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Abstract: In this paper, we develop a novel subspace-based recovery algorithm for non-blind decon-
volution (named SND). With considering visual importance difference between image structures and
smoothing areas, we propose subspace data fidelity for protecting image structures and suppressing
both noise and artifacts. Meanwhile, with exploiting the difference of subspace priors, we put forward
differentiation modelings on different subspace priors for improving deblurring performance. Then we
utilize the least square integration method to fuse deblurred estimations and to compensate information
loss of subspace deblurrings. In addition, we derive an efficient optimization scheme for addressing
the proposed objective function by employing the methods of least square and fast Fourier transform.
Final experimental results demonstrate that the proposed method outperforms several classical and
state-of-the-art algorithms in both subjective and objective assessments.
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1. Introduction

Image deblurring has attracted considerable attention due to its wide applications in the fields of
biomedical imaging [1,2], remote sensing [3,4], multimedia security [5,6], video monitoring [7,8],
and so on. Image blurring has been easily generated from hand-held camera shaking and fast moving
objects when capturing an image. Generally, image blurring issues can be categorized into two classes:
non-blind deconvolution and blind deconvolution. The former is to restore the ideal image from the
observed blurry image and the known blur kernel, while the latter is to recover both the ideal image
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and the unknown blur kernel from the blurry image. The non-blind deconvolution problem is the main
focus of this paper, and image priors are generally introduced to address this problem by regularizing
an optimization objective function as follows:

argmin D(y, k ® x) + AR(x) (1.1

where D(y, k ® x) and R(x) are the data fidelity term and the prior regularization term, respectively. A
is the weighting parameter to balance above terms. y is the blurry image, x is the ideal image, k is the
blur kernel, and ® is the convolution operator. Significant developments of non-blind deconvolution
have been achieved in recent years, and existing methods are briefly reviewed from two viewpoints of
data fidelity and prior regularization:

1.1. Data fidelity

The first category of non-blind deconvolution is based on data fidelity, which is derived from the
energy error between the blurry image and the convolution of the ideal image and the blur kernel.
The forms of data fidelity are mainly modelled according to noise distributions. Most of non-blind
deconvolution methods generally employ the ¢, norm for data fidelity based on Gaussian noise statis-
tics. Then the modified versions of ¢, norm data fidelity are presented to model spatial randomness of
Gaussian noise by using several orders partial derivatives of image noise [9,10]. The weighted ¢, norm
of data fidelity is developed to remove Poisson and mixed Poisson-Gaussian noise in image deblurring
[11,12]. To tackle the problem of impulse noise removal during image deblurring, the £; norm of data
fidelity is presented in [13,14]. The ¢, and ¢, norms for data fidelity presume that different pixels
of image energy error obey the same distribution, namely, different pixels in energy error have the
same visual importance for image deblurring. However, image edges and details are more important
than smoothing areas for visual effect, and better visual results of deblurred images can be achieved
as smaller errors of image edges and details recovery are yielded. The above-mentioned methods not
realize differential processing on different contents, which reckon with visual importance difference of
smoothing areas and image structures.

1.2. Prior regularization

The second family of non-blind deconvolution is based on prior regularization. It exploits sparse
priors of image, gradients or patches to constrain optimization objective functions, and thus one ac-
curate solution is obtained. Many methods of prior regularization [15-24] have been successfully put
forward, and various types of image priors have been shown, such as &, 1, £, (0 < p < 1), £/,
and ¢y norms. In [15], the Tikhonov regularization method presents the £, norm of image prior by
assuming image sparse prior as Gaussian distributions, and the objective function composed of linear
equations can be optimized in inexpensive minimization. Compared with Gaussian distribution priors,
non-Gaussian priors of image gradients are used to preserve better image edges and details. The total
variation (TV) regularization [16,17] has been the well-known £; norm of gradient prior, and small
penalties are imposed on salient edges and details while large penalties on smoothing areas. The litera-
tures [18—21] approximate gradient distributions of natural images by employing £, (0 < p < 1) (HLP),
¢, /¢; and £, norms, respectively. In addition, nonlocal self-similarity of image patches has been widely
used for restoring image edges and details. Centralized sparse representation model (CSR) [22,23]
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employs nonlocal self-similarity priors of image patches for sparse coeffcients and minimizes sparse
coding noise for performance improvement. Joint statistical modeling method (JSM) [24] is presented
to exploit image nonlocal self-similarity in transform domain and local smoothness in space domain,
respectively. Unfortunately, these above methods focus on sparse priors of the overall image but ignore
sparse priors difference of different image subspaces.

In this paper, we develop a new subspace-based non-blind deconvolution method (named SND).
The main contributions of the paper are presented: (1) Considering visual importance difference be-
tween image structures and smoothing areas, we propose subspace data fidelity to realize differential
processing on different image contents for image structures preservation and noise and artifacts sup-
pression. (2) Observing both the difference of subspace priors and the difference between whole image
prior and subspace priors, we present differentiation modelings on subspace priors to exploit the dif-
ference of different subspace priors for performance improvement. (3) We employ the least square
integration method to fuse the deblurred estimations for the final recovered image and to compensate
information loss of subspace deblurrings. (4) We derive an efficient optimization method with least
square and fast Fourier transform for addressing the proposed objective function.

The paper is organized as follows: in section 2, the motivations of data fidelity and subspace prior
are described and then the implementation of the proposed algorithm is detailed. The effectiveness
of the proposed algorithm is verified by numerous experimental results provided in section 3, and the
conclusion is finally drawn in section 4.

2. Method

2.1. Motivation

0.045

0.06

Original e Original e

Subspace e, 0.04 Subspace e, | -
0.05 Subspace e, Subspace e,

Subspace e, 0.035 Subspace e, | |

0.04 {1 o003t

0.025

0.02 -

0.015

0.01

0.005 -

0 £ i L h L 0 " = i . A -
-200 -150 -100 -50 0 50 100 150 200 -200 -150 -100 =50 0 50 100 150 200

(a) Lena (b) Averaging 100 images

Figure 1. Data fidelity error distributions of original and subspace images. X-axis: pixel
range, Y-axis: error values.

2.1.1. Subspace data fidelity

Most of non-blind deconvolution methods assume that image pixels in data fidelity term obey the
same distribution, namely, they are the same visual contribution to non-blind deconvolution. However,
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the literatures [25,26] indicate that image edges and details are most sensitive to human visual system,
image edges are basic features for analyzing and understanding image contents, and their changes
determine basic contents for subjective perception. Figure 1(a) shows data fidelity errors (e = y—k ® x
ande; =h;®(y-k®Xx),i =1,2,3, where {hi}f:1 can be seen in section 2.2 for details) distributions
of original and subspace images of image Lena, and Figure 1(b) shows data fidelity error distributions
of original and subspace images by averaging 100 images (Google dataset in section 3). We can
observe that data fidelity error distributions of subspace images are different from that of original
images, and different subspace images have different data fidelity error distributions. Furthermore,
different subspaces have different relative reconstruction accuracy for image edges and details, and
better reconstruction of image edges and details can be obtained by using better deblurring methods.
Based on the above observation, it is necessary to adopt differential processing on image structures and
smoothing areas for performance improvement.
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Figure 2. Average gradient prior distributions of 100 images for original and subspace im-
ages. X-axis: gradient values, Y-axis: probability values in log2 domain.

2.1.2. Subspace prior

Existing non-blind deconvolution methods employ sparse prior of an original image in the space
domain or other transform domains, however, they reckon without the prior difference between dif-
ferent subspaces and the original image, and even unuse the prior difference of different subspaces.
Furthermore, the sparse prior of original image is a combination of different subspaces priors, and
different subspaces have different sparse priors. Figure 2 shows average gradient prior distributions of
100 images (Google dataset in section 3) for original x and subspace images x; = h,® x,i = 1,2,3
({h,-}?:1 will be detailed in section 2.2). We can see that the gradient distributions of original images
are different from those of subspaces images, and different subspaces have different gradient distribu-
tions. Therefore, it is essential to precisely exploit the difference of subspace priors for performance
improvement.

2.2. Subspace-based non-blind deconvolution

We develop a novel subspace-based non-blind deconvolution algorithm. The subspace data fidelity
term, based on visual importance difference between image structures and smoothing areas, is put
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forward to effectively realize differential modelings of different contents. In the meanwhile, the terms
of subspace priors are proposed to differentially model sparse priors of different subspaces. The final
optimization objective function is established by taking both subspace data fidelity and subspace priors
into consideration:

=

M
X = arg min Zl {Ih;®(y-k® X)||§ + A||h; ® x|} 2.1

M
where Y ||h; ® (y — k ® x)||; are the subspace data fidelity terms which distinguish image structures
i=1

and smoothing areas, and %4: |lh; ® x||, are the subspace priors terms used for the difference of subspace
i=1
priors. M is the total number of image subspaces, and {1}, are the weights to balance above terms.
{h;}”, denote linear and complete filters, which can be used to divide the whole image x into different
subspaces x; = h; ® x,i = 1,2, ..., M. Three convolutional filters are adopted based on their simplicity
and effectiveness, in which the first-order derivative filters ho= [1, —1] and h3= [1; —1] are used to exact
two subspaces x; and x3 that contain high-frequency components of x. Then h; is defined to ensure that
X is uniquely definable in terms of X;, X, and X3. And the frequency response (H;) of corresponding
filter (h;) is satisfied that Hf =1- Hg - Hg, where H, and Hj; are the frequency transform of h, and
h;, respectively. 1 is a matrix that every element equals one. In addition, the £; norm is used to enforce
the sparsity of subspace priors because it performs better constraint on image edges and details [28].
We divide the problem (2.1) into three sub-problems below:

% =argmin |Ih;® (y -~k ®X)|3 +A{h; ®x],, i=1,2,3 2.2)

where X denotes one deblurred estimate of the ideal image x obtained by addressing the i-th sub-
problem, and three deblurred estimates can be achieved (i = 1,2,3). For dealing with the i-th sub-
problem, we introduce the latent variable B; for the £; norm approximation, and then turn the problem
(2.2) into the following form:

5 . 2
(%,8) = argmin [|h; ® (y — k®x)| +4{[[h; @ x - B[, + pil|B] ,} 2.3)
(x,8:)
where p; is a weighting parameter to balance above terms. Then we adopt an alternative iteration
optimization method [17, 18] to seek for a local optimal solution to (2.3). The optimization procedure
reduces to iterating between two sub-problems that can be individually and iteratively optimized. The
two sub-problems are cycled through, and their k-th iterations are formulated below:

ﬁi(k) = arg min ||h,- =3 G _ﬂi”§ + Pi||ﬂi||1 (2.4)

R . 2
£® = argmin |h;® (y-k®x)|; +/li||hi ® X —ﬂ,-(k)”z (2.5)

We present the update algorithms for addressing (2.4) and (2.5) below:
Update for (2.4): A shrinkage operation [17] is used to update the auxiliary variable B, at the k-th
iteration:
B.Y = shrink(h; ® £V, p,) (2.6)
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where shrink(x, p) = ﬁ * max(|x| — p,0), and ﬁ =0if |x| =0.

Update for (2.5): We set the derivative of both sides of the convex sub-problem (2.5) to 0, and
use the least square method [25] with the fast Fourier transform (FFT) [17,18,29] for speeding up
convolution operations. Then the closed-form solution X at the k-th iteration can be derived by

&) _ a1 POA+LT*(h)oF (B;P)
XU =9 YoA+ LA ) @7

where ® = F*(K)OF(y), A = F*(h) 0 F (h;), ¥ = F*(k) ©F (k). F is the FFT operator, ¥ * and F !
are the conjugate transpose and the inverse operator of ¥, respectively. © denotes the element-wise
multiplication operation, and all operations of plus, multiplication and division in (2.7) are performed
component-wise.

After obtaining three deblurred estimates (X(j), j = 1,2, 3) from above subspace-based recovery,
we employ the least square integration method to introduce the degraded image to compensate the
information loss in subspace deblurrings. Then the objective function can be formulated by

3
x = argmin [ly - K@ x|} + > v; X - R()I (2.8)

J=1

where {v J'};: , are the weighting parameters to balance above terms. We use the least square and FFT

methods to address the convex problem (2.8). The final closed-form solution x can be derived by

3
®+ 3 v FIRG))
X = 7_-—1{ =1 } (29)

3
Y+ Z Vj
=1

Note that all above operations in (2.9) are performed component-wise.
We summarize the main steps of the proposed algorithm in Algorithm 1.

Algorithm 1 Outline of Proposed Method

Input: blurry image y, blur kernel Kk, subspace filter h;, weighting parameters A;, p;, v;, i = 1,..., M,
subspace number M = 3, maximum iteration number 7 = 10,i = 1 and k = 1.
while i < M do
initialization: © « y, 8, ¥ « 0.
iterationonk=1,....T:
update 8,© via Eq. (2.6).
update % via Eq. (2.7).
stopping criteria: terminate iteration if k = T, then i < i + 1, otherwise, k < k + 1 and continue
iteration.
end while
update x via Eq. (2.9).
Output: deblurred image x.
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3. Experimental results

In this section, numerous experiments are provided to validate the effectiveness of the proposed
algorithm. All experiments are conducted in Matlab R2016a on a PC with Intel Core 17-4790 CPU
(3.60GHz) and 8G RAM. The improvement in signal-to-noise ratio (ISNR) [30] and the structure
similarity (SSIM) [26] are used to be quantitative measurements, while visual results of deblurred
images are taken as a qualitative evaluation. ISNR is an important indicator to evaluate deblurring
performance, and SSIM is an important measurement to assess reconstruction performance of image
structures. In the proposed algorithm, the maximum iteration number 7 is set to 10 when the stable
convergence of the proposed method can be achieved in Algorithm 1. According to satisfactory per-
formance, weighting parameters {1;}7_, are set to 2x 107>, 1.25x 10~* and 1 x 1074, respectively, {o;}>_,
are all set to 0.01, and {v j}§:1 are set to 0.7, 2 and 1.7, respectively. First, we compare the proposed
method (named SND) with four methods: FTVd [17], HLP [18], JSM [24], and CSR [22]. FTVd and
HLP are based on different priors regularizations of image gradient, while JSM and CSR are based
on nonlocal self-similarity priors of image patches. For the fair comparison, the parameters of four
competitive methods are default settings according to [17,18,22,24]. For the case of noise effect, we
compare SND with four above-mentioned methods under different levels of Gaussian noise. Then we
validate the effectiveness of both subspace data fidelity and subspace prior, respectively. At last, we
compare different integration strategies of image subspaces to demonstrate the effectiveness of least
square integration. In addition, all above parameters are universally fixed for all test images, and the
reasonability of their settings is shown in the following subsection of parameters evaluation.

Figure 3. Original tested images and different blur kernels. From left to right in row 1:
ImO05, Im06, Im07, Im08, respectively. From left to right in row 2: Baby, Cameraman, Lena,
Barbara, respectively. Row 3: 10 types of blur kernels.
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3.1. Levin and Google datasets comparison

We compare the proposed method (SND) with FTVd [17], HLP [18], JSM [24], and CSR [22] on
Levin [32] and Google datasets, respectively. The Levin dataset” includes 4 images (the row1 in Figure
3: Im05-Im08) and 10 types of blur kernels (the row3 in Figure 3). The Google dataset’ is composed of
100 images collected from the Google website (one representative in the row2 of Figure 3) and 10 types
of blur kernels. Each test image is blurred with one type blur kernel and then noised with Gaussian
noise of same standard deviation. Figure 4 shows ISNR and SSIM values of FTVd, HLP, JSM, CSR
and the proposed method, respectively. We can see that the proposed method outperforms FTVd,
HLP, JSM and CSR in large margins of ISNR and SSIM improvements. Meanwhile, Figure 5 shows
the deblurring results of different methods, and SND achieves better results of both image structures
protection and noise suppression. However, there are residual noises in the deblurred results of FTVd,
HLP, JSM and CSR. It is most obvious for FTVd (Figure 5(b)) due to its limitations of initialization
sensitive and total variation. The residual noise is less in HLP (Figure 5(c)) by employing hyper-
laplacian distributions of image gradients. Both JSM (Figure 5(d)) and CSR (Figure 5(¢)) generate
deblurred results of less noise by using nonlocal self-similarity priors of image patches. In addition,
we test different non-blind deconvolution methods on Google dataset to demonstrate the effectiveness
of our model for image universality. The average ISNR and SSIM values of different methods are
presented in Figure 6. Compared with other methods, our method not only retains best ISNR and
SSIM values in all cases, but also yields better perception quality of image structures preservation and
noise reduction.

3.2. Motion blur comparison

We test the proposed method with FTVd [17], HLP [18], JSM [24] and CSR [22] on two images of
Cameraman and Lena, which are both blurred with a motion blur kernel and then noised with the same
standard deviation of Gaussian noise. The motion blur kernel is from the Matlab function fspecial
(‘motion’, length, theta), which is convolved with an image via both linear motion of camera by length
pixels 15 and an angle of theta degrees 45 in a counter-clockwise direction. Table 1 tabulates ISNR
and SSIM results of different methods, meanwhile, Figure 7 illustrates their corresponding deblurred
results of Cameraman image. We can observe that the proposed method outperforms FTVd, HLP, JSM
and CSR in both ISNR and SSIM improvements, in which this advantage becomes more prominent
as image size increases. Meanwhile, SND yields more visually pleasing results of image structures
preservation and both noise and artifacts suppression. In the deblurred results, FTVd (Figure 7(b))
produces serious residual noise, JSM (Figure 7(d)) and CSR (Figure 7(e)) have obvious artifacts and
noise, and HLP (Figure 7(c)) has less noise and artifacts. However, SND in Figure 7(f) yields sharper
visual results. Therefore, the effectiveness of subspace data fidelity and subspace priors in the proposed
method are demonstrated by above results.

“http://webee.technion.ac.il/people/anat.levin/
Thttp://www.escience.cn/people/zhuangpeixian/index.html
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Figure 4. ISNR and SSIM comparisons of different methods on Levin dataset.
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(a) Blurry and kernel

(d) JSM [24] (e) CSR [22] (f) SND

Figure 5. Deblurring results of different methods on ImO8.
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Figure 6. ISNR and SSIM comparisons of different methods on Google dataset.

Table 1. ISNR/SSIM results of different methods on motion blur.

Image FTVd[17] HLP[I8] JSM[24] CSR[22] SND
Cameraman 4.55/0.51  8.15/0.75 5.24/0.64 7.41/0.72 8.91/0.88
Lena 0.32/0.48  5.71/0.76 4.05/0.67 6.04/0.78 7.34/0.93

Mathematical Biosciences and Engineering Volume 16, Issue 4, 2202-2218



2212

(a) Blurry and kernel (b) FTVd [17] (c) HLP [18]

(d) JSM [24] (e) CSR [22] (f) SND

Figure 7. Deblurring results of different methods on Cameraman.

3.3. Noise effect comparison

We compare the proposed method with FTVd [17], HLP [18], JSM [24] and CSR [22] under differ-
ent levels of Gaussian noise. All tests are implemented on Barbara image, which is corrupted by blur
kernel 5 and then noised with different levels of Gaussian noise. We can see from Figure 8 that ISNR
and SSIM plots of the proposed method are almost higher than those of other methods, and this advan-
tage becomes more prominent as the standard deviation of Gaussian noise increases. It is demonstrated
that SND yields better results of image structures protection and noise suppression. We observe that
artifacts and noise are generated in deblurred results of other competitive methods, while our method
maintains better results of protecting image edges and details and suppressing both noise and artifacts.

21 1
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Figure 8. Comparison of different methods under different levels of Gaussian noise.
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3.4. Subspace data fidelity and subspace prior

(a) Blurry and kernel (b) FTVd [17] (c) HLP [18]

(d) JSM [24] (e) L2-SP [27] (f) SND

Figure 9. Comparison of different methods under mixed Gaussian and salt-and-pepper noise.

We conduct related experiments to demonstrate the effectiveness of weighted (subspace) data fi-
delity and subspace prior. First, we compared SND with FTVd (£, norm fidelity and whole image
prior) [17], JSM (£, norm fidelity with both local and non-local image priors), L2-SP (£, norm fidelity
and subspace priors) [27], Outlier-Handling (removing artifacts caused by outliers) [31] in the case
of mixed noise, which demonstrates the effectiveness of weighted data fidelity. Figure 9 shows the
deblurring results of different methods on image Barbara, which is blurred with the blur kernel 10
and then corrupted by mixed noise of Gaussian and salt-and-pepper. We can see that FTVd, JSM and
L2-SP produce serious artifacts and noise in the deblurred results due to the effect of salt-and-pepper
noise, Outlier-Handling removes these artifacts but over-smoothes image edges and details, however,
our method yields clearer visual results, and this superiority benefits from the effectiveness of weighted
data fidelity in salt-and-pepper noise removal. Compared with L2-SP, our data fidelity outperforms ¢,
norm data fidelity in both artifacts suppression and salt-and-pepper noise removal, which is manifested
that weighted data fidelity exploits visual importance difference between image structures and smooth-
ing areas for performance improvement. Second, we compare different schemes of both data fidelity
and image priors to validate the effectiveness of weighted data fidelity and subspace priors. Figure
10 shows average ISNR and SSIM values of different methods on Google dataset. It is noted that the
method of subspace priors outperforms that of whole image prior in deblurring performance. This
superiority is attributed to exploiting subspace priors difference and modeling subspace priors. Under
the same condition of subspace priors, the proposed method with weighted data fidelity overwhelms
that of £, norm data fidelity in performance improvement. Therefore, it is seen that both subspace data
fidelity and subspace priors are advantageous to performance improvement, and SND with the two
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advantages achieves higher deblurring performance, and yields better results of structures preservation
and both noise and artifacts suppression.
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= L2 norm data fidelity + subspaces priors u LZ norm data ﬁdﬂht_." + subspaces priors
16 B Weighted data fidelity + subspaces priors - 1 B Weighted data fidelity + subspaces priors
) 5
2“14 E 0.9
- 12 -
0.8
210 E
= g = 0.7
=
% 6 = 06
7 21
‘s % 0.5
2 2 £
S s 04
: ol I il 2 il
< 5 - - 0.3
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 & 9 10
Blur kermel Blur kernel

Figure 10. Validation of weighted data fidelity and subspaces priors.

3.5. Least square integration
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Figure 11. Validation of least square integration.

We compare different subspaces integration schemes to validate the reasonability of least square in-
tegration. Figure 11 shows average ISNR and SSIM values of FTVd (Original), the method with sum
integration of deblurred estimates (Sum Integration), and the proposed method with least square inte-
gration (Least Square Integration). We can observe that least square integration method outperforms
sum integration method and original method in both ISNR and SSIM improvements, and this advan-
tage is derived from proposed least square integration method with employing the degraded image to
compensate information loss of subspace deblurrings. It is demonstrated that least square integration
is effective in subspaces integration.
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3.6. Parameters Evaluation

16 15 15 15 15
1 I
14
12 14 14 14
10
z g g g g1
=8 Z Z 2] 4
5 13 13 13
12
4
2 12 1 12 11

2
1 5 10 30 50 0.02 0.2 2 20 200 0.0125 0.125 125 125 125 0.01 0.1 100 0.0001 0.001 0.01 0.1 1
T A1(x109) 22 (109 [

1 10
25 (<1074

(a) ISNRvs T (b) ISNR vs 2, (c) ISNR vs 2, (d) ISNR vs 43 (e) ISNR vs p;

15 p 18 p 15 15 = 15

14 n u 14 m

12 12 i 12 ) 12 i 12

l340001 0.001 0.p021 0.1 1 l;.0001 0.001 Oigl 0.1 1 11(]1)()7 0.07 0\.}7‘ 7 70 1101)2 0.2 ‘272 20 200 110.017 0.17 l\z 17 170
(f) ISNR vs p, (g) ISNR vs p3 (h) ISNR vs v, (i) ISNR vs v, () ISNR vs v3

Figure 12. Parameters evaluation.

We investigate the sensitivity of our algorithm to parameters settings when changing one parameter
at a time with fixing the rest at their current values. The plots of ISNR versus (vs) these parameters
are shown in Figure 12. The convergence of the proposed algorithm is firstly analyzed in Figure
12(a) where plots a function of ISNR vs iteration number 7. We observe that the convergence trend
becomes stable until the iteration number reaches 10, which is suitable for being the maximum iteration
number when taking account of a better tradeoff between satisfactory performance and computational
efficiency. In Figure 12(e)-(g), the similar trends can be seen in the plots of ISNR vs three parameters
{p,-}f: 1> and 0.01 is the suitable value for them. In the following, we see that the overall trend of ISNR
vs other rest parameters first increases and then degrades. We can see from Figure 12(b) to (d) that
better ISNR values are achieved when three weighting parameters {/11'},-3:1 are set to 2x 107>, 1.25x 10~
and 1 x 107, respectively. Meanwhile, the plots of ISNR vs three weights v;, v, and v; are illustrated
in Figure 12(h)-(j) where we can see that the ISNR achieves better performance when {v J'}?: , are set to
0.7, 2 and 1.7, respectively. Therefore, the plots of Figure 12 are presented to show the reasonability
of parameters settings in the proposed method.

4. Conclusion

In this paper, an algorithm based on subspace data fidelity and subspace prior has been presented
for non-blind deconvolution. With using visual importance difference between image structures and
smoothing areas, subspace data fidelity outperforms the £, norm data fidelity in protecting image edges
and details and suppressing noise or artifacts. With exploiting the difference of subspace priors, dif-
ferent modelings of subspace priors are proposed for performance improvement. Then least square
integration method is used to fuse deblurred estimations and compensate information loss of subspace
deblurrings. And an efficient optimization scheme using the methods of least square and fast Fourier
transform is derived to address proposed objective function. Final experiments present a comprehen-
sive analysis of the proposed algorithm by objective and subjective assessments. Compared with other
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methods, our method yields higher deblurring performance and better visual results.
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