Research article Special Issues

Conditional Ulam stability and its application to von Bertalanffy growth model

  • Received: 08 November 2021 Revised: 14 December 2021 Accepted: 09 January 2022 Published: 13 January 2022
  • The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model $ \frac{dw}{dt} = aw^{\frac{2}{3}}-bw $, where $ w $ denotes mass and $ a > 0 $ and $ b > 0 $ are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.

    Citation: Masakazu Onitsuka. Conditional Ulam stability and its application to von Bertalanffy growth model[J]. Mathematical Biosciences and Engineering, 2022, 19(3): 2819-2834. doi: 10.3934/mbe.2022129

    Related Papers:

  • The purpose of this paper is to apply conditional Ulam stability, developed by Popa, Rașa, and Viorel in 2018, to the von Bertalanffy growth model $ \frac{dw}{dt} = aw^{\frac{2}{3}}-bw $, where $ w $ denotes mass and $ a > 0 $ and $ b > 0 $ are the coefficients of anabolism and catabolism, respectively. This study finds an Ulam constant and suggests that the constant is biologically meaningful. To explain the results, numerical simulations are performed.



    加载中


    [1] L. V. Bertalanffy, Quantitative laws in metabolism and growth, Quarterly Rev. Biol., 32 (1957), 217–231.
    [2] M. Kühleitner, N. Brunner, W. Nowak, K. Renner-Martin, K. Scheicher, Best-fitting growth curves of the von Bertalanffy-Pütter type, Poultry Sci., 98 (2019), 3587–3592. https://doi.org/10.3382/ps/pez122 doi: 10.3382/ps/pez122
    [3] P. Román-Román, D. Romero, F. Torres-Ruiz, A diffusion process to model generalized von Bertalanffy growth patterns: fitting to real data, J. Theoret. Biol., 263 (2010), 59–69. https://doi.org/10.1016/j.jtbi.2009.12.009 doi: 10.1016/j.jtbi.2009.12.009
    [4] J. Calatayud, T. Caraballo, J. C. Cortés, M. Jornet, Mathematical methods for the randomized non-autonomous Bertalanffy model, Electron. J. Differ. Equat., 2020, 50.
    [5] M. P. Edwards, R. S. Anderssen, Symmetries and solutions of the non-autonomous von Bertalanffy equation, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 1062–1067. https://doi.org/10.1016/j.cnsns.2014.08.033 doi: 10.1016/j.cnsns.2014.08.033
    [6] J. Brzdęk, D. Popa, I. Rașa, B. Xu, Ulam stability of operators, Mathematical analysis and its applications, Academic Press, London, 2018.
    [7] M. Onitsuka, Hyers–Ulam stability of first order linear differential equations of Carathéodory type and its application, Appl. Math. Lett., 90 (2019), 61–68. https://doi.org/10.1016/j.aml.2018.10.013 doi: 10.1016/j.aml.2018.10.013
    [8] M. Onitsuka, T. Shoji, Hyers–Ulam stability of first-order homogeneous linear differential equations with a real-valued coefficient, Appl. Math. Lett., 63 (2017), 102–108. http://dx.doi.org/10.1016/j.aml.2016.07.020 doi: 10.1016/j.aml.2016.07.020
    [9] R. Fukutaka, M. Onitsuka, Best constant in Hyers–Ulam stability of first-order homogeneous linear differential equations with a periodic coefficient, J. Math. Anal. Appl., 473 (2019), 1432–1446. https://doi.org/10.1016/j.jmaa.2019.01.030 doi: 10.1016/j.jmaa.2019.01.030
    [10] R. Fukutaka, M. Onitsuka, A necessary and sufficient condition for Hyers–Ulam stability of first-order periodic linear differential equations, Appl. Math. Lett., 100 (2020), 106040. https://doi.org/10.1016/j.aml.2019.106040 doi: 10.1016/j.aml.2019.106040
    [11] D. Popa, I. Rașa, On the Hyers–Ulam stability of the linear differential equation, J. Math. Anal. Appl., 381 (2011), 530–537. https://doi.org/10.1016/j.jmaa.2011.02.051 doi: 10.1016/j.jmaa.2011.02.051
    [12] G. Wang, M. Zhou, L. Sun, Hyers–Ulam stability of linear differential equations of first order, Appl. Math. Lett., 21 (2008), 1024–1028. https://doi.org/10.1016/j.aml.2007.10.020 doi: 10.1016/j.aml.2007.10.020
    [13] A. Zada, O. Shah, R. Shah, Hyers–Ulam stability of non-autonomous systems in terms of boundedness of Cauchy problems, Appl. Math. Comput., 271 (2015), 512–518. https://doi.org/10.1016/j.amc.2015.09.040 doi: 10.1016/j.amc.2015.09.040
    [14] D. Dragičević, Hyers–Ulam stability for a class of perturbed Hill's equations, Results Math., 76 (2021). https://doi.org/10.1007/s00025-021-01442-1 doi: 10.1007/s00025-021-01442-1
    [15] R. Fukutaka, M. Onitsuka, Best constant for Ulam stability of Hill's equations, Bull. Sci. Math., 163 (2020), 102888. https://doi.org/10.1016/j.bulsci.2020.102888 doi: 10.1016/j.bulsci.2020.102888
    [16] M. Onitsuka, Hyers–Ulam stability for second order linear differential equations of Carathéodory type, J. Math. Inequal., 15 (2021), 1499–1518. https://doi.org/10.7153/jmi-2021-15-103 doi: 10.7153/jmi-2021-15-103
    [17] A. Akgül, A. Cordero, J. R. Torregrosa, A fractional Newton method with $2\alpha$th-order of convergence and its stability, Appl. Math. Lett., 98 (2019), 344–351. https://doi.org/10.1016/j.aml.2019.06.028 doi: 10.1016/j.aml.2019.06.028
    [18] N. Bouteraa, M. Inc, A. Akgül, Stability analysis of time-fractional differential equations with initial data, Math. Methods Appl. Sci., https://doi.org/10.1002/mma.7782
    [19] D. Dragičević, Hyers–Ulam stability for nonautonomous semilinear dynamics on bounded intervals, Mediterr. J. Math., 18 (2021), 71. https://doi.org/10.1007/s00009-021-01729-1 doi: 10.1007/s00009-021-01729-1
    [20] J. Huang, S-M. Jung, Y. Li, On Hyers–Ulam stability of nonlinear differential equations, Bull. Korean Math. Soc., 52 (2015), 685–697. https://doi.org/10.4134/BKMS.2015.52.2.685 doi: 10.4134/BKMS.2015.52.2.685
    [21] I. A. Rus, Ulam stability of ordinary differential equations, Stud. Univ. Babeș-Bolyai Math., 54 (2009), 125–133.
    [22] I. A. Rus, Ulam stabilities of ordinary differential equations in a Banach space, Carpathian J. Math., 26 (2010), 103–107.
    [23] M. Choubin, H. Javanshiri, A new approach to the Hyers–Ulam–Rassias stability of differential equations, Results Math., 76 (2021), 11. https://doi.org/10.1007/s00025-020-01318-w doi: 10.1007/s00025-020-01318-w
    [24] S.-M. Jung, A fixed point approach to the stability of differential equations $y' = F(x, y)$, Bull. Malays. Math. Sci. Soc., 33 (2010), 47–56.
    [25] R. Murali, C. Park, A. Ponmana Selvan, Hyers–Ulam stability for an $n$th order differential equation using fixed point approach, J. Appl. Anal. Comput., 11 (2021), 614–631. https://doi.org/10.11948/20190093 doi: 10.11948/20190093
    [26] D. Popa, I. Rașa, A. Viorel, Approximate solutions of the logistic equation and Ulam stability, Appl. Math. Lett., 85 (2018), 64–69. https://doi.org/10.1016/j.aml.2018.05.018 doi: 10.1016/j.aml.2018.05.018
    [27] M. Onitsuka, Conditional Ulam stability and its application to the logistic model, Appl. Math. Lett., 122 (2021), 107565. https://doi.org/10.1016/j.aml.2021.107565 doi: 10.1016/j.aml.2021.107565
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1891) PDF downloads(80) Cited by(3)

Article outline

Figures and Tables

Figures(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog