Research article Special Issues

A guide to the design of the virtual element methods for second- and fourth-order partial differential equations

  • Received: 13 August 2023 Revised: 21 October 2023 Accepted: 24 October 2023 Published: 09 November 2023
  • We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material. The two partial differential equations are: (i) a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation modeling the damage of the material. Inspired by [1,2,3], we develop a new conforming VEM for the discretization of the two equations, which is implementation-friendly, i.e., different terms can be implemented by exploiting a single projection operator. We use $ C^0 $ and $ C^1 $ virtual elements for the second-and fourth-order partial differential equation, respectively. For both equations, we review the formulation of the virtual element approximation and discuss the details pertaining the implementation.

    Citation: Yu Leng, Lampros Svolos, Dibyendu Adak, Ismael Boureima, Gianmarco Manzini, Hashem Mourad, Jeeyeon Plohr. A guide to the design of the virtual element methods for second- and fourth-order partial differential equations[J]. Mathematics in Engineering, 2023, 5(6): 1-22. doi: 10.3934/mine.2023100

    Related Papers:

  • We discuss the design and implementation details of two conforming virtual element methods for the numerical approximation of two partial differential equations that emerge in phase-field modeling of fracture propagation in elastic material. The two partial differential equations are: (i) a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation modeling the damage of the material. Inspired by [1,2,3], we develop a new conforming VEM for the discretization of the two equations, which is implementation-friendly, i.e., different terms can be implemented by exploiting a single projection operator. We use $ C^0 $ and $ C^1 $ virtual elements for the second-and fourth-order partial differential equation, respectively. For both equations, we review the formulation of the virtual element approximation and discuss the details pertaining the implementation.



    加载中


    [1] F. Brezzi, L. D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Eng., 253 (2013), 455–462. https://doi.org/10.1016/j.cma.2012.09.012 doi: 10.1016/j.cma.2012.09.012
    [2] K. Berbatov, B. S. Lazarov, A. P. Jivkov, A guide to the finite and virtual element methods for elasticity, Appl. Numer. Math., 169 (2021), 351–395. https://doi.org/10.1016/j.apnum.2021.07.010 doi: 10.1016/j.apnum.2021.07.010
    [3] L. B. Da Veiga, F. Brezzi, L. D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal., 51 (2013), 794–812. https://doi.org/10.1137/120874746 doi: 10.1137/120874746
    [4] P. F. Antonietti, G. Manzini, S. Scacchi, M. Verani, A review on arbitrarily regular conforming virtual element methods for second-and higher-order elliptic partial differential equations, Math. Mod. Meth. Appl. Sci., 31 (2021), 2825–2853. https://doi.org/10.1142/S0218202521500627 doi: 10.1142/S0218202521500627
    [5] L. Beirão da Veiga, C. Lovadina, A. Russo, Stability analysis for the virtual element method, Math. Mod. Meth. Appl. Sci., 27 (2017), 2557–2594. https://doi.org/10.1142/S021820251750052X doi: 10.1142/S021820251750052X
    [6] S. C. Brenner, Q. Guan, L. Y. Sung, Some estimates for virtual element methods, Comput. Methods Appl. Math., 17 (2017), 553–574. https://doi.org/10.1515/cmam-2017-0008 doi: 10.1515/cmam-2017-0008
    [7] S. C. Brenner, L. Y. Sung, Virtual element methods on meshes with small edges or faces, Math. Mod. Meth. Appl. Sci., 28 (2018), 1291–1336. https://doi.org/10.1142/S0218202518500355 doi: 10.1142/S0218202518500355
    [8] H. Chi, L. B. Da Veiga, G. H. Paulino, Some basic formulations of the virtual element method (VEM) for finite deformations, Comput. Methods Appl. Mech. Eng., 318 (2017), 148–192. https://doi.org/10.1016/j.cma.2016.12.020 doi: 10.1016/j.cma.2016.12.020
    [9] L. B. Da Veiga, C. Lovadina, D. Mora, A virtual element method for elastic and inelastic problems on polytope meshes, Comput. Methods Appl. Mech. Eng., 295 (2015), 327–346. https://doi.org/10.1016/j.cma.2015.07.013 doi: 10.1016/j.cma.2015.07.013
    [10] E. Artioli, L. B. Da Veiga, C. Lovadina, E. Sacco, Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem, Comput. Mech., 60 (2017), 355–377. https://doi.org/10.1007/s00466-017-1404-5 doi: 10.1007/s00466-017-1404-5
    [11] A. Cangiani, E. H. Georgoulis, T. Pryer, O. J. Sutton, A posteriori error estimates for the virtual element method, Numer. Math., 137 (2017), 857–893. https://doi.org/10.1007/s00211-017-0891-9 doi: 10.1007/s00211-017-0891-9
    [12] Y. Leng, L. Svolos, I. D. Boureima, J. N. Plohr, G. Manzini, H. M. Mourad, Virtual element methods for the solution of the fourth-order phase-field model of quasi-brittle fracture, unpublished work, 2023.
    [13] P. A. Raviart, J. M. Thomas, Introduction à l'analyse numérique des équations aux dérivées partielles, Collection Mathématiques Appliquées pour la Maîtrise, Paris: Masson, 1983.
    [14] S. C. Brenner, L. R. Scott, The mathematical theory of finite element methods, New York: Springer Science & Business Media, 2008. https://doi.org/10.1007/978-0-387-75934-0
    [15] N. M. Newmark, A method of computation for structural dynamics, J. Eng. Mech. Div., 85 (1959), 67–94. https://doi.org/10.1061/JMCEA3.0000098 doi: 10.1061/JMCEA3.0000098
    [16] P. G. Ciarlet, The finite element method for elliptic problems, SIAM, 2002. https://doi.org/10.1137/1.9780898719208
    [17] F. Dassi, L. Mascotto, Exploring high-order three dimensional virtual elements: bases and stabilizations, Comput. Math. Appl., 75 (2018), 3379–3401. https://doi.org/10.1016/j.camwa.2018.02.005 doi: 10.1016/j.camwa.2018.02.005
    [18] T. R. Liu, F. Aldakheel, M. H. Aliabadi, Virtual element method for phase field modeling of dynamic fracture, Comput. Methods Appl. Mech. Eng., 411 (2023), 116050. https://doi.org/10.1016/j.cma.2023.116050 doi: 10.1016/j.cma.2023.116050
    [19] L. B. Da Veiga, F. Brezzi, L. D. Marini, A. Russo, The hitchhiker's guide to the virtual element method, Math. Mod. Meth. Appl. Sci., 24 (2014), 1541–1573. https://doi.org/10.1142/S021820251440003X doi: 10.1142/S021820251440003X
    [20] O. J. Sutton, The virtual element method in 50 lines of MATLAB, Numer. Algor., 75 (2017), 1141–1159. https://doi.org/10.1007/s11075-016-0235-3 doi: 10.1007/s11075-016-0235-3
    [21] M. Mengolini, M. F. Benedetto, A. M. Aragón, An engineering perspective to the virtual element method and its interplay with the standard finite element method, Comput. Methods Appl. Mech. Eng., 350 (2019), 995–1023. https://doi.org/10.1016/j.cma.2019.02.043 doi: 10.1016/j.cma.2019.02.043
    [22] M. Frittelli, I. Sgura, Virtual element method for the Laplace-Beltrami equation on surfaces, ESAIM: Math. Modell. Numer. Anal., 52 (2018), 965–993. https://doi.org/10.1051/m2an/2017040 doi: 10.1051/m2an/2017040
    [23] L. Mascotto, The role of stabilization in the virtual element method: a survey, Comput. Math. Appl., 151 (2023), 244–251. https://doi.org/10.1016/j.camwa.2023.09.045 doi: 10.1016/j.camwa.2023.09.045
    [24] M. J. Borden, T. J. R. Hughes, C. M. Landis, C. V. Verhoosel, A higher-order phase-field model for brittle fracture: formulation and analysis within the isogeometric analysis framework, Comput. Methods Appl. Mech. Eng., 273 (2014), 100–118. https://doi.org/10.1016/j.cma.2014.01.016 doi: 10.1016/j.cma.2014.01.016
    [25] L. Svolos, H. M. Mourad, G. Manzini, K. Garikipati, A fourth-order phase-field fracture model: formulation and numerical solution using a continuous/discontinuous Galerkin method, J. Mech. Phys. Solids, 165 (2022), 104910. https://doi.org/10.1016/j.jmps.2022.104910 doi: 10.1016/j.jmps.2022.104910
    [26] P. F. Antonietti, G. Manzini, I. Mazzieri, H. M. Mourad, M. Verani, The arbitrary-order virtual element method for linear elastodynamics models: convergence, stability and dispersion-dissipation analysis, Int. J. Numer. Meth. Eng., 122 (2021), 934–971. https://doi.org/10.1002/nme.6569 doi: 10.1002/nme.6569
    [27] D. Adak, G. Manzini, H. M. Mourad, J. N. Plohr, L. Svolos, A $C^1$-conforming arbitrary-order two-dimensional virtual element method for the fourth-order phase-field equation, arXiv, 2023. https://doi.org/10.48550/arXiv.2307.16068
    [28] R. A. Adams, J. J. F. Fournier, Sobolev spaces: pure and applied mathematics, 2 Eds., Academic Press, 2003.
    [29] P. Wriggers, B. D. Reddy, W. Rust, B. Hudobivnik, Efficient virtual element formulations for compressible and incompressible finite deformations, Comput. Mech., 60 (2017), 253–268. https://doi.org/10.1007/s00466-017-1405-4 doi: 10.1007/s00466-017-1405-4
    [30] P. Krysl, Mean-strain 8-node hexahedron with optimized energy-sampling stabilization, Finite Elem. Anal. Des., 108 (2016), 41–53. https://doi.org/10.1016/j.finel.2015.09.008 doi: 10.1016/j.finel.2015.09.008
    [31] C. Chen, X. Huang, H. Wei, ${H}^m$-conforming virtual elements in arbitrary dimension, SIAM J. Numer. Anal., 60 (2022), 3099–3123. https://doi.org/10.1137/21M1440323 doi: 10.1137/21M1440323
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(990) PDF downloads(198) Cited by(0)

Article outline

Figures and Tables

Figures(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog