Research article

Design of robust fuzzy iterative learning control for nonlinear batch processes


  • Received: 06 August 2023 Revised: 17 October 2023 Accepted: 25 October 2023 Published: 07 November 2023
  • In this paper, a two-dimensional (2D) composite fuzzy iterative learning control (ILC) scheme for nonlinear batch processes is proposed. By employing the local-sector nonlinearity method, the nonlinear batch process is represented by a 2D uncertain T-S fuzzy model with non-repetitive disturbances. Then, the feedback control is integrated with the ILC scheme to be investigated under the constructed model. Sufficient conditions for robust asymptotic stability and 2D $ H_\infty $ performance requirements of the resulting closed-loop fuzzy system are established based on Lyapunov functions and some matrix transformation techniques. Furthermore, the corresponding controller gains can be derived from a set of linear matrix inequalities (LMIs). Finally, simulations on the three-tank system and the highly nonlinear continuous stirred tank reactor (CSTR) are carried out to prove the feasibility and efficiency of the proposed approach.

    Citation: Wei Zou, Yanxia Shen, Lei Wang. Design of robust fuzzy iterative learning control for nonlinear batch processes[J]. Mathematical Biosciences and Engineering, 2023, 20(11): 20274-20294. doi: 10.3934/mbe.2023897

    Related Papers:

  • In this paper, a two-dimensional (2D) composite fuzzy iterative learning control (ILC) scheme for nonlinear batch processes is proposed. By employing the local-sector nonlinearity method, the nonlinear batch process is represented by a 2D uncertain T-S fuzzy model with non-repetitive disturbances. Then, the feedback control is integrated with the ILC scheme to be investigated under the constructed model. Sufficient conditions for robust asymptotic stability and 2D $ H_\infty $ performance requirements of the resulting closed-loop fuzzy system are established based on Lyapunov functions and some matrix transformation techniques. Furthermore, the corresponding controller gains can be derived from a set of linear matrix inequalities (LMIs). Finally, simulations on the three-tank system and the highly nonlinear continuous stirred tank reactor (CSTR) are carried out to prove the feasibility and efficiency of the proposed approach.



