Citation: Peixian Zhuang, Xinghao Ding, Jinming Duan. Subspace-based non-blind deconvolution[J]. Mathematical Biosciences and Engineering, 2019, 16(4): 2202-2218. doi: 10.3934/mbe.2019108
[1] | G. Wang, D. L. Snyder and J. A. O'Sullivan, et al., Iterative deblurring for CT metal artifact reduction, IEEE Trans. Med. Imag., 28 (1996), 657–664. |
[2] | M. Jiang, G. Wang and M. W. Skinner, et al., Blind deblurring of spiral CT images, IEEE Trans. Med. Imag., 22 (2003), 837–845. |
[3] | X. Kan, Y. Zhang and L. Zhu, et al., Snow cover mapping for mountainous areas by fusion of MODIS L1B and geographic data based on stacked denoising auto-encoders, Computers, Materials and Continua, 57 (2018), 49–68. |
[4] | L. He, D. Ouyang and M. Wang, et al. , A method of identifying thunderstorm clouds in satellite cloud image based on clustering, Computers, Materials and Continua, 57 (2018), 549–570. |
[5] | C. Thorpe, F. Li and Z. Li, et al., A coprime blur scheme for data security in video surveillance, IEEE Trans. Pattern Anal. Machine Intell., 35 (2013), 3066–3072. |
[6] | J. Wang, T. Li and X. Luo, et al., Identifying computer generated images based on quaternion central moments in color quaternion wavelet domain, IEEE Trans. Circuits Syst. Video Technol., (2018), 1. |
[7] | S. Zhou, W. Liang and J. Li, et al., Improved VGG model for road traffic sign recognition, Computers, Materials and Continua, 57 (2018), 11–24. |
[8] | J. Liu, N. Sun and X. Li, et al., Rare bird sparse recognition via part-based gist feature fusion and regularized intraclass dictionary learning, Computers, Materials and Continua, 55 (2018), 435–446. |
[9] | Q. Shan, J. Jia and A. Agarwala, High-quality motion deblurring from a single image, ACM Trans. Graphics., 27 (2008), 73. |
[10] | S. Cho and S. Lee, Fast motion deblurring, ACM Trans. Graphics., 28 (2009), 145. |
[11] | I. Caiszar, Why least squares and maximum entropy? An axiomatic approach to inference for linear inverse problems, Ann. Stat., 8 (1991), 2032–2066. |
[12] | J. Li, Z. Shen and R. Yin, et al., A reweighted ${\ell _2}$ method for image restoration with Poisson and mixed Poisson-Gaussian noise, UCLA Preprint 68 (2012). |
[13] | P. Zhuang, Y. Huang and D. Zeng, et al., Non-blind deconvolution using `1-norm high-frequency fidelity, Multimed. Tools Appl., 76 (2016), 1–9. |
[14] | J. Yang, Y. Zhang and W. Yin, An efficient TVL1 algorithm for deblurring multichannel images corrupted by impulsive noise, SIAM J. Sci. Comput., 31 (2009), 2842–2865. |
[15] | A. Tikhonov, On the stability of inverse problems, Dokl. Akad. Nauk SSSR, 39 (1943), 195–198. |
[16] | S. Osher, L. Rudin and E. Fatemi, Nonlinear total variation based noise removal algorithms, Physica D, 60 (1992), 259–268. |
[17] | Y. Wang, J. Wang and W. Yin, et al., A new alternating minimization algorithm for total variation image reconstruction, SIAM J. Imaging Sci., 1 (2008), 248–272. |
[18] | D. Krishnan and R. Fergus, Fast image deconvolution using hyper-laplacian priors, Adv. Neural Inf. Process. Syst., (2009), 1033–1041. |
[19] | D. Krishnan, T. Tay and R. Fergus, Blind deconvolution using a normalized sparsity measure, IEEE Conf. Comput. Vis. Pattern Recognit., (2011), 2657–2664. |
[20] | L. Xu, C. Lu and Y. Xu, et al., Image smoothing via `0 gradient minimization, ACM Trans. Graphics., 30 (2011), 174. |
[21] | L. Xu, S. Zheng and J. Jia, Unnatural ${\ell _0}$ sparse representation for natural image deblurring, IEEE Conf. Comput. Vis. Pattern Recognit., (2013), 1107–1114. |
[22] | W. Dong, L. Zhang and G. Shi, Centralized sparse representation for image restoration, IEEE Int. Conf. Comput. Vis., (2011), 1259–1266. |
[23] | W. Dong, L. Zhang and G. Shi, et al., Nonlocally centralized sparse representation for image restoration, IEEE Trans. Image Process., 22 (2013), 1620–1630. |
[24] | J. Zhang, D. Zhao and R. Xiong, et al., Image restoration using joint statistical modeling in a space-transform domain, IEEE Trans. Circuits Syst. Video Technol., 24 (2014), 915–928. |
[25] | V. M. Patel, R. Maleh and A. C. Gilbert, et al., Gradient-based image recovery methods from incomplete Fourier measurements, IEEE Trans. Image Process. 21 (2012), 94–105. |
[26] | Z. Wang, A. C. Bovik and H. R. Sheikh, et al., Image quality assessment: from error visibility to structural similarity, IEEE Trans. Image Process., 13 (2004), 600–612. |
[27] | P. Zhuang, X. Fu and Y. Huang,et al., A novel framework method for non-blind deconvolution using subspace images priors, Signal Processing: Image Communication, 46 (2016), 17–28. |
[28] | T. Chan, S. Esedoglu and F. Park, et al., Recent developments in total variation image restoration, Mathematical Models of Computer Vision, 17 (2015). |
[29] | L. Xu and J. Jia, Two-phase kernel estimation for robust motion deblurring, Eur. Conf. Comput. Vis., (2010), 157–170. |
[30] | C. C. Lee and W. L. Hwang, Sparse representation of a blur kernel for out-of-focus blind image restoration, IEEE Int. Conf. Image Process., (2016), 2698–2702. |
[31] | S. Cho, J. Wang and S. Lee, Handling outliers in non-blind image deconvolution, IEEE Int. Conf. Comput. Vis., (2011), 495–502. |
[32] | A. Levin, Y. Weiss and F. Durand, et al., Understanding and evaluating blind deconvolution algorithms, IEEE Conf. Comput. Vis. Pattern Recognit., (2009), 1964–1971. |