 \}} |
\hat{\lambda} | 0.32208 ^{\{ 5 \}} | 0.31305 ^{\{ 4 \}} | 0.35705 ^{\{ 11 \}} | 0.3489 ^{\{ 9 \}} | 0.3895 ^{\{ 15 \}} | 0.37969 ^{\{ 12 \}} | 0.30621 ^{\{ 2 \}} | 0.34766 ^{\{ 8 \}} | 0.38153 ^{\{ 14 \}} | 0.3812 ^{\{ 13 \}} | 0.43553 ^{\{ 17 \}} | 0.39775 ^{\{ 16 \}} | 0.35301 ^{\{ 10 \}} | 0.30882 ^{\{ 3 \}} | 0.33943 ^{\{ 6 \}} | 0.34042 ^{\{ 7 \}} | 0.3042 ^{\{ 1 \}} | |
350 | \hat{\alpha} | 0.17441 ^{\{ 4 \}} | 0.17146 ^{\{ 2 \}} | 0.1858 ^{\{ 6 \}} | 0.18336 ^{\{ 5 \}} | 0.20941 ^{\{ 13 \}} | 0.20323 ^{\{ 9 \}} | 0.17002 ^{\{ 1 \}} | 0.21806 ^{\{ 15 \}} | 0.20592 ^{\{ 10 \}} | 0.20694 ^{\{ 11 \}} | 0.40697 ^{\{ 16 \}} | 0.49775 ^{\{ 17 \}} | 0.21169 ^{\{ 14 \}} | 0.20828 ^{\{ 12 \}} | 0.19022 ^{\{ 7 \}} | 0.19045 ^{\{ 8 \}} | 0.17249 ^{\{ 3 \}} |
\hat{\lambda} | 0.24024 ^{\{ 5 \}} | 0.23525 ^{\{ 4 \}} | 0.25748 ^{\{ 8 \}} | 0.2569 ^{\{ 7 \}} | 0.29707 ^{\{ 15 \}} | 0.28529 ^{\{ 12 \}} | 0.23099 ^{\{ 2 \}} | 0.30366 ^{\{ 16 \}} | 0.28776 ^{\{ 13 \}} | 0.29495 ^{\{ 14 \}} | 0.34137 ^{\{ 17 \}} | 0.27981 ^{\{ 11 \}} | 0.25913 ^{\{ 10 \}} | 0.22713 ^{\{ 1 \}} | 0.25778 ^{\{ 9 \}} | 0.25635 ^{\{ 6 \}} | 0.23339 ^{\{ 3 \}} | |
\sum Ranks | 90 ^{\{ 6.5 \}} | 42 ^{\{ 3 \}} | 94 ^{\{ 9 \}} | 71 ^{\{ 4 \}} | 178 ^{\{ 16 \}} | 134 ^{\{ 11 \}} | 16 ^{\{ 1 \}} | 86 ^{\{ 5 \}} | 149 ^{\{ 13 \}} | 143 ^{\{ 12 \}} | 175 ^{\{ 15 \}} | 197 ^{\{ 17 \}} | 154 ^{\{ 14 \}} | 93 ^{\{ 8 \}} | 101 ^{\{ 10 \}} | 90 ^{\{ 6.5 \}} | 23 ^{\{ 2 \}} |
n | Est. Par. | MLE | ADE | CVME | MPS | LSE | PCE | RTADE | WLSE | Bayesian | ||||||||
CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. BP | CV. BT | CV. CR | ||
15 | \hat{\alpha} | 0.8 ^{\{ 1 \}} | 0.85 ^{\{ 3 \}} | 0.93 ^{\{ 10.5 \}} | 0.95 ^{\{ 16 \}} | 0.84 ^{\{ 2 \}} | 0.9 ^{\{ 6 \}} | 0.91 ^{\{ 8 \}} | 0.94 ^{\{ 13.5 \}} | 0.94 ^{\{ 13.5 \}} | 0.93 ^{\{ 10.5 \}} | 0.92 ^{\{ 9 \}} | 0.86 ^{\{ 4 \}} | 0.9 ^{\{ 6 \}} | 0.9 ^{\{ 6 \}} | 0.94 ^{\{ 13.5 \}} | 0.94 ^{\{ 13.5 \}} | 1 ^{\{ 17 \}} |
