In this paper, we developed a SIRV epidemic model based on a vaccination game, incorporating vaccination dynamics and data memory effects using the Caputo fractional derivative. This approach effectively captured the nonlocal and power-law characteristics of influenza transmission. We confirmed the model's biological well-posedness, proved the uniqueness and existence of solutions, and analyzed stability. Furthermore, we established global Ulam-Hyers stability. The results showed that the epidemic incidence depended on the number of reproductions in the system. Through the Grünwald-Letnikov method, we developed the numerical simulations. We validated our theoretical findings and provided insights into the impact of vaccination on influenza progression. Our simulations revealed that strategic vaccination decisions were influenced by individual perceptions of the benefits and costs to achieving control of the influenza disease.
Citation: Qun Dai, Zeheng Wang. SIRV fractional epidemic model of influenza with vaccine game theory and stability analysis[J]. Electronic Research Archive, 2024, 32(12): 6792-6821. doi: 10.3934/era.2024318
In this paper, we developed a SIRV epidemic model based on a vaccination game, incorporating vaccination dynamics and data memory effects using the Caputo fractional derivative. This approach effectively captured the nonlocal and power-law characteristics of influenza transmission. We confirmed the model's biological well-posedness, proved the uniqueness and existence of solutions, and analyzed stability. Furthermore, we established global Ulam-Hyers stability. The results showed that the epidemic incidence depended on the number of reproductions in the system. Through the Grünwald-Letnikov method, we developed the numerical simulations. We validated our theoretical findings and provided insights into the impact of vaccination on influenza progression. Our simulations revealed that strategic vaccination decisions were influenced by individual perceptions of the benefits and costs to achieving control of the influenza disease.
[1] | P. Lee, Prevention and control of influenza, Southern Med. J., 96 (2003), 751–758. |
[2] |
W. O. Kermack, A. G. McKendrick, A contribution to the mathematical theory of epidemics, Math. Phys. Eng. Sci., 115 (1927), 700–721. https://doi.org/10.1098/rspa.1927.0118 doi: 10.1098/rspa.1927.0118
![]() |
[3] | L. A. Rvachev, Modelling experiment of a large-scale epidemic by means of a computer, Doklady Akademii Nauk, 180 (1968), 294–296. |
[4] |
G. Chowell, M. Miller, C. Viboud, Seasonal influenza in the united states, france, and australia: Transmission and prospects for control, Epidemiol. Infect., 136 (2008), 852–864. https://doi.org/10.1017/S0950268807009144 doi: 10.1017/S0950268807009144
![]() |
[5] |
J. M. Okwo-Bele, T. Cherian, The expanded programme on immunization: A lasting legacy of smallpox eradication, Vaccine, 29 (2011), D74–D79. https://doi.org/10.1016/j.vaccine.2012.01.080 doi: 10.1016/j.vaccine.2012.01.080
![]() |
[6] |
M. B. Rothberg, S. D. Haessler, R. B. Brown, Complications of viral influenza, Am. J. Med., 121 (2008), 258–264. https://doi.org/10.1016/j.amjmed.2007.10.040 doi: 10.1016/j.amjmed.2007.10.040
![]() |
[7] | G. Macdonald, The Epidemiology and Control of Malaria, Londonoxford University Press, New York, 1957. |
[8] |
E. Shim, A note on epidemic models with infective immigrants and vaccination, Math. Biosci. Eng., 3 (2006), 557–566. https://doi.org/10.3934/mbe.2006.3.557 doi: 10.3934/mbe.2006.3.557
![]() |
[9] |
A. B. Gumel, C. C. McCluskey, J. Watmough, An sveir model for assessing potential impact of an imperfect anti-sars vaccine, Math. Biosci. Eng., 3 (2006), 485–512. https://doi.org/10.3934/MBE.2006.3.485 doi: 10.3934/MBE.2006.3.485
![]() |
[10] |
Q. Yan, R. A. Cheke, S. Tang, Coupling an individual adaptive-decision model with a sirv model of influenza vaccination reveals new insights for epidemic control, Stat. Med., 42 (2023), 716–729. https://doi.org/10.1002/sim.9639 doi: 10.1002/sim.9639
![]() |
[11] |
C. T. Bauch, Imitation dynamics predict vaccinating behaviour, Proc. R. Soc. B, 272 (2005), 1669–1675. https://doi.org/10.1098/rspb.2005.3153 doi: 10.1098/rspb.2005.3153
![]() |
[12] |
S. Bhattacharyya, C. T. Bauch, A game dynamic model for delayer strategies in vaccinating behaviour for pediatric infectious diseases, J. Theor. Biol., 267 (2010), 276–282. https://doi.org/10.1016/j.jtbi.2010.09.005 doi: 10.1016/j.jtbi.2010.09.005
![]() |
[13] |
J. Liu, B. F. Kochin, Y. I. Tekle, A. P. Galvani, Epidemiological game-theory dynamics of chickenpox vaccination in the usa and israel, J. R. Soc. Interface, 9 (2012), 68–76. https://doi.org/10.1098/rsif.2011.0001 doi: 10.1098/rsif.2011.0001
![]() |
[14] |
F. Fu, D. I. Rosenbloom, L. Wang, M. A. Nowak, Imitation dynamics of vaccination behaviour on social networks, Proc. R. Soc. B, 278 (2011), 42–49. https://doi.org/10.1098/rspb.2010.1107 doi: 10.1098/rspb.2010.1107
![]() |
[15] |
Q. Li, M. Li, L. Lv, C. Guo, K. Lu, A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory, Chaos Solitons Fractals, 104 (2017), 51–60. https://doi.org/10.1016/j.chaos.2017.07.022 doi: 10.1016/j.chaos.2017.07.022
![]() |
[16] |
C. R. Wells, J. M. Tchuenche, L. A. Meyers, A. P. Galvani, C. T. Bauch, Impact of imitation processes on the effectiveness of ring vaccination, Bull. Math. Biol., 73 (2011), 2748–2772. https://doi.org/10.1007/s11538-011-9646-4 doi: 10.1007/s11538-011-9646-4
![]() |
[17] |
T. C. Reluga, J. Li, Games of age-dependent prevention of chronic infections by social distancing, J. Math. Biol., 66 (2013), 1527–1553. https://doi.org/10.1007/s00285-012-0543-8 doi: 10.1007/s00285-012-0543-8
![]() |
[18] |
T. C. Reluga, Game theory of social distancing in response to an epidemic, PLoS Comput. Biol., 6 (2010), e1000793. https://doi.org/10.1371/journal.pcbi.1000793 doi: 10.1371/journal.pcbi.1000793
![]() |
[19] |
C. Eksin, J. S. Shamma, J. S. Weitz, Disease dynamics in a stochastic network game: A little empathy goes a long way in averting outbreaks, Sci. Rep., 7 (2017), 44122. https://doi.org/10.1038/srep44122 doi: 10.1038/srep44122
![]() |
[20] |
X. Liu, Z. Wu, L. Zhang, Impact of committed individuals on vaccination behavior, Phys. Rev. E Stat. Nonlin. Soft Matter Phys., 86 (2012), 051132. 10.1103/PhysRevE.86.051132 doi: 10.1103/PhysRevE.86.051132
![]() |
[21] |
O. Defterli, Modeling the impact of temperature on fractional order dengue model with vertical transmission, An Int. J. Optim. Control Theor. Appl., 10 (2020), 85–93. https://doi.org/10.11121/ijocta.01.2020.00862 doi: 10.11121/ijocta.01.2020.00862
![]() |
[22] | E. F. D. Goufo, S. Clovis O. Noutchie, S. Mugisha, A fractional seir epidemic model for spatial and temporal spread of measles in metapopulations, Abstr. Appl. Anal., (2014), 781028. https://doi.org/10.1155/2014/781028 |
[23] |
H. Kheiri, M. Jafari, Fractional optimal control of an HIV/AIDS epidemic model with random testing and contact tracing, J. Appl. Math. Comput., 60 (2019), 387–411. https://doi.org/10.1007/s12190-018-01219-w doi: 10.1007/s12190-018-01219-w
![]() |
[24] |
G. González-Parra, A. J. Arenas, B. M. Chen-Charpentier, A fractional order epidemic model for the simulation of outbreaks of influenza a (H1N1), Math. Methods Appl. Sci., 37 (2014), 2218–2226. https://doi.org/10.1002/mma.2968 doi: 10.1002/mma.2968
![]() |
[25] |
T. Li, Y. Wang, F. Liu, I. Turner, Novel parameter estimation techniques for a multi-term fractional dynamical epidemic model of dengue fever, Numer. Algorithms, 82 (2019), 1467–1495. https://doi.org/10.1007/s11075-019-00665-2 doi: 10.1007/s11075-019-00665-2
