
http://www.aimspress.com/journal/mbe

MBE, 20(11): 20274–20294.
DOI: 10.3934/mbe.2023897
Received: 06 August 2023
Revised: 17 October 2023
Accepted: 25 October 2023
Published: 07 November 2023

Research article

Design of robust fuzzy iterative learning control for nonlinear batch
processes

Wei Zou1, Yanxia Shen1,*and Lei Wang2

1 Engineering Research Center of Internet of Things Technology Applications, Ministry of
Education, Jiangnan University, Wuxi 214122, China

2 School of Automation, Wuxi University, Wuxi 214105, China

* Correspondence: Email: shenyx@jiangnan.edu.cn.

Abstract: In this paper, a two-dimensional (2D) composite fuzzy iterative learning control (ILC)
scheme for nonlinear batch processes is proposed. By employing the local-sector nonlinearity method,
the nonlinear batch process is represented by a 2D uncertain T-S fuzzy model with non-repetitive
disturbances. Then, the feedback control is integrated with the ILC scheme to be investigated under
the constructed model. Sufficient conditions for robust asymptotic stability and 2D H∞ performance
requirements of the resulting closed-loop fuzzy system are established based on Lyapunov functions
and some matrix transformation techniques. Furthermore, the corresponding controller gains can be
derived from a set of linear matrix inequalities (LMIs). Finally, simulations on the three-tank system
and the highly nonlinear continuous stirred tank reactor (CSTR) are carried out to prove the feasibility
and efficiency of the proposed approach.
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1. Introduction

Due to their high efficiency and flexibility, batch processes play a significant role in modern indus-
tries. They are widely applied in specialty chemicals, polymers, pharmaceuticals and biochemicals,
advanced alloys, modern agriculture and other fields and have received considerable attention [1, 2].
Batch processes are characterized by strong time-variance, high nonlinearity, an unstable operating
point, and a uniquely repetitive nature [3]. These challenges inevitably make the control problem of
the batch processes more difficult and complicated. Therefore, it is particularly necessary to develop
modeling and control methods for batch processes.

Driven by the feature of repetitive operation in batch processes, iterative learning control (ILC)
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has been extensively researched by scholars. ILC has proven to be an excellent tool for achieving
perfect tracking and control optimization by repeatedly learning from the knowledge of the previous
iterations. With this method, the transient response and tracking performance of batch processes can
be progressively improved. For constrained batch processes with state-dependent uncertainty, a conic
ILC control law was implemented in [4] and a detailed convergence proof was provided. The authors
in [5] investigated a point-to-point ILC to deal with the problem of unknown batch-varying initial state
in batch processes. Based on system parameter information, Geng et al. [6] put forward the data-
based ILC strategy for multiphase batch processes with different dimensions and system uncertainty
to address the problem of the robustness conditions. However, these ILC algorithms, when taken as
pure ILC schemes, are essentially the open-loop feed-forward control techniques from a separate batch
perspective. The pure ILC schemes cannot achieve satisfactory control performance when the batch
process is affected by uncertainties and real-time perturbations, since this control law only uses the
information of previous batches lacks real-time feedback information [7]. New strategies should be
developed to allow for the high precision control of batch processes.

Given this, by taking the inherent two-dimensional (2D) nature of batch processes under ILC into
account, a combination of a real-time feedback control mechanism and pure ILC design based on 2D
systems theory has been successfully applied. For batch processes with time-varying uncertainties
and external disturbances, a generalized extended state observer based indirect-type ILC design was
discussed in [8]. In order to achieve an improved control performance of batch processes under uncer-
tainty, the authors in [9] explored a composite ILC strategy where the model’s predictive control and
ILC are integrated based on the 2D framework. In addition, Li et al. [10] proposed an iterative learning-
based predictive algorithm for multiphase batch processes with asynchronous switching and complex
characteristics; this 2D integrated control method ensured the system’s asymptotic and exponential
stability.

Among the aforementioned studies, most of the 2D composite ILC methods are formulated on
linear models, which are not sufficient enough to describe a practical nonlinear system. Nevertheless,
in modeling practical phenomena, batch processes are frequently in the form of complex nonlinear
systems, which pose great difficulties in terms of system analysis and synthesis. Therefore, the Takagi-
Sugeno (T-S) fuzzy model is introduced and has attracted considerable attention. In essence, T-S
fuzzy models are characterized by a group of fuzzy IF-THEN rules and fuzzy sets to approximate any
smooth nonlinear function with arbitrary accuracy [11]. More importantly, it is feasible to apply the
2D systems theory to study the controller design problems for nonlinear batch processes. Yu et al. [12]
designed the 2D controller, where the fuzzy iterative learning controller is combined with the reliable
guaranteed cost controller for nonlinear batch processes described by the 2D T-S fuzzy model. For
nonlinear batch process with an actuator fault and according to the T-S fuzzy model, Luo et al. [13]
presented a 2D fuzzy constrained iterative learning predictive fault-tolerant control strategy, which
guarantees the steady operation and exponential convergence of the resulting closed-loop system. It is
noteworthy that the available results are concerned with 2D fuzzy ILC for nonlinear batch processes
without considering the influence of uncertainties. In fact, uncertainties and non-repetitive disturbances
are always present in nonlinear batch processes based on T-S fuzzy models. To this end, Li et al. [14]
proposed an approach that combines robust predictive fault-tolerant control and an ILC based on a 2D
T-S fuzzy Roesser model for batch processes subject to uncertainties, disturbances and partial actuator
faults. This scheme applied the robust positive invariant and the terminal constraint set to achieve
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satisfactory control effects. This paper utilizes the fuzzy Lyapunov theory and 2D H∞ methodology to
ensure robust stability under non-repetitive disturbances and uncertainties.

This paper investigates a robust fuzzy ILC algorithm for nonlinear batch processes based on T-S
fuzzy models. With the local-sector nonlinearity method, the nonlinear batch process is transformed
into an uncertain 2D T-S fuzzy model with non-repetitive disturbances. Our goal is to develop an
effective design strategy that ensures the closed-loop 2D T-S fuzzy system is asymptotically stable and
has a H∞ performance.

The main contributions of this research work are highlighted as follows:
1) T-S fuzzy models have been exploited to represent the nonlinear batch processes.
2) Based on Lyapunov functions and some matrix transformation techniques, the results of asymp-

totic stability and a 2D H∞ performance analysis are obtained.
3) A systematic robust fuzzy iterative learning controller design method is derived in terms of a set

of linear matrix inequality (LMI) constraints.
The present work is organized as follows. Section 2 gives a problem formulation and some prelimi-

naries. A set of sufficient conditions and a 2D fuzzy ILC law are presented in Section 3. Two practical
examples are given in Section 4, and a concise conclusion is drawn in Section 5.

Throughout this paper, all matrices are assumed to be of appropriate dimensions. The superscripts
“−1”, “T” and “⊥” represent inverse, transpose, and null space of a matrix, respectively. Additionally,
the symbol 0 and I refer to the null and identity matrices with compatible dimensions, respectively.
For a matrix X, X > 0 (X < 0) means that X is a real symmetric positive definite (negative definite)
matrix, sym(X) stands for X + XT and “(∗)” indicates the symmetric elements. Finally, the symbol
diag{X1, X2, ..., Xn} indicates a block diagonal matrix with diagonal blocks X1, X2, ..., Xn. A 2D signal

w(i, j) ∈ L2 represents that w(i, j) is in the L2 space, which implies ∥w∥2 =
√∑∞

i=0
∑∞

i=0 ∥w(i, j)∥2 < ∞.

2. System description and problem statement

Consider a class of nonlinear continuous-time systems running repeatedly, described by the follow-
ing state-space model: ẋ(t, k) = f [x(t, k), u(t, k)]

y(t, k) = g [x(t, k)] , 0 ≤ t ≤ Td, k ≥ 0
(2.1)

where on the kth batch, x(t, k) ∈ Rn, u(t, k) ∈ Rm, and y(t, k) ∈ Rl represent the state, input and
output vectors, respectively, Td is the time period of a batch, and f [x(t, k), u(t, k)] and g [x(t, k)] denote
nonlinear functions with proper dimensions.

The discrete linear model can be obtained by applying the local sector nonlinear method, and using
an appropriate average sampling time. Therefore, the nonlinear plant (1) can be converted into a
discrete uncertain 2D T-S fuzzy model, which is represented by IF-THEN rules as follows:

Plant Rule i: IF ϑ1(t, k) isMi1 and ϑ j(t, k) isMi j, . . . , ϑp(t, k) isMip, THENx(t + 1, k) = (Ai + ∆Ai(t))x(t, k) + (Bi + ∆Bi(t))u(t, k) + w(t, k)
y(t, k) = Cix(t, k), i = 1, 2, . . . , r, j = 1, 2, . . . , p

(2.2)
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where ϑ(t, k) =
[
ϑ1(t, k), ϑ2(t, k), . . . , ϑp(t, k)

]
stands for a premise variable vector, Mi j(i =

1, 2, . . . , r; j = 1, 2, . . . , p) are the fuzzy sets, r is the fuzzy rule number and p is the number of premise
variables. It is considered that x(0, k) = x0 is the initial condition for each batch. w(t, k) denotes the
unknown disturbance, which is assumed to belong to L2 space. {Ai, Bi,Ci} consists of system matrices
with compatible dimensions. Moreover, the output matrices of all fuzzy subsystems are assumed to
be common (i.e., C1 = C2 = · · · = Cr = C). The common C matrix condition can largely reduce the
complexity of the design and computation, though, in theory, it may increase the level of conservative-
ness [15]. It is assumed that CBi , 0. Besides, {∆Ai(t),∆Bi(t)} represents the uncertainty terms in the
following form:

[∆Ai(t) ∆Bi(t) ] = E∆(t) [FAi FBi ], ∆(t)T∆(t) ≤ I (2.3)

where E, FAi and FBi are known real constant matrices of appropriate dimensions and ∆(t) indicates
the uncertain perturbation.

Let µi(ϑ(t, k)) represent the normalized fuzzy-basis function of the inferred fuzzy set Mi =∏p
j=1Mi j, which is defined as follows:

µi(ϑ(t, k)) =

∏p
j=1Mi j(ϑ j(t, k))∑r

i=1
∏p

j=1Mi j(ϑ j(t, k))
≥ 0,

r∑
i=1

µi(ϑ(t, k)) = 1 (2.4)

whereMi j(ϑ j(t, k)) is regarded as the grade of membership of ϑ j(t, k) inMi j. In the sequel, µi(ϑ(t, k))
is written by either µi or µi(t, k)(i = 1, 2, . . . , r) for brevity.

As an application of a standard fuzzy inference method, the final uncertain T-S fuzzy system in the
global model can be expressed by the ILC setting as follows:{

x(t + 1, k) = (A(µ) + ∆A(µ))x(t, k) + (B(µ) + ∆B(µ))u(t, k) + w(t, k)
y(t, k) = Cx(t, k)

(2.5)

where

A(µ) =
r∑

i=1

µiAi, ∆A(µ) =
r∑

i=1

µi∆Ai, B(µ) =
r∑

i=1

µiBi, ∆B(µ) =
r∑

i=1

µi∆Bi (2.6)

Define the tracking error on k batch as follows:

e(t, k) = yd(t) − y(t, k) (2.7)

where yd(t) is the reference trajectory vector. This tracking error is used to adjust the input vector such
that the actual output y(t, k) gradually approximates the reference trajectory vector.

To formulate the robust ILC design problem in the 2D T-S fuzzy framework, the following classical
ILC strategy can be considered, where the current batch input is formed by the combination of the
previous batch and a correction term:

u(t, k) = u(t, k − 1) + r(t, k) (2.8)
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where r(t, k) is the modification term, and u(t, 0) is the initial value of the iterative algorithm, which is
commonly reset to zero for implementation. Next, introduce the vector:

δx(t, k) = x(t, k) − x(t, k − 1). (2.9)

Without loss of generality, it is assumed that yd(0) = y(0, k) = Cx(0, k) and hence δx(0, k) = 0. From
(2.2)–(2.9), the following equations can be obtained:

δx(t + 1, k) = (A(µ) + ∆A(µ))δx(t, k) + (B(µ) + ∆B(µ))r(t, k) + w̄(t, k)
e(t + 1, k) = e(t + 1, k − 1) −C(A(µ) + ∆A(µ)δx(t, k) −C(B(µ) + ∆B(µ))r(t, k) −Cw̄(t, k)

(2.10)

where w̄(t, k) = w1(t, k) + w(t, k) − w(t, k − 1), w1(t, k) = (A(δµ) + ∆A(δµ))x(t, k − 1) + (B(δµ) +
∆B(δµ))u(t, k − 1), A(δµ) =

∑r
i=1(µi(ϑ(t, k)) − µi(ϑ(t, k − 1)))Ai, ∆A(δµ) =

∑r
i=1(µi(ϑ(t, k)) − µi(ϑ(t, k −

1)))∆Ai, B(δµ) =
∑r

i=1(µi(ϑ(t, k)) − µi(ϑ(t, k − 1)))Bi, ∆B(δµ) =
∑r

i=1(µi(ϑ(t, k)) − µi(ϑ(t, k − 1)))∆Bi.
Motivated by the parallel distributed compensation method, we consider the following fuzzy ILC

updating law in this paper:
Rule i: IF ϑ1(t, k) isMi1 and ϑ j(t, k) isMi j, . . . , ϑp(t, k) isMip, THEN

r(t, k) = Ki

[
δx(t, k)

e(t + 1, k − 1)

]
(2.11)

where Ki is the controller gain to be solved. By fuzzy blending, the overall fuzzy correction law can
be rewritten in a compact form:

r(t, k) = K(µ)
[
δx(t, k)

e(t + 1, k − 1)

]
(2.12)

where K(µ) =
∑r

i=1 µiKi.

Let
[
xh(t, k)
xv(t, k)

]
=

[
δx(t, k)

e(t + 1, k − 1)

]
and then

[
xh(t + 1, k)
xv(t, k + 1)

]
=

[
δx(t + 1, k)
e(t + 1, k)

]
. From (2.10) and (2.12), the

closed-loop 2D fuzzy system is
[
xh(t + 1, k)
xv(t, k + 1)

]
= Â(µ)

[
xh(t, k)
xv(t, k)

]
+ B̂w̄(t, k)

z(t, k) = Ĉ
[
xh(t, k)
xv(t, k)

] (2.13)

where Â(µ) = (Ā(µ) + ∆Ā(µ)) + (B̄(µ) + ∆B̄(µ))K(µ), B̂ =
[

I
−C

]
, Ĉ =

[
0 I
]
, Ā(µ) =

[
A(µ) 0
−CA(µ) I

]
,

∆Ā(µ) =
[
∆A(µ) 0
−C∆A(µ) 0

]
= Ê∆(t)F̂A(µ), B̄(µ) =

[
B(µ)
−CB(µ)

]
, ∆B̄(µ) =

[
∆B(µ)
−C∆B(µ)

]
= Ê∆(t)FB(µ), Ê =[

E
−CE

]
, F̂A(µ) =

[
FA(µ) 0

]
. The boundary conditions are supposed to satisfy the following:

lim
N→∞

N∑
n=0

(|xh(0, n)|2 + |xv(n, 0)|2) < ∞ (2.14)
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In order to show the main purpose of this study, several lemmas and definitions are introduced as
follows.

Lemma 1. [16] Let Γ = ΓT , Λ and Σ be given matrices of appropriate dimensions. Then, the
following two statements are equivalent:

1) There exists a matrix variable W such that satisfies:

Γ + sym{ΛT WΣ} < 0.

2) The following conditions hold:
Λ⊥TΓΛ⊥ < 0, i fΣ⊥ = 0,Λ⊥ , 0;
Σ⊥TΓΣ⊥ < 0, i fΛ⊥ = 0,Σ⊥ , 0;
Λ⊥TΓΛ⊥ < 0, Σ⊥TΓΣ⊥ < 0, i fΛ⊥ , 0,Σ⊥ , 0.

where Λ⊥ and Σ⊥ are arbitrary matrices whose columns form a basis of the null spaces of Λ and Σ,
respectively.

Lemma 2. [17] Let R = RT , X, Y and ∆(t) be appropriately dimensioned matrices or vectors, and
∆(t)T∆(t) ≤ I. Then,

R + sym{X∆(t)Y} < 0

holds if and only if there exists ε > 0 such that

R + εXXT + ε−1YT Y < 0.

Lemma 3. [18] For matrices Φi j(i, j = 1, 2, . . . , r),
∑r

i=1
∑r

j=1 µi(ϑ(t, k))µ j(ϑ(t, k))Φi j < 0 is fulfilled
if the following inequalities hold:

Φii < 0, i = 1, 2, . . . , r,
1

r − 1
Φii +

1
2

(Φi j + Φ ji) < 0, i , j, i, j = 1, 2, . . . , r.

Definition 1. [19] The resulting uncertain 2D fuzzy system (2.13) with w̄(t, k) = 0 is is called 2D
robustly asymptotically stable if the system meets the following:

lim
t+k→∞

∥∥∥∥∥∥
[

xh(t, k)
xv(t, k)

]∥∥∥∥∥∥ = 0 (2.15)

for any boundary condition satisfying Eq (2.14).
Definition 2. [12] For any scalar γ > 0, the resulting closed-loop system (2.13) is said to have H∞

performance level γ if under zero boundary conditions, ∥z∥2 < γ2∥w̄∥2 holds for all non-zero w̄ ∈ L2.
The main purpose of this article is to derive the sufficient conditions for the design of the fuzzy ILC

scheme in the form of (2.8) and (2.12) such that the resulting closed-loop fuzzy system (2.13) achieves
asymptotic stability with a robust H∞ performance index.
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3. Main results

3.1. Performance analysis of 2D fuzzy ILC system

In this section, sufficient conditions are presented to guarantee both the asymptotic stability and the
H∞ performance of the resulting 2D closed-loop fuzzy system (2.13).

Theorem 1. Given a scalar γ > 0, a robust ILC scheme described by the 2D closed-loop system
(2.13) is asymptotically stable and has H∞ performance γ if there exists a symmetric positive matrix
P = diag

{
Ph, Pv

}
satisfying the following condition for all µ:[

Â(µ)T PÂ(µ) − P + ĈTĈ Â(µ)T PB̂
∗ B̂T PB̂ − γ2I

]
< 0 (3.1)

Proof. First, we prove the asymptotic stability of the closed-loop system (2.13) under the condition
w̄(t, k) = 0. The following fuzzy Lyapunov function candidate is considered:

V(t, k) =Vh(t, k) + Vv(t, k)
Vh(t, k) =xh(t, k)T Phxh(t, k)
Vv(t, k) =xv(t, k)T Pvxv(t, k)

(3.2)

Then, along the trajectory of system (2.13), one has the following:

∇V(t, k) =Vh(t + 1, k) − Vh(t, k) + Vv(t, k + 1) − Vv(t, k) =[
xh(t, k)
xv(t, k)

]T
(Â(µ)T PÂ(µ) − P)

[
xh(t, k)
xv(t, k)

] (3.3)

Recalling (3.1), it can be obtained that Â(µ)T PÂ(µ) − P < 0. Hence, for arbitrary
[

xh(t, k)
xv(t, k)

]
, 0,

the following condition is valid,

Vh(t + 1, k) + Vv(t, k + 1) ≤ Vh(t, k) + Vv(t, k) (3.4)

Similar to [20], one can take the summation on both sides of (3.4) from 0 to n with respect to t and
from n to 0 with respect to k; then,

Vh(1, n) + Vv(0, n + 1) + Vh(2, n − 1) + Vv(1, n) + · · · + Vh(n + 1, 0) + Vv(n, 1)

=
∑

t+k=n+1

Vh(t, k) +
∑

t+k=n+1

Vv(t, k)

=
∑

t+k=n+1

V(t, k)

≤ Vh(0, n) + Vv(0, n) + · · · + Vh(n, 0) + Vv(n, 0)

=
∑

t+k=n

V(t, k).

(3.5)

Obviously, the function is decreasing along the state trajectories, and it is easy to obtain that
limt+k→∞ V(t, k) = 0, namely,

lim
t+k→∞

∥∥∥∥∥∥
[

xh(t, k)
xv(t, k)

]∥∥∥∥∥∥ = 0 (3.6)
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From Definition 1, the asymptotic stability of the resulting 2D dynamics (2.13) is guaranteed.
Next, we shall establish the 2D H∞ performance of the system (2.13) under zero boundary condi-

tions for any nonzero w̄(t, k) ∈ L2. One can obtain the following:

∇V(t, k) + z(t, k)T z(t, k) − γ2w̄(t, k)T w̄(t, k)

=


xh(t, k)
xv(t, k)
w̄(t, k)


T {[

Â(µ)T PÂ(µ) − P Â(µ)T PB̂
∗ B̂T PB̂

]
+

[
ĈTĈ 0
∗ −γ2I

]} 
xh(t, k)
xv(t, k)
w̄(t, k)

 (3.7)

Thus, if condition (3.1) holds, it is easy to have the following:

z(t, k)T z(t, k) − γ2w̄(t, k)T w̄(t, k) < −∇V(t, k) (3.8)

Summing up both sides of (3.8), one can obtain the following:

T0∑
t=0

K0∑
k=0

{
z(t, k)T z(t, k) − γ2w̄(t, k)T w̄(t, k)

}
< −

T0∑
t=0

K0∑
k=0

{∇V(t, k)}

= −

K0∑
k=0

{
Vh(T0 + 1, k) − Vh(0, k)

}
−

T0∑
t=0

{Vv(t,K0 + 1) − Vv(t, 0)}

(3.9)

It is clear that
∑K0

k=0 Vh(T0 + 1, k) ≥ 0 and
∑T0

t=0 Vv(t,K0 + 1) ≥ 0. Combining the zero boundary
condition, one has the following:

∥z∥2 < ∥w̄∥2 (3.10)

Therefore, the 2D H∞ performance of the resulting closed-loop system (2.13) is satisfied and the
proof is complete.

Theorem 1 is not usable. By defining new variables and using matrix inequality transformation
techniques, the following Theorem is presented.

Theorem 2. Given a scalar γ > 0, an ILC scheme described as the 2D fuzzy system (2.13) is asymp-
totically stable with H∞ performance γ if there exists a symmetric positive matrix P = diag

{
Ph, Pv

}
,

and matrices W1, W2, W3, W4, W5, W6, W7, W8, W9, for all µ, satisfying the following condition:
I − sym{W7} −W8 + (B̂W2)T −W9 0 WT

7 −WT
2

∗ −P + sym{B̂W3} B̂W4 Â(µ)W1 + B̂W5 WT
8 −WT

3 + B̂W6

∗ ∗ −γ2I ĈW1 WT
9 −WT

4
∗ ∗ ∗ P − sym{W1} −WT

5
∗ ∗ ∗ ∗ −sym{W6}


< 0 (3.11)

Proof. The inequality (3.11) can be equivalently transformed to the following:

Γ1 + sym{ΛT
1 W̃1Σ1} < 0 (3.12)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20274–20294.



20282

where Γ1 =


I − sym{W7} −W8 −W9 0 WT

7
∗ −P 0 0 WT

8
∗ ∗ −γ2I 0 WT

9
∗ ∗ ∗ P 0
∗ ∗ ∗ ∗ 0


, ΛT

1 =


0 0
Â B̂
Ĉ 0
−I 0
0 −I


, Σ1 = I, W̃1 =

[
0 0 0 W1 0

W2 W3 W4 W5 W6

]
, and hence Λ⊥1 =


I 0 0
0 I 0
0 0 I
0 ÂT ĈT

0 B̂T 0


. Based on Lemma 1, the following condi-

tion can be established:

Λ⊥T
1 Γ1Λ

⊥
1 < 0 (3.13)

Then, inequality (3.13) can be expressed as follows:

Γ2 + sym{


−I
B̂
0

 [W7 W8 W9

] 
I 0 0
0 I 0
0 0 I

} < 0 (3.14)

where Γ2 =


I 0 0
∗ Â(µ)PÂ(µ)T − P Â(µ)PĈT

∗ ∗ ĈPĈT − γ2I

. Introducing the matrices Λ2 =
[
−I B̂T 0

]
, W̃2 =

[
W7 W8 W9

]
, Σ2 =


I 0 0
0 I 0
0 0 I

, we get Λ⊥2 =


B̂T 0
I 0
0 I

, Σ⊥2 = 0. Another application of Lemma 1 to

(3.14) yields the following:

Λ⊥T
2 Γ2Λ

⊥
2 < 0 (3.15)

Furthermore, after some routine matrix manipulations, the inequality (3.15) can be reformulated as
follows: [

Â(µ) I
Ĉ 0

] [
P 0
∗ −P

] [
Â(µ) I

Ĉ 0

]T
+

[
B̂ 0
∗ I

] [
I 0
∗ −γ2I

] [
B̂ 0
∗ I

]T
< 0 (3.16)

This last inequality is a dual version of (3.1) in Theorem 1, which completes the proof.

3.2. Controller design for the nominal model case

Based on the analysis result of Theorems 1 and 2, the problem of designing the corresponding
matrices in the updating law (2.12) is investigated, such that the resulting ILC scheme is asymptotically
stable and meets the 2D H∞ performance specification.

The plant (2.2) without time-varying parametric uncertainties is considered, that is, ∆(t) = 0,
∆Ai(t) = 0, ∆Bi(t) = 0, ∆Ā(µ) = 0, ∆B̄(µ) = 0, then Â(µ) = Ā(µ) + B̄(µ)K(µ), and w1(t, k) in plant
(2.10) is rewritten as w1(t, k) = A(δµ)x(t, k − 1) + B(δµ)u(t, k − 1). The following theorem provides
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sufficient conditions for the solvability of the considered problem, where a finite set of LMI constraints
makes the design conditions.

Theorem 3. Given a scalar γ > 0, a robust ILC scheme described as the 2D fuzzy system (2.13) in
the absence of uncertainty is asymptotically stable with H∞ performance γ if there exists a symmetric
positive matrix P = diag

{
Ph, Pv

}
, and matrices W1, W2, W3, W4, W5, W6, W7, W8, W9 and Yi exist, such

that the following LMIs hold:

Υii < 0, i = 1, 2, . . . , r (3.17)

1
r − 1

Υii +
1
2

(Υi j + Υ ji) < 0, i , j, i, j = 1, 2, . . . , r (3.18)

where Υi j =


I − sym{W7} −W8 + (B̂W2)T −W9 0 WT

7 −WT
2

∗ −P + sym{B̂W3} B̂W4 Ωi j + B̂W5 WT
8 −WT

3 + B̂W6

∗ ∗ −γ2I ĈW1 WT
9 −WT

4
∗ ∗ ∗ P − sym{W1} −WT

5
∗ ∗ ∗ ∗ −sym{W6}


,

Ωi j = ĀiW1 + B̄iY j.
In this case, the required ILC law matrices of (2.11) can be computed by the following:

Ki = YiW−1
1 (3.19)

Proof. According to the fuzzy system parameters, the inequality (3.11) in Theorem 2 can be reor-
ganized as follows:

r∑
i=1

r∑
j=1

µi(ϑ(t, k))µ j(ϑ(t, k))Υi j < 0 (3.20)

Using Lemma 3, if the conditions (3.17) and (3.18) hold, then (3.20) is fulfilled. Therefore, the
proof is complete.

3.3. Controller design for the uncertain model case

In this section, the design of robust ILC schemes for an uncertain fuzzy plant model is developed
by making extensive use of the previously developed results when there are uncertainties in the model
structure (i.e., the matrix ∆Ai(t) and ∆Bi(t) exist in (2.2) and are of the form (2.3)). The results of
Theorems 1–3 can be extended to design ILC schemes for the uncertain fuzzy system. The next result
gives new LMI-based conditions for the solvability of the considered problem.

Theorem 4. Given a scalar γ > 0, a robust ILC scheme described as the 2D fuzzy system (2.13)
with uncertainty structure modeled by (2.2) is robustly asymptotically stable with H∞ performance γ,
if there exists a symmetric positive matrix P = diag

{
Ph, Pv

}
, matrices W1, W2, W3, W4, W5, W6, W7,

W8, W9, Yi, and a scalar ε > 0 exist, such that the following LMIs hold:

Ψii < 0, i = 1, 2, . . . , r (3.21)
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1
r − 1

Ψii +
1
2

(Ψi j + Ψ ji) < 0, i , j, i, j = 1, 2, . . . , r (3.22)

where Ψi j =



I − sym{W7} −W8 + (B̂W2)T −W9 0 WT
7 −WT

2 0 0
∗ −P + sym{B̂W3} B̂W4 Ωi j + B̂W5 WT

8 −WT
3 + B̂W6 εÊ 0

∗ ∗ −γ2I ĈW1 WT
9 −WT

4 0 0
∗ ∗ ∗ P − sym{W1} −WT

5 0 MT
i j

∗ ∗ ∗ ∗ −sym{W6} 0 0
∗ ∗ ∗ ∗ ∗ −εI 0
∗ ∗ ∗ ∗ ∗ 0 −εI


,

Ωi j = ĀiW1 + B̄iY j, Mi j = F̂AiW1 + FBiY j.
Moreover, the ILC law matrices of (2.11) can be selected as in (3.19).
Proof. If there are uncertainties in the state-space model, the inequality (3.11) in Theorem 2 can be

rewritten as follows:

R + sym{X △ (t)Y} < 0 (3.23)

where R =


I − sym{W7} −W8 + (B̂W2)T −W9 0 WT

7 −WT
2

∗ −P + sym{B̂W3} B̂W4 Ā(µ)W1 + B̄(µ)Y(µ) + B̂W5 WT
8 −WT

3 + B̂W6

∗ ∗ −γ2I ĈW1 WT
9 −WT

4
∗ ∗ ∗ P − sym{W1} −WT

5
∗ ∗ ∗ ∗ −sym{W6}


,

X =
[
0 ÊT 0 0 0

]T
, Y =

[
0 0 0 F̂A(µ)W1 + FB(µ)Y(µ) 0

]
. Employing Lemma 2 to deal

with the uncertainties in inequality (3.23), it produces the following:

R +
[
X YT

] [εI 0
∗ ε−1I

] [
XT

Y

]
< 0 (3.24)

where ε > 0. Applying the Schur complement, the following is obtained:
R X YT

∗ −ε−1I 0
∗ ∗ −εI

 < 0 (3.25)

pre- and post-multiplying (3.25) by diag{I, I, I, I, I, εI, I} and its transpose, respectively, we have the
following:

r∑
i=1

r∑
j=1

Ψi j < 0 (3.26)

Thus, on the basis of Lemma 3, (3.26) holds if the LMIs (3.21) and (3.22) are satisfied, which
completes the proof.

Remark 1. When the uncertainty is present in the 2D fuzzy system (2.13), the robust asymptotic
stability of the uncertain closed-loop system should be considered first. This stability analysis follows
from a direct application of identical steps within in proof of Theorem 1; hence, the details are omitted.
We can use the result in Theorem 2 to obtain the robust asymptotic stability condition for the uncertain
closed-loop system (2.13), so that the LMIs (3.21) and (3.22) ensure that the uncertain plant (2.13) is
robustly asymptotically stable.
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4. Simulation case study

To illustrate the effectiveness and feasibility of the formulated results on fuzzy ILC scheme designs,
two simulation examples are provided in this section.

Example 1. As a typical nonlinear batch process, the three-tank system, regarded as a model
of many controlled objects in industrial processes, has been extensively researched. The three-tank
hydraulic system in [21] was studied. As shown in Figure 1, the system consists of three identical
tanks with two pumps pumping water into Tanks 1 and 2. Tank 3 is connected to Tanks 1 and 2 by
pipes of an identical circular cross section. The physical model of the three-tank system is given by the
following [21]:


ḣ1 =

Q1
A
−

a1 s13 sgn(h1−h3)
√

2g|h1−h3 |

A

ḣ2 =
Q2
A
+

a3 s23 sgn(h3−h2)
√

2g|h3−h2 |−a2 s0
√

2gh2

A

ḣ3 =
a1 s13 sgn(h1−h3)

√
2g|h1−h3 |

A
−

a3 s23 sgn(h3−h2)
√

2g|h3−h2 |

A

(4.1)

where h1, h2 and h3 denote the level in the three tanks, respectively. Q1 and Q2 are the incoming mass
flow. a1, a2 and a3 represent the coefficients of flow for pipe 1, pipe 2, and pipe 3, respectively. A is
the cross-sectional area of tanks, and s13 = s23 = s0 = sn is the cross-sectional area of pipes.

Defining x =
[
x1 x2 x3

]T
=
[
h1 h2 h3

]T
, u =

[
Q1 Q2

]T
, the water levels h1 and h2 are measur-

able output variables. According to the continuous-time T-S fuzzy model, we can obtain a discrete-time
fuzzy model with a sampling period of 0.5 sec. Taking into account the non-repetitive disturbance in
the discrete-time fuzzy system, the following state-space model is given:

x(t + 1, k) =
∑3

i=1 µi [Aix(t, k) + Biu(t, k))] + w(t, k)
y(t, k) = Cx(t, k)

(4.2)

where A1 =


0.9885 −0.0005 0.0099
−0.0012 0.9818 0.0095
0.0106 0.0106 0.9787

, A2 =


0.9935 −0.0003 0.0046
−0.0003 0.9878 0.0051
0.0054 0.0053 0.9893

, A3 =


0.9949 −0.0002 0.0034
0.0001 0.9892 0.0041
0.0040 0.0040 0.9919

, B1 = B2 = B3 =


0.0032 0

0 0.0032
0 0

, C =
[
1 0 0
0 1 0

]
.

The membership functions for the premise variable x1(t, k) are depicted in Figure 2. The non-

repetitive disturbance is set up as w(t, k) =


0.3e(−0.2δ1k)

0.2sin(0.25tδ2 + 0.12kδ1)
0.25e(−0.2δ1k)

, where δ1 and δ2 are randomly

varying in the interval [0, 1].
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n
s

Figure 1. Schematic diagram of three-tank system [21].
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Figure 2. Membership functions for the three-tank system.

The initial state x(0, k) and the input vector u(0, k) are supposed to be zero ∀k ≥ 1. The the reference
trajectories are as follows:

y1d(t) =



0.04tsin(t/1000), 0 ≤ t ≤ 500 (sec)
20, 500 < t ≤ 1000 (sec)

20 + 0.02(t − 1000), 1000 < t ≤ 1500 (sec)
30, 1500 < t ≤ 2000 (sec)

30 + 0.06(t − 2000), 2000 < t ≤ 2500 (sec)
60, 2500 < t ≤ 3000 (sec)

(4.3)
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y2d(t) =



0.1t, 0 ≤ t ≤ 500 (sec)
50, 500 < t ≤ 1000 (sec)

50 − 0.02(t − 1000), 1000 < t ≤ 1500 (sec)
40, 1500 < t ≤ 2000 (sec)

40 − 0.04(t − 2000), 2000 < t ≤ 2500 (sec)
20, 2500 < t ≤ 2800 (sec)

20 + 0.8(t − 2800), 2800 < t ≤ 3000 (sec)

(4.4)

Meanwhile, let em(t, k), m = 1, 2 represent the errors on k batch. In order to evaluate the tracking
performance along the batch, the root mean square (RMS) is introduced:

RMS (mk) =

√√
1

6001

6000∑
t=0

em(t, k)2 (4.5)

According to Theorem 3 with γ = 10, the controller gain matrices in (2.11) are given by the follow-
ing:

K1 =

[
−308.9075 0.1550 −3.2102 291.0808 −0.0036

0.3738 −306.8137 −3.0844 −0.0036 291.0808

]
K2 =

[
−310.4694 0.0931 −1.5564 291.0809 −0.0036

0.0931 −308.6882 −1.7119 −0.0036 291.0808

]
K3 =

[
−310.9067 0.0621 −1.1822 291.0809 −0.0036
−0.0317 −309.1254 −1.4001 −0.0036 291.0809

]
.
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Figure 3. RMS performance against batch number for example 1.
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Figure 4. The tracking errors for example 1.
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Figure 5. Output response of several batches for example 1.

The simulation results of the resulting system are given in Figures 3–5. As the batch increases,
the actual outputs gradually track the reference trajectory. However, because the system is affected by
non-repetitive disturbances, the root mean squared (RMS) values of the tracking error converge to an
acceptable range. Although the designed ILC scheme cannot completely eliminate the effect of non-
repetitive uncertainties, it can maintain the asymptotic stability and 2D H∞ performance of the fuzzy
system.

Example 2. In this example, the uncertain T-S fuzzy system with non-repetitive interference is
considered. We will demonstrate the validity of the studied method by applying it to a highly nonlinear
model of the CSTR, which has been investigated in [22, 23]. The dynamics of the CSTR model is
described as follows:ĊA =

q
V (CA f −CA) − k0 exp(−E0/R0

T )CA

Ṫ = q
V (T f − T ) + (−∆H)

ρCp
k0 exp(−E0/R0

T )CA +
UA

VρCp
(Tc − T )

(4.6)
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where CA is the concentration of A in the irreversible reaction (A → B), T represents the reactor
temperature, and the controlled variable is coolant stream temperature Tc; other notations are suitably
referred to [22].

Denote the nonzero equilibrium as {Ceq
A ,T

eq,T eq
c } and introduce x =

[
CA −Ceq

A T − T eq
]T

, u =
Tc−T eq

c , and y = x2 as the system state, input and output variables. The discrete-time T–S fuzzy model
can be obtained by discretizing the continuous-time T-S fuzzy model in [22] with a 0.01 min sampling
time. Furthermore, we can obtain the following fuzzy system by considering the uncertainties and
non-repetitive disturbances:x(t + 1, k) =

∑4
i=1 µi [(Ai + ∆Ai)x(t, k) + (Bi + ∆Bi)u(t, k))] + w(t, k)

y(t, k) = Cx(t, k)
(4.7)

One can choose x2 as the premise variable, the membership functions are defined as follows:
µ1(x2(t, k)) = 1

2
g1(x2(t,k))−g1(−β)

g1(β)−g1(−β)

µ2(x2(t, k)) = 1
2

g1(β)−g1(x2(t,k))
g1(β)−g1(−β)

µ3(x2(t, k)) = 1
2

g2(x2(t,k))−g2(−β)
g2(β)−g2(−β)

µ4(x2(t, k)) = 1
2

g2(β)−g2(x2(t,k))
g2(β)−g2(−β)

where g1(x2(t, k)) = φ1(x2(t, k)) − φ0
1

g2(x2(t, k)) = φ2(x2(t, k)) − φ0
2

and 
φ1(x2(t, k)) = k0 exp(− E0/R0

x2(t,k)+T eq )