\hat{\lambda} | 0.82 ^{\{ 1.5 \}} | 0.89 ^{\{ 7 \}} | 0.94 ^{\{ 14.5 \}} | 0.91 ^{\{ 9 \}} | 0.85 ^{\{ 4 \}} | 0.88 ^{\{ 6 \}} | 0.93 ^{\{ 11.5 \}} | 0.97 ^{\{ 16 \}} | 0.94 ^{\{ 14.5 \}} | 0.9 ^{\{ 8 \}} | 0.93 ^{\{ 11.5 \}} | 0.84 ^{\{ 3 \}} | 0.93 ^{\{ 11.5 \}} | 0.82 ^{\{ 1.5 \}} | 0.93 ^{\{ 11.5 \}} | 0.87 ^{\{ 5 \}} | 1 ^{\{ 17 \}} | |
30 | \hat{\alpha} | 0.88 ^{\{ 4 \}} | 0.92 ^{\{ 11 \}} | 0.94 ^{\{ 13.5 \}} | 0.88 ^{\{ 4 \}} | 0.92 ^{\{ 11 \}} | 0.91 ^{\{ 8.5 \}} | 0.85 ^{\{ 1 \}} | 0.88 ^{\{ 4 \}} | 0.89 ^{\{ 6 \}} | 0.91 ^{\{ 8.5 \}} | 0.86 ^{\{ 2 \}} | 0.9 ^{\{ 7 \}} | 0.97 ^{\{ 16 \}} | 0.94 ^{\{ 13.5 \}} | 0.95 ^{\{ 15 \}} | 0.92 ^{\{ 11 \}} | 1 ^{\{ 17 \}} |
\hat{\lambda} | 0.89 ^{\{ 4 \}} | 0.92 ^{\{ 8.5 \}} | 0.98 ^{\{ 16 \}} | 0.91 ^{\{ 6 \}} | 0.93 ^{\{ 11 \}} | 0.92 ^{\{ 8.5 \}} | 0.91 ^{\{ 6 \}} | 0.94 ^{\{ 13 \}} | 0.95 ^{\{ 14.5 \}} | 0.93 ^{\{ 11 \}} | 0.87 ^{\{ 3 \}} | 0.86 ^{\{ 2 \}} | 0.91 ^{\{ 6 \}} | 0.81 ^{\{ 1 \}} | 0.95 ^{\{ 14.5 \}} | 0.93 ^{\{ 11 \}} | 1 ^{\{ 17 \}} | |
70 | \hat{\alpha} | 0.94 ^{\{ 9 \}} | 0.97 ^{\{ 16 \}} | 0.91 ^{\{ 4.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.89 ^{\{ 2.5 \}} | 0.89 ^{\{ 2.5 \}} | 0.84 ^{\{ 1 \}} | 0.94 ^{\{ 9 \}} | 0.93 ^{\{ 6.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.93 ^{\{ 6.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.95 ^{\{ 12.5 \}} | 0.91 ^{\{ 4.5 \}} | 0.94 ^{\{ 9 \}} | 0.96 ^{\{ 15 \}} | 0.978 ^{\{ 17 \}} |
\hat{\lambda} | 0.87 ^{\{ 2.5 \}} | 0.93 ^{\{ 12 \}} | 0.93 ^{\{ 12 \}} | 0.92 ^{\{ 10 \}} | 0.91 ^{\{ 8.5 \}} | 0.87 ^{\{ 2.5 \}} | 0.88 ^{\{ 4.5 \}} | 0.88 ^{\{ 4.5 \}} | 0.91 ^{\{ 8.5 \}} | 0.9 ^{\{ 6.5 \}} | 0.94 ^{\{ 14 \}} | 0.9 ^{\{ 6.5 \}} | 0.93 ^{\{ 12 \}} | 0.83 ^{\{ 1 \}} | 0.95 ^{\{ 15.5 \}} | 0.95 ^{\{ 15.5 \}} | 0.993 ^{\{ 17 \}} | |
100 | \hat{\alpha} | 0.94 ^{\{ 10.5 \}} | 0.96 ^{\{ 13 \}} | 0.94 ^{\{ 10.5 \}} | 0.92 ^{\{ 5.5 \}} | 0.9 ^{\{ 3 \}} | 0.96 ^{\{ 13 \}} | 0.82 ^{\{ 1 \}} | 0.93 ^{\{ 8 \}} | 0.96 ^{\{ 13 \}} | 0.97 ^{\{ 16.5 \}} | 0.89 ^{\{ 2 \}} | 0.92 ^{\{ 5.5 \}} | 0.97 ^{\{ 16.5 \}} | 0.93 ^{\{ 8 \}} | 0.93 ^{\{ 8 \}} | 0.91 ^{\{ 4 \}} | 0.967 ^{\{ 15 \}} |
\hat{\lambda} | 0.93 ^{\{ 12 \}} | 0.91 ^{\{ 8.5 \}} | 0.9 ^{\{ 6 \}} | 0.96 ^{\{ 16 \}} | 0.93 ^{\{ 12 \}} | 0.93 ^{\{ 12 \}} | 0.86 ^{\{ 2 \}} | 0.9 ^{\{ 6 \}} | 0.95 ^{\{ 15 \}} | 0.91 ^{\{ 8.5 \}} | 0.88 ^{\{ 3.5 \}} | 0.85 ^{\{ 1 \}} | 0.93 ^{\{ 12 \}} | 0.88 ^{\{ 3.5 \}} | 0.93 ^{\{ 12 \}} | 0.9 ^{\{ 6 \}} | 0.984 ^{\{ 17 \}} | |
200 | \hat{\alpha} | 0.93 ^{\{ 9.5 \}} | 0.95 ^{\{ 15 \}} | 0.95 ^{\{ 15 \}} | 0.91 ^{\{ 6.5 \}} | 0.94 ^{\{ 12.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.9 ^{\{ 4.5 \}} | 0.9 ^{\{ 4.5 \}} | 0.91 ^{\{ 6.5 \}} | 0.85 ^{\{ 1 \}} | 0.95 ^{\{ 15 \}} | 0.94 ^{\{ 12.5 \}} | 0.93 ^{\{ 9.5 \}} | 0.88 ^{\{ 3 \}} | 0.86 ^{\{ 2 \}} | 0.972 ^{\{ 17 \}} |
\hat{\lambda} | 0.9 ^{\{ 6 \}} | 0.88 ^{\{ 5 \}} | 0.95 ^{\{ 14 \}} | 0.93 ^{\{ 11.5 \}} | 0.96 ^{\{ 15 \}} | 0.97 ^{\{ 16 \}} | 0.87 ^{\{ 3.5 \}} | 0.91 ^{\{ 7.5 \}} | 0.93 ^{\{ 11.5 \}} | 0.91 ^{\{ 7.5 \}} | 0.86 ^{\{ 2 \}} | 0.81 ^{\{ 1 \}} | 0.92 ^{\{ 9.5 \}} | 0.87 ^{\{ 3.5 \}} | 0.98 ^{\{ 17 \}} | 0.92 ^{\{ 9.5 \}} | 0.949 ^{\{ 13 \}} | |
350 | \hat{\alpha} | 0.92 ^{\{ 9 \}} | 0.91 ^{\{ 7 \}} | 0.89 ^{\{ 4.5 \}} | 0.89 ^{\{ 4.5 \}} | 0.94 ^{\{ 13 \}} | 0.91 ^{\{ 7 \}} | 0.93 ^{\{ 11 \}} | 0.93 ^{\{ 11 \}} | 0.98 ^{\{ 17 \}} | 0.97 ^{\{ 16 \}} | 0.87 ^{\{ 1 \}} | 0.96 ^{\{ 14 \}} | 0.88 ^{\{ 2.5 \}} | 0.88 ^{\{ 2.5 \}} | 0.93 ^{\{ 11 \}} | 0.91 ^{\{ 7 \}} | 0.962 ^{\{ 15 \}} |
\hat{\lambda} | 0.95 ^{\{ 15 \}} | 0.97 ^{\{ 17 \}} | 0.92 ^{\{ 5 \}} | 0.94 ^{\{ 11 \}} | 0.94 ^{\{ 11 \}} | 0.94 ^{\{ 11 \}} | 0.91 ^{\{ 3 \}} | 0.92 ^{\{ 5 \}} | 0.94 ^{\{ 11 \}} | 0.95 ^{\{ 15 \}} | 0.92 ^{\{ 5 \}} | 0.83 ^{\{ 1 \}} | 0.93 ^{\{ 7 \}} | 0.88 ^{\{ 2 \}} | 0.94 ^{\{ 11 \}} | 0.95 ^{\{ 15 \}} | 0.936 ^{\{ 8 \}} | |
\sum Ranks | 84 ^{\{ 5 \}} | 123 ^{\{ 11 \}} | 126 ^{\{ 13 \}} | 112.5 ^{\{ 9 \}} | 105.5 ^{\{ 8 \}} | 102.5 ^{\{ 7 \}} | 62 ^{\{ 3 \}} | 102 ^{\{ 6 \}} | 135.5 ^{\{ 15 \}} | 127 ^{\{ 14 \}} | 60.5 ^{\{ 2 \}} | 72.5 ^{\{ 4 \}} | 124 ^{\{ 12 \}} | 56.5 ^{\{ 1 \}} | 141 ^{\{ 16 \}} | 114.5 ^{\{ 10 \}} | 187 ^{\{ 17 \}} |
48.2 | 48.2 | 55.6 | 49.4 | 54.7 | 84.4 | 85.6 | 92.1 | 115.7 | 92.7 |
87.4 | 104.1 | 86.6 | 96.7 | 74.1 | 70.4 | 84 | 80.3 | 86.5 | 86.9 |
104.7 | 74.3 | 66.7 | 79.1 | 65.7 | 78.6 | 59.9 | 59 | 72.6 | 66.6 |
89.9 | 75.2 | 72.1 | 63.2 | 70.3 | 58.9 | 59.7 | 72.6 | 55.3 | 62.6 |
55.5 | 60.4 | 84.2 | 68.9 | 65.2 | 70 | 56.6 | 56.3 | 71.9 | 60.3 |
54 | 65.2 | 56.3 | 69.6 | 68.8 | 66 | 63.5 | 64.9 |
Model | AD | CM | KS | KS p -value | Estimates (SEs) |
WDEx | 0.22888 | 0.03088 | 0.05815 | 0.98949 | \hat{\alpha}=132.362\ (56.1205) |
\hat{\lambda}=0.07249\ (0.00691) | |||||
FW | 0.38156 | 0.04884 | 0.06949 | 0.94209 | \hat{\alpha}=4.46474\ (66.2443) |
\hat{\beta}=3.17550\ (115.269) | |||||
\hat{\lambda}=25.3428\ (579.785) | |||||
\hat{k}=1.25626\ (18.6392) | |||||
BEx | 0.27609 | 0.04162 | 0.07932 | 0.85886 | \hat{a}=75.9965\ (84.8089) |
\hat{b}=1.91398\ (1.80320) | |||||
\hat{\lambda}=0.05573\ (0.03166) | |||||
EEx | 0.23791 | 0.03101 | 0.08120 | 0.83898 | \hat{\alpha}=232.474\ (126.888) |
\hat{\lambda}=0.08431\ (0.00884) | |||||
G | 0.45378 | 0.07394 | 0.08162 | 0.83451 | \hat{a}=24.6226\ (4.54042) |
\hat{b}=0.34427\ (0.06413) | |||||
EW | 0.23348 | 0.03278 | 0.08179 | 0.83263 | \hat{\beta}=1.15364\ (0.11836) |
\hat{\lambda}=0.03802\ (0.02282) | |||||
\hat{\theta}=106.742\ (69.8959) | |||||
HEEx | 0.31048 | 0.04283 | 0.08205 | 0.82975 | \hat{\alpha}=3.80452\ (0.75598) |
\hat{\lambda}=0.00662\ (0.00113) | |||||
\hat{\theta}=2115870\ (11864.4) | |||||
APEEx | 0.22899 | 0.03147 | 0.08234 | 0.82653 | \hat{\alpha}=1.22817\ (1.95307) |
\hat{a}=0.08631\ (0.01593) | |||||
\hat{c}=248.897\ (168.117) | |||||
FWMEx | 0.43428 | 0.06586 | 0.09245 | 0.70449 | \hat{a}=0.01001\ (0.01317) |
\hat{\alpha}=18.1993\ (114.082) | |||||
\hat{\lambda}=40.6229\ (6.75603) | |||||
\hat{k}=0.47024\ (2.94764) | |||||
MOAPEx | 0.77269 | 0.12783 | 0.09341 | 0.69217 | \hat{\alpha}=413.107\ (876.070) |
\hat{\lambda}=0.11824\ (0.01269) | |||||
\hat{\theta}=674.591\ (637.159) | |||||
MOEx | 0.77594 | 0.12836 | 0.09397 | 0.68499 | \hat{\alpha}=4174.02\ (3747.42) |
\hat{\lambda}=0.11858\ (0.01261) | |||||
W | 1.19149 | 0.18595 | 0.12496 | 0.32540 | \hat{a}=4.88793\ (0.46156) |
\hat{b}=77.6595\ (2.21593) | |||||
APEx | 0.42964 | 0.06957 | 0.28502 | 0.00016 | \hat{\alpha}=1432.64\ (802.869) |
\hat{\lambda}=0.00352\ (0.00233) | |||||
TEx | 0.43477 | 0.07062 | 0.39111 | #60;0.00001 | \hat{\lambda}= -1.00000 \ (0.51995) |
\hat{\theta}=0.02028\ (0.00262) | |||||
Ex | 0.45213 | 0.07366 | 0.49029 | #60;0.00001 | \hat{\lambda}=0.01398\ (0.00183) |
Method | \hat{\alpha} | \hat{\lambda} | AD | CM | KS | KS p -value |
MLE | 132.36153 | 0.07249 | 0.22888 | 0.03088 | 0.05815 | 0.98949 |
WLSE | 132.36153 | 0.07269 | 0.22855 | 0.03084 | 0.06117 | 0.98173 |
CVME | 132.36173 | 0.07270 | 0.22853 | 0.03083 | 0.06138 | 0.98107 |
OLSE | 132.36145 | 0.07273 | 0.22849 | 0.03083 | 0.06173 | 0.97992 |
PCE | 132.36153 | 0.07295 | 0.22812 | 0.03078 | 0.06516 | 0.96630 |
ADE | 155.92600 | 0.07513 | 0.22928 | 0.03068 | 0.06857 | 0.94795 |
MPS | 130.36158 | 0.07244 | 0.22857 | 0.03086 | 0.06015 | 0.98469 |
RTADE | 157.11897 | 0.07521 | 0.22939 | 0.03068 | 0.06846 | 0.94860 |
BMC | 194.1689 | 0.07856 | 0.23413 | 0.03148 | 0.08025 | 0.84907 |
BTK | 160.4825 | 0.07402 | 0.49763 | 0.07956 | 0.08157 | 0.83500 |