![]() |
[26] |
Ö. Defterli, Modeling the impact of temperature on fractional order dengue model with vertical transmission, An Int. J. Optim. Control Theor. Appl., 10 (2020), 85–93. https://doi.org/10.11121/ijocta.01.2020.00862 doi: 10.11121/ijocta.01.2020.00862
![]() |
[27] |
K. Kozioł, R. Stanisławski, G. Bialic, Fractional-order sir epidemic model for transmission prediction of covid-19 disease, Appl. Sci., 10 (2020), 8316. https://doi.org/10.3390/app10238316 doi: 10.3390/app10238316
![]() |
[28] |
V. Miskovic-Stankovic, M. Janev, T. M. Atanackovic, Two compartmental fractional derivative model with general fractional derivative, J. Pharmacokinet. Pharmacodyn., 50 (2023), 79–87. https://doi.org/10.1007/s10928-022-09834-8 doi: 10.1007/s10928-022-09834-8
![]() |
[29] |
S. L. Chang, M. Piraveenan, P. Pattison, M. Prokopenko, Game theoretic modelling of infectious disease dynamics and intervention methods: A review, J. Biol. Dyn., 14 (2020), 57–89. https://doi.org/10.1080/17513758.2020.1720322 doi: 10.1080/17513758.2020.1720322
![]() |
[30] | A. Kilbas, Theory and Applications of Fractional Differential Equations, Elsevier, 204 (2006), 69–133. |
[31] |
Z. Odibat, N. T. Shawagfeh, Generalized taylor's formula, Appl. Math. Comput., 186 (2007), 286–293. https://doi.org/10.1016/j.amc.2006.07.102 doi: 10.1016/j.amc.2006.07.102
![]() |
[32] | A. El-Sayed, On the existence and stability of positive solution for a nonlinear fractional-order differential equation and some applications, Alexandria J. Math., 1 (2010), 1–10. |
[33] |
P. Driessche, J. Watmough, Reproduction numbers and sub-threshold endemic equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002), 29–48. https://doi.org/10.1016/S0025-5564(02)00108-6 doi: 10.1016/S0025-5564(02)00108-6
![]() |
[34] | D. Matignon, Stability results for fractional differential equations with applications to control processing, Comput. Eng. Syst. Appl., 2 (1996), 963–968. |
[35] | D. H. Hyers, G. Isac, T. Rassias, Stability of functional equations in several variables, in Progress in Nonlinear Differential Equations and Their Applications, Birkhäuser Boston, MA, (1998). https://doi.org/10.1007/978-1-4612-1790-9 |
[36] | L. Dorčák, Numerical models for the simulation of the fractional-order control systems, preprint, arXiv: math/0204108. |
[37] | I. Podlubny, Fractional differential equations: An introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, Elsevier, 198 (1999), 1–340. |
[38] | National data, Basic Statistics on Population, (2022). Available from: http://data.stats.gov.cn/english/tablequery.htm?code = AC03. |
[39] |
X. Yang, H. Zhao, Z. Li, A. Zhu, M. Ren, M. Geng, et al., Influenza vaccine effectiveness in mainland china: A systematic review and meta-analysis, Vaccines, 9 (2021), 79. https://doi.org/10.3390/vaccines9020079 doi: 10.3390/vaccines9020079
![]() |
[40] | S. Ghebrehewet, P. Macpherson, Ho, Influenza, Br. Med. J., 20 (2017), 7. https://doi.org/10.1136/bmj.i6258 |
[41] | D. Dharmapalan, Influenza, Indian J. Pediatr., 87 (2020), 828–832. https://doi.org/10.1007/s12098-020-03214-1 |
[42] |
J. P. Barbera, A. M. Iglesias, M. T. Girbes, F. L. Labrador, J. L. Lopez, J. D. Domingo, et al., Waning protection of influenza vaccination during four influenza seasons, 2011/2012 to 2014/2015, Vaccine, 35 (2017), 5799–5807. https://doi.org/10.1016/j.vaccine.2017.09.035 doi: 10.1016/j.vaccine.2017.09.035
![]() |
[43] |
X. Wu, Cost-effect analysis of influenza vaccination among people aged 60 years and over in Shenzhen based on markov model, Chin. J. Epidemiol., 43 (2022), 1140–1146. https://doi.org/10.3760/cma.j.cn112338-20211221-01005 doi: 10.3760/cma.j.cn112338-20211221-01005
![]() |