φ2(x2(t, k)) = k0

[
exp(− E0/R0

x2(t,k)+T eq ) − exp(−E0/R0
T eq )
]
Ceq

A

φ0
1 =

1
2

[
φ1(−β) + φ1(β)

]
φ0

2 =
1
2

[
φ2(−β) + φ2(β)

]
Impose the constraint on x2 as |x2(t, k)| ≤ β (β = 10). The model parameters are given as A1 =[

0.9628 −0.0004
1.3538 0.9880

]
, A2 =

[
0.9929 −0.0004
−0.1404 0.9883

]
, A3 =

[
0.9776 −0.0006
0.6162 1.0001

]
, A4 =

[
0.9778 −0.0001
0.6088 0.9763

]
,

B1 =

[
0

0.0208

]
, B2 =

[
0

0.0208

]
, B3 =

[
0

0.0209

]
, B4 =

[
0

0.0207

]
, E =

[
0.1 0
0 0.1

]
, FA1 =

[
0.08 0
0.05 0.14

]
,

FA2 =

[
0.06 0

0 0.15

]
, FA3 =

[
0.05 0
0.02 0.25

]
, FA4 =

[
0.08 0
0.03 0.12

]
, FB1 =

[
0

0.0018

]
, FB2 =

[
0

0.0018

]
,

FB3 =

[
0

0.0021

]
, FB4 =

[
0

0.002

]
, ∆(t) =

[
0.5sin(0.25t) 0

0 0.85cos(0.3t)

]
, C =

[
0 1
]
. The non-repetitive

disturbances are assumed to be w(t, k) =
[
0.01 0.02

]T
sin(0.1tδ3+0.15kδ3), and δ3 is randomly varying

in the interval [0, 1]. For k ≥ 1, the initial state is x(0, k) =
[
0.25 1

]T
and the input vector u(0, k) is
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set to zero. The control objective is to regulate the reactor temperature to the equilibrium point, so the
reference trajectory is chosen as follows:

yd(t) =


1 + 0.045t, 0 ≤ t ≤ 10 (min)

4 + 3cos(π(t − 20)/40)2, 10 < t ≤ 30 (min)
5.5 − 10sin(π(t − 30)/120), 30 < t ≤ 50 (min)
0.5 − 0.05(t − 50), 50 < t ≤ 60 (min)

(4.8)

By applying Theorem 4 with the H∞ performance bound γ = 8, we can obtain the following fuzzy
iterative learning controller parameters:

K1 =
[
−65.0722 −47.4586 47.4359

]
K2 =

[
6.7480 −47.6611 47.4476

]
K3 =

[
−29.4971 −47.8198 47.1977

]
K4 =

[
−29.4711 −47.3230 47.6602

]

In this case, the RMS is RMS (k) =
√

1
6001

∑6000
t=0 e(t, k)2.
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Figure 6. RMS performance against batch number for example 2.
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Figure 7. The tracking errors for example 2.
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Figure 8. Output response of several batches for example 2.

For the uncertain T-S fuzzy system with non-repetitive interference, the test results for this design
are portrayed in Figures 6–8. Figure 6 depicts the RMS response of the tracking error reduction to
a bounded value with respect to the batches. The evolution of the tracking error e(t, k) is depicted
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in Figure 7. Figure 8 shows that as the batches progress, the actual outputs of the T-S fuzzy plant
gradually approach the desired trajectory. From these figures, it can be immediately observed that
the controlled system exhibits robust stability and convergence. Finally, the results confirm that the
method proposed in this article has a good attenuation effect on the non-repetitive disturbance of the
fuzzy system.

5. Conclusions

This paper proposes a 2D fuzzy ILC strategy for nonlinear batch processes. The nonlinear batch
process model was represented by the uncertain T-S model with non-repetitive disturbances by using
the sector nonlinear method; a 2D compound ILC scheme was designed by exploiting the 2D and
repetitive characteristics of batch processes. Based on the 2D Lyapunov theory, sufficient conditions are
derived to guarantee that the resulting closed-loop system is asymptotically stable and has a prescribed
H∞ attenuation level. The design problem is formulated as the solution of a set of LMIs. Finally,
simulation results show the validity and practical value of the developed method.

Use of AI tools declaration

The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

Acknowledgments

This work is supported by National Natural Science Foundation of China (61573167, 61572237),
Postgraduate Research & Practice Innovation Program of Jiangsu Province (KYCX20 1771) and the
Start-up Fund for Introducing Talent of Wuxi University (2021r045).

Conflict of interest

The authors declare there is no conflict of interest.

References

1. H. Yoo, H. E. Byun, D. H. Han, J. H Lee, Reinforcement learning for batch pro-
cess control: Review and perspectives, Annu. Rev. Control, 52 (2021), 108–119.
https://doi.org/10.1016/j.arcontrol.2021.10.006

2. X. C. Sheng, W. L. Xiong, Soft sensor design based on phase partition ensemble of
LSSVR models for nonlinear batch processes, Math. Biosci. Eng., 17 (2020), 1901–1921.
https://doi.org/10.3934/mbe.2020100

3. L. M. Zhou, L. Jia, Y. L. Wang, D. G. Peng, W. D. Tan, An integrated robust iterative learning
control strategy for batch processes based on 2D system, J. Process Control, 85 (2020), 136–148.
https://doi.org/10.1016/j.jprocont.2019.11.011

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20274–20294.

http://dx.doi.org/https://doi.org/10.1016/j.arcontrol.2021.10.006
http://dx.doi.org/https://doi.org/10.3934/mbe.2020100
http://dx.doi.org/https://doi.org/10.1016/j.jprocont.2019.11.011


20293

4. Y. Q. Zhou, D. W. Li, F. R. Gao, Conic iterative learning control using distinct data for con-
strained systems with state-dependent uncertainty, IEEE Trans. Ind. Inf., 18 (2022), 3095–3104.
https://doi.org/10.1109/TII.2021.3107522

5. X. D. Zhao, Y. Q. Wang, Improved point-to-point iterative learning control for batch
processes with unknown batch-varying initial state, ISA Trans., 125 (2022), 290–299.
https://doi.org/10.1016/j.isatra.2021.07.007

6. Y. Geng, X. E. Ruan, Y. Yang, Q. H. Zhou, Data-based iterative learning control for multiphase
batch processes, Asian J. Control, 25 (2022), 1392–1406. https://doi.org/10.1002/asjc.2936

7. C. Y. Zhou, L. Jia, Y. Zhou, A two-stage robust iterative learning model predictive control for
batch processes, ISA Trans., 135 (2023), 309–324. https://doi.org/10.1016/j.isatra.2022.09.034

8. S. L. Hao, T. Liu, E. Rogers, Extended state observer based indirect-type ILC for single-input
single-output batch processes with time- and batch-varying uncertainties, Automatica, 112 (2020),
108673. https://doi.org/10.1016/j.automatica.2019.108673

9. R. D. Zhang, F. R. Gao, Two-dimensional iterative learning model predictive control for batch
processes: A new state space model compensation approach, IEEE Trans. Syst. Man Cybern.
Syst., 51 (2021), 833–841. https://doi.org/10.1109/TSMC.2018.2883754

10. H. Li, S. Q. Wang, H. Y. Shi, C. L. Su, P. Li, Two-dimensional iterative learn-
ing robust asynchronous switching predictive control for multiphase batch processes with
time-varying delays, IEEE Trans. Syst. Man Cybern. Syst., 53 (2023), 6488–6502.
https://doi.org/10.1109/TSMC.2023.3284078

11. Z. You, H. C. Yan, H. Zhang, H. Zhang, S. M. Chen, M. Wang, Fuzzy-dependent-switching control
of nonlinear systems with aperiodic sampling, IEEE Trans. Fuzzy Syst., 29 (2021), 3349–3359.
https://doi.org/10.1109/TFUZZ.2020.3018552

12. J. X. Yu, H. Dang, L. M. Wang, Fuzzy iterative learning control-based design of fault tolerant
guaranteed cost controller for nonlinear batch processes, Int. J. Control Autom. Syst., 16 (2018),
2518–2527. https://doi.org/10.1007/s12555-017-0614-0

13. W. P. Luo, L. M. Wang, 2D fuzzy constrained fault-tolerant predictive con-
trol of nonlinear batch processes, IEEE Access, 7 (2019), 119259–119271.
https://doi.org/10.1109/ACCESS.2019.2936214

14. H. Li, S. Q. Wang, H. Y. Shi, C. L. Su, P. Li, Iterative learning hybrid robust predictive fault-
tolerant control for nonlinear batch processes with partial actuator faults, J. Process Control, 129
(2023), 103054. https://doi.org/10.1016/j.jprocont.2023.103054

15. Y. C. Wang, L. F. Zheng, H. G. Zhang, X. W. Zheng, Fuzzy observer-based repetitive
tracking control for nonlinear systems, IEEE Trans. Fuzzy Syst., 28 (2020), 2401–2415.
https://doi.org/10.1109/TFUZZ.2019.2936808

16. S. Boyd, E. L. Ghaoui, E. Feron, V. Balakrishnan, Linear Matrix Inequalities in System and Con-
trol Theory, SIAM, Philadelphia, USA, 1994. https://doi.org/10.1137/1.9781611970777

17. I. R. Petersen, A stabilization algorithm for a class of uncertain linear systems, Syst. Control Lett.,
8 (1987), 351–357. https://doi.org/10.1016/0167-6911(87)90102-2

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20274–20294.

http://dx.doi.org/ https://doi.org/10.1109/TII.2021.3107522
http://dx.doi.org/ https://doi.org/10.1109/TII.2021.3107522
http://dx.doi.org/https://doi.org/10.1016/j.isatra.2021.07.007
http://dx.doi.org/https://doi.org/10.1002/asjc.2936
http://dx.doi.org/https://doi.org/10.1016/j.isatra.2022.09.034
http://dx.doi.org/https://doi.org/10.1016/j.automatica.2019.108673
http://dx.doi.org/https://doi.org/10.1109/TSMC.2018.2883754
http://dx.doi.org/https://doi.org/10.1109/TSMC.2023.3284078
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2020.3018552
http://dx.doi.org/https://doi.org/10.1007/s12555-017-0614-0
http://dx.doi.org/https://doi.org/10.1109/ACCESS.2019.2936214
http://dx.doi.org/https://doi.org/10.1016/j.jprocont.2023.103054
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2019.2936808
http://dx.doi.org/https://doi.org/10.1137/1.9781611970777
http://dx.doi.org/https://doi.org/10.1016/0167-6911(87)90102-2


20294

18. H. D. Tuan, P. Apkarian, T. Narikiyo, Y. Yamamoto, Parameterized linear matrix inequal-
ity techniques in fuzzy control system design, IEEE Trans. Fuzzy Syst., 9 (2001), 324–332.
https://doi.org/10.1109/91.919253

19. X. P. Xie, H. G. Zhang, Stabilization of discrete-time 2-D T-S fuzzy systems based on new
relaxed conditions, Acta Autom. Sinica, 36 (2010), 267–273. https://doi.org/10.1016/S1874-
1029(09)60012-4

20. L. M. Wang, C. J. Zhu, J. X. Yu, L. Ping, R. D. Zhang, F. R. Gao, Fuzzy iterative learning control
for batch processes with interval time-varying delays, Ind. Eng. Chem. Res., 56 (2017), 3994–
4001. https://doi.org/10.1021/acs.iecr.6b04637

21. H. Y. Han, Y. Yang, L. L. Li, S. X. Ding, Performance-based fault detection and fault-tolerant
control for nonlinear systems with T-S fuzzy implementation, IEEE Trans. Cybern., 51 (2021),
801–814. https://doi.org/10.1109/TCYB.2019.2951534

22. B. C. Ding, X. B. Ping, Output feedback predictive control with one free control move for nonlin-
ear systems represented by a Takagi–Sugeno model, IEEE Trans. Fuzzy Syst., 22 (2014), 249–263.
https://doi.org/10.1109/TFUZZ.2013.2251637

23. H. F. Xie, J. Wang, X. M. Tang, Robust constrained model predictive control for discrete-
time uncertain system in Takagi-Sugeno’s form, Asian J. Control, 20 (2018), 1566–1581.
https://doi.org/10.1002/asjc.1603

© 2023 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematical Biosciences and Engineering Volume 20, Issue 11, 20274–20294.

http://dx.doi.org/https://doi.org/10.1109/91.919253
http://dx.doi.org/https://doi.org/10.1016/S1874-1029(09)60012-4
http://dx.doi.org/https://doi.org/10.1016/S1874-1029(09)60012-4
http://dx.doi.org/https://doi.org/10.1021/acs.iecr.6b04637
http://dx.doi.org/https://doi.org/10.1109/TCYB.2019.2951534
http://dx.doi.org/https://doi.org/10.1109/TFUZZ.2013.2251637
http://dx.doi.org/https://doi.org/10.1002/asjc.1603
http://creativecommons.org/licenses/by/4.0

	Introduction
	System description and problem statement
	Main results
	Performance analysis of 2D fuzzy ILC system
	Controller design for the nominal model case
	Controller design for the uncertain model case

	Simulation case study
	Conclusions