    加载中


    [1] H. Yoo, H. E. Byun, D. H. Han, J. H Lee, Reinforcement learning for batch process control: Review and perspectives, Annu. Rev. Control, 52 (2021), 108–119. https://doi.org/10.1016/j.arcontrol.2021.10.006 doi: 10.1016/j.arcontrol.2021.10.006
    [2] X. C. Sheng, W. L. Xiong, Soft sensor design based on phase partition ensemble of LSSVR models for nonlinear batch processes, Math. Biosci. Eng., 17 (2020), 1901–1921. https://doi.org/10.3934/mbe.2020100 doi: 10.3934/mbe.2020100
    [3] L. M. Zhou, L. Jia, Y. L. Wang, D. G. Peng, W. D. Tan, An integrated robust iterative learning control strategy for batch processes based on 2D system, J. Process Control, 85 (2020), 136–148. https://doi.org/10.1016/j.jprocont.2019.11.011 doi: 10.1016/j.jprocont.2019.11.011
    [4] Y. Q. Zhou, D. W. Li, F. R. Gao, Conic iterative learning control using distinct data for constrained systems with state-dependent uncertainty, IEEE Trans. Ind. Inf., 18 (2022), 3095–3104. https://doi.org/10.1109/TII.2021.3107522 doi: 10.1109/TII.2021.3107522
    [5] X. D. Zhao, Y. Q. Wang, Improved point-to-point iterative learning control for batch processes with unknown batch-varying initial state, ISA Trans., 125 (2022), 290–299. https://doi.org/10.1016/j.isatra.2021.07.007 doi: 10.1016/j.isatra.2021.07.007
    [6] Y. Geng, X. E. Ruan, Y. Yang, Q. H. Zhou, Data-based iterative learning control for multiphase batch processes, Asian J. Control, 25 (2022), 1392–1406. https://doi.org/10.1002/asjc.2936 doi: 10.1002/asjc.2936
    [7] C. Y. Zhou, L. Jia, Y. Zhou, A two-stage robust iterative learning model predictive control for batch processes, ISA Trans., 135 (2023), 309–324. https://doi.org/10.1016/j.isatra.2022.09.034 doi: 10.1016/j.isatra.2022.09.034
    [8] S. L. Hao, T. Liu, E. Rogers, Extended state observer based indirect-type ILC for single-input single-output batch processes with time- and batch-varying uncertainties, Automatica, 112 (2020), 108673. https://doi.org/10.1016/j.automatica.2019.108673 doi: 10.1016/j.automatica.2019.108673
    [9] R. D. Zhang, F. R. Gao, Two-dimensional iterative learning model predictive control for batch processes: A new state space model compensation approach, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 833–841. https://doi.org/10.1109/TSMC.2018.2883754 doi: 10.1109/TSMC.2018.2883754
    [10] H. Li, S. Q. Wang, H. Y. Shi, C. L. Su, P. Li, Two-dimensional iterative learning robust asynchronous switching predictive control for multiphase batch processes with time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 6488–6502. https://doi.org/10.1109/TSMC.2023.3284078 doi: 10.1109/TSMC.2023.3284078
    [11] Z. You, H. C. Yan, H. Zhang, H. Zhang, S. M. Chen, M. Wang, Fuzzy-dependent-switching control of nonlinear systems with aperiodic sampling, IEEE Trans. Fuzzy Syst., 29 (2021), 3349–3359. https://doi.org/10.1109/TFUZZ.2020.3018552 doi: 10.1109/TFUZZ.2020.3018552
    [12] J. X. Yu, H. Dang, L. M. Wang, Fuzzy iterative learning control-based design of fault tolerant guaranteed cost controller for nonlinear batch processes, Int. J. Control Autom. Syst., 16 (2018), 2518–2527. https://doi.org/10.1007/s12555-017-0614-0 doi: 10.1007/s12555-017-0614-0
    [13] W. P. Luo, L. M. Wang, 2D fuzzy constrained fault-tolerant predictive control of nonlinear batch processes, IEEE Access, 7 (2019), 119259–119271. https://doi.org/10.1109/ACCESS.2019.2936214 doi: 10.1109/ACCESS.2019.2936214
    [14] H. Li, S. Q. Wang, H. Y. Shi, C. L. Su, P. Li, Iterative learning hybrid robust predictive fault-tolerant control for nonlinear batch processes with partial actuator faults, J. Process Control, 129 (2023), 103054. https://doi.org/10.1016/j.jprocont.2023.103054 doi: 10.1016/j.jprocont.2023.103054
    [15] Y. C. Wang, L. F. Zheng, H. G. Zhang, X. W. Zheng, Fuzzy observer-based repetitive tracking control for nonlinear systems, IEEE Trans. Fuzzy Syst., 28 (2020), 2401–2415. https://doi.org/10.1109/TFUZZ.2019.2936808 doi: 10.1109/TFUZZ.2019.2936808
    [16] S. Boyd, E. L. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Control Theory, SIAM, Philadelphia, USA, 1994. https://doi.org/10.1137/1.9781611970777
    [17] I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Syst. Control Lett., 8 (1987), 351–357. https://doi.org/10.1016/0167-6911(87)90102-2 doi: 10.1016/0167-6911(87)90102-2
    [18] H. D. Tuan, P. Apkarian, T. Narikiyo, Y. Yamamoto, Parameterized linear matrix inequality techniques in fuzzy control system design, IEEE Trans. Fuzzy Syst., 9 (2001), 324–332. https://doi.org/10.1109/91.919253 doi: 10.1109/91.919253
    [19] X. P. Xie, H. G. Zhang, Stabilization of discrete-time 2-D T-S fuzzy systems based on new relaxed conditions, Acta Autom. Sinica, 36 (2010), 267–273. https://doi.org/10.1016/S1874-1029(09)60012-4 doi: 10.1016/S1874-1029(09)60012-4
    [20] L. M. Wang, C. J. Zhu, J. X. Yu, L. Ping, R. D. Zhang, F. R. Gao, Fuzzy iterative learning control for batch processes with interval time-varying delays, Ind. Eng. Chem. Res., 56 (2017), 3994–4001. https://doi.org/10.1021/acs.iecr.6b04637 doi: 10.1021/acs.iecr.6b04637
    [21] H. Y. Han, Y. Yang, L. L. Li, S. X. Ding, Performance-based fault detection and fault-tolerant control for nonlinear systems with T-S fuzzy implementation, IEEE Trans. Cybern., 51 (2021), 801–814. https://doi.org/10.1109/TCYB.2019.2951534 doi: 10.1109/TCYB.2019.2951534
    [22] B. C. Ding, X. B. Ping, Output feedback predictive control with one free control move for nonlinear systems represented by a Takagi–Sugeno model, IEEE Trans. Fuzzy Syst., 22 (2014), 249–263. https://doi.org/10.1109/TFUZZ.2013.2251637 doi: 10.1109/TFUZZ.2013.2251637
    [23] H. F. Xie, J. Wang, X. M. Tang, Robust constrained model predictive control for discrete-time uncertain system in Takagi-Sugeno's form, Asian J. Control, 20 (2018), 1566–1581. https://doi.org/10.1002/asjc.1603 doi: 10.1002/asjc.1603
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1017) PDF downloads(57) Cited by(0)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog