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Abstract: We discuss the design and implementation details of two conforming virtual element
methods for the numerical approximation of two partial differential equations that emerge in phase-
field modeling of fracture propagation in elastic material. The two partial differential equations are: (i)
a linear hyperbolic equation describing the momentum balance and (ii) a fourth-order elliptic equation
modeling the damage of the material. Inspired by [1–3], we develop a new conforming VEM for
the discretization of the two equations, which is implementation-friendly, i.e., different terms can be
implemented by exploiting a single projection operator. We use C0 and C1 virtual elements for the
second-and fourth-order partial differential equation, respectively. For both equations, we review the
formulation of the virtual element approximation and discuss the details pertaining the implementation.
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1. Introduction

The virtual element method (VEM) is a generalization of the finite element method (FEM) that
enables computational simulations using n-sided polygonal/polyhedral elements (with n ≥ 3 in 2D
and n ≥ 4 in 3D), significantly reducing the difficulty of meshing geometrically complex domains.
In addition, the VEM provides a means of designing approximations of an arbitrarily high order of
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accuracy and regularity [4], thus making it ideal for problems admitting C1-continuous solutions.
The VEM is also known to be accurate, stable, and robust on highly deformed meshes, as shown
in numerous theoretical [5–7] and numerical [8–10] studies on the treatment of large-deformation
problems. The method preserves these desirable performance characteristics when the mesh includes
elements with obtuse or re-entrant angles (i.e., nonconvexity) and hanging nodes, facilitating the
development of adaptive mesh refinement (AMR) schemes to avoid excessive mesh refinement [11].

Despite these excellent properties and an established and solid mathematical foundation, which
is well documented in the literature [12–18], the VEM lags behind the FEM’s adoption in practical
applications mainly because it might be perceived as being conceptually more complex and, therefore,
more challenging to implement and apply. Several works in the literature help in addressing this
issue (e.g., see [2, 19]) sometimes by presenting simple virtual element formulations and detailing
their implementations (e.g., see [20–22]). In this work, we address the implementation design of
two distinct virtual element methods for approximating a time-dependent, second-order momentum
balance equation and a stationary, fourth-order, general elliptic equation, which includes second- and
zero-order terms. The VEM is developed as a numerical method to approximate different model
problems on polygonal elements and could be seen as a generalization of the FEM. Unlike the FEM,
the discrete functions are formally the solutions of a local PDE that is defined on every mesh element
Instead of directly evaluating the discrete functions, which are never explicitly constructed, we employ
suitable projection operators, which are computable from the degrees of freedom, and project such
functions onto a polynomial space. Consequently, the matrices associated with the discrete-bilinear
forms involve projection operators. The VEM allows us to compute the local matrices on different
polygonal elements in a unified way and the scheme’s formulation and implementation do not depend
on the shape of the elements. These features make the VEM different from the existing techniques.
However, some issues may exist, such as the stability related to the stiffness and mass matrices. If the
polygonal element contains very small edges compared to the diameter of the element, the dofi-dofi
stabilization will not work, and we need boundary integration of the trace of the basis functions, which
is more technical to compute [5, 23]. In this work, we have assumed the meshes do not contain small
edges and all polygonal elements are star-shaped.

The momentum balance equation governs the linear elastodynamic initial boundary-value problem
(IBVP); the second equation mathematically models crack propagation in materials. When coupled,
these two PDEs constitute fourth-order phase-field models of quasi-brittle fractures, similar to those
presented in [24, 25]. Part of the authors has previously presented VEMs for the solution of the
first equation in [26], while the virtual element discretization of the second equation is currently
under study, see, for instance, the work in progress of [27]. These previous works focused on both
methods’ theoretical aspects and convergence analysis, providing convergence proofs, error estimates,
and the numerical investigation of their convergence behavior in representative benchmark test case
applications. Instead, herein we focus on the implementation design for each equation separately,
emphasizing similar computational aspects. At the same time, a forthcoming publication will address
the VEM-based coupled approach to solving the fracture model.

The remainder of this paper is as follows. We present the mathematical formulation of these two
model problems in the strong and weak form in Section 2 and their numerical discretizations using
the VEM in Section 3. We discuss the implementation design in Section 4 and offer our concluding
remarks in Section 5.
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2. Model problems and variational formulations

In this section, we introduce the model problems that we consider in this paper, and their variational
formulation, which we will discretize using the virtual element method. In Subsection 2.1, we
introduce the notation that is used throughout the paper; in Subsection 2.2, we present the model
problems in strong form; in Subsection 2.3, we present the model problems in variational form.

2.1. Notation and technicalities

Throughout this paper, we adopt the notation of Sobolev spaces as in [28]. Accordingly, we denote
the space of square-integrable functions defined on any open, bounded, connected domain Ω ⊂ R2

with boundary ∂Ω by L2(Ω), and the Hilbert space of functions in L2(Ω) with all partial derivatives up
to a positive integer m also in L2(Ω) by Hm(Ω), see [28]. We endow Hm(Ω) with the usual norm and
seminorm that we denote as || · ||m,Ω and | · |m,Ω, respectively.

The virtual element methods that we consider in the next sections are formulated on the mesh
family

{
Ωh

}
h, where each mesh Ωh is a partition of the computational domain Ω into nonoverlapping

star-shaped polygonal elements E with boundary ∂E, area |E|, center of gravity xE, and diameter hE =

supx,y∈E |x − y|. The mesh elements of Ωh form a finite cover of Ω such that Ω = ∪E∈ΩhE and the mesh
size labeling each mesh Ωh is defined by h = maxE∈Ωh hE. A mesh edge e has center xe and length he; a
mesh vertex v has position vector xv. We denote the edges of the polygonal boundary ∂E by EE.

For any integer number ` ≥ 0, we letP`(E) andP`(e) denote the space of polynomials defined on the
element E and the edge e, respectively; P`(Ωh) denotes the space of piecewise polynomials of degree `
on the mesh Ωh. For the convenience of exposition, we also use the notation. P−2(E) = P−1(E) = {0}.
Accordingly, it holds that q|E ∈ P`(E) if E ∈ Ωh for all q ∈ P`(Ωh). Throughout the paper, we use the
multi-index notation, so that ν = (ν1, ν2) is a two-dimensional index defined by the two integer numbers
ν1, ν2 ≥ 0. Moreover, Dνw = ∂|ν|w/∂xν1

1 ∂xν2
2 denotes the partial derivative of order |ν| = ν1 + ν2 > 0

of a sufficiently regular function w(x1, x2), and we use the conventional notation that D(0,0)w = w for
ν = (0, 0). We also denote the partial derivatives of w versus x and y by the shortcuts ∂xw and ∂yw,
and the normal and tangential derivatives with respect to a given edge by ∂nw and ∂tw. Finally, we
define the trace operator tr (A) =

∑
i aii for any matrix (two-index tensor) A =

(
ai j

)
. Given two tensors

A = (ai j) and B = (bi j), we also define A : B :=
∑

i
∑

j ai jbi j.

2.2. Governing equations in strong form

2.2.1. Linear momentum balance equation

The linear momentum balance equation for the displacement u : Ω × (0,T ] → R
2 on the 2-D

computational domain Ω reads as

ρü = ∇ · σ + f , on Ω × (0,T ], (2.1)

where ρ : Ω → R is a scalar density field, ü denotes the second-order time derivative of u, σ :
Ω × (0,T ] → R2×2

sym is the (time-dependent) stress tensor (R2×2
sym being the set of symmetric 2 × 2-sized

real-valued tensors), and f : Ω × (0,T ] → R
2 is a suitable vector-valued forcing term. In this paper,

we assume the density field is constant. The corresponding stress tensor σ is given by

σ(u) = gu(x)σe, with σe = (λ + µ) εvol + 2µ εdev, (2.2)
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where gu(x) : R2 → R is a given function modeling different material behaviors such as hardening
or softening effects, for instance, due to damage or fracture, and εvol and εdev are the volumetric and
deviatoric strain tensors.

Tensors εvol and εdev are respectively given by

εvol =
1
2

tr (ε(u)) I , and εdev = ε(u) − εvol, with ε(u) =
1
2

(
∇u + ∇uT

)
, (2.3)

where I the 2×2 identity tensor, and the volumetric strain tensor can also be written as εvol =
(
∇ ·u

)
I .

To complete the mathematical formulation of this model problem, we supplement Eq (2.1) with the
initial and boundary conditions. The initial conditions on the displacement and its derivative at t = 0
are given by

u = u0, in Ω × {0}, (2.4)
u̇ = v0, in Ω × {0}. (2.5)

Using (2.4)-(2.5) allows us to define the stress tensor σ at t = 0 through definitions (2.2)-(2.3). To
introduce the boundary conditions, we first assume that the domain boundary Γ is decomposed into
a Dirichlet boundary, e.g., ΓD,u that is a closed subset of Γ in the Euclidean topology, and Neumann
boundary, e.g., ΓN,u, such that Γ = ΓD,u ∪ ΓN,u and

∣∣∣ΓD,u ∩ ΓN,u

∣∣∣ = 0. Then the boundary conditions
read as:

u = u, on ΓD,u × (0,T ],
σn = gN , on ΓN,u × (0,T ].

Herein, u0,v0,u, and gN are given data; n =
(
nx, ny

)T is the unit vector orthogonal to Γ and pointing
out of Ω.

2.2.2. Fourth-order phase-field equation

The fourth-order equation for the phase field d on the 2-D computational domain Ω reads as

α2∆
2d − α1∆d + α0d + gd(d)Ht = 0, (2.6)

where α2, α1, and α0 are model parameters, gd(d) : R → R is an affine function, and the history
variable Ht : Ω → R is an additional multiplicative term. We assume that α2 and α1 are strictly
positive real numbers, and α0 is a non-negative real number. We remark that gd(d) := α3d + α4,
where α3 and α4 are constants. For simplicity, we let α4 = 0 in this work. We refer to [12] for a
detailed discussion about the physical meaning of gd(d) and Ht when modeling crack initiation and
propagation phenomena. To set the boundary conditions that establish the mathematical model, we
first split the domain boundary as Γ = ΓD,d ∪ ΓN,d, where ΓD,d and ΓN,d represents the Dirichlet and
Neumann parts of the domain boundary, respectively. Subsets ΓD,d and ΓN,d are disjoint in the sense
that their intersection has zero 2D measure, i.e.,

∣∣∣ΓD,d ∩ ΓN,d

∣∣∣ = 0. Additionally, we split the Dirichlet
boundary as ΓD,d = ΓD1,d∪ΓD2,d and the Neumann boundary as ΓN,d as ΓN,d = ΓN1,d∪ΓN2,d. We complete
the mathematical formulation of the model problem (2.6) with the following boundary conditions

d = d on ΓD1,d, and ∇d = 0 on ΓD2,d,

∆d = 0 on ΓN1,d, and ∇∆d = 0 on ΓN2,d.
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2.3. Variational formulations

2.3.1. Linear momentum balance equation

Consider the affine functional space of the two-dimensional vector-valued fields whose components
belong to the Sobolev space H1(Ω), and have an assigned value on the boundary Dirichlet boundary
ΓD,u:

Vu =
{
u ∈

[
H1(Ω)

]2 : u = u on ΓD,u

}
. (2.7)

Denoting Vu,0 if u = 0 and testing Eq (2.1) with elements in Vu,0, we arrive at the variational
formulation of the elastodynamics equation as

Find u ∈ Vu s.t. Mu(
..
u,w) +Au(u,w) = Fu(w), ∀w ∈ Vu,0 (2.8)

with the definitions:

Mu(u,v) :=
∫

Ω

ρu · v dV, and Au(u,v) :=
∫

Ω

σ(u) : ε(v)dV, ∀u ∈ Vu, and ∀v ∈ Vu,0,

and

Fu(v) =

∫
Ω

f · v dV +

∫
ΓN,u

gN · v dS , ∀v ∈ Vu,0,

where we denote the scalar product of two (matrix) tensors by “:”. In particular, for any tensor fields
A = (ail)i, j=1,2, and B = (bil)i, j=1,2, we consider the standard scalar product of 2 × 2- matrices: A : B =∑

i, j=1,2 ai jbi j. As shown, for example, by Raviart and Thomas (see [13, Theorem 8-3.1]) the variational
problem (2.8) is well-posed and its unique solution satisfies

u ∈ C0((0,T ); Vu

)
∩C1((0,T ); [L2(Ω)]2),

assuming that the external load f ∈ L2((0,T ); [L2(Ω)]2), the boundary function gN ∈

C1((0,T ); [H
1
2
0,ΓN

]2), and the initial functions u0 ∈ [H1
0,ΓD

(Ω)]2, v0 ∈ [L2(Ω)]2.

2.3.2. Fourth-order phase-field equation

Similar to the previous section, we consider the affine functional space

Vd =
{
d ∈ H2(Ω) : d = d on ΓD1,d and ∇d = 0 on ΓD2,d

}
, (2.9)

and a special case of Vd, namely, Vd,0, given by setting d = 0 in the previous definition. On testing (2.6)
with elements in Vd,0, we obtain the variational formulation of the fourth-order phase-field equation.

Find d ∈ Vd, such that

Ad(d, c) := α2Ad,2(d, c) + α1Ad,1(d, c) + α0Ad,0(d, c) +Agd (gd(d), c;Ht) = 0, ∀c ∈ Vd,0, (2.10)

where

Ad,2(d, c) :=
∫

Ω

∆d ∆c dV, Ad,1(d, c) :=
∫

Ω

∇d · ∇c dV, (2.11)
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Ad,0(d, c) :=
∫

Ω

d c dV, and Agd (gd(d), c;Ht) :=
∫

Ω

gd(d)Ht c dV. (2.12)

The wellposedness of the variational formulation, i.e., existence and uniqueness of d ∈ H2(Ω)
solving (2.10) with definitions (2.11)-(2.12), follows from applications of the Lax-Milgram
theorem [14], since the bilinear formAd(·, ·) is coercive and continuous.

3. Numerical discretizations

In this section, we briefly review the formulation of the virtual element method that approximates
the second-order momentum balance equation and the high-order phase field equation introduced in
the previous section.

3.1. VEM for the second-order momentum balance equation

Let V h
u,k be the virtual element approximation of the affine functional space Vu defined in (2.7). The

semi-discrete virtual element approximation of (2.8) reads as:
For all t ∈ (0,T ], find uh(t) ∈ V h

u,k, such that for t = 0 it holds that

uh(0) = (u0)I , u̇h(0) = (u1)I , and

Mh
u(üh,vh) +Ah

u(uh,vh) = F h
u(vh) ∀vh ∈ V

h
u,k. (3.1)

Here, uh(t) is the virtual element approximation of u and vh the generic test function in Vh
k , while

(u0)I and (u1)I are the virtual element interpolants of the initial solution functions u(0) and u̇(0),
respectively. The bilinear formsMh

u(·, ·),Ah
u(·, ·), and the linear functionalF h

u(·) are the virtual element
approximations ofMu(·, ·),Au(·, ·), and Fu(·), in (2.8).

The total time interval [0,T ] is divided into NT subintervals with time step ∆t = T
NT

and time instants
t(n) = n∆t. The Newmark method [15] is widely used to solve elastodynamic problems because it
allows us to solve the second-order equation directly without splitting the equation into two first-order
equations. Therefore, we employ the Newmark method to advance the system in time. In this implicit
scheme, accelerations and velocities at time t(n+1) are approximated as follows:

..
u

(n+1)
=

1
β(∆t)2

(
u(n+1) − u(n)

)
−

1
β∆t

.
u

(n)
−

1 − 2β
2β

..
u

(n)
, (3.2)

.
u

(n+1)
=

γ

β∆t

(
u(n+1) − u(n)

)
+

(
1 −

γ

β

) .
u

(n)
+

(
1 −

γ

2β

) ..
u

(n)
, (3.3)

where β in (0, 0.5] and γ ∈ (0, 1] are Newmark parameters.

3.1.1. Degrees of freedom, projection operators, local and global spaces

The vector-valued virtual element space is such that V h
u,k(E) = Vh

u,k(E) × Vh
u,k(E), where

Vh
u,k(E) denotes the local scalar conforming virtual element space (which will be introduced below).

Accordingly, the vector-valued displacement field uh is provided by the two components uh =(
ux,h, uy,h

)
, where each component belongs to Vh

u,k(E). Both components ui,h, for i ∈ {x, y}, are uniquely
identified by the following degrees of freedom:
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(U1) the values of ui,h at the vertices of E;

(U2) the edge polynomial moments of ui,h of order up to k − 2 on each one-dimensional edge e ∈ EE:

1
|e|

∫
e

ui,h m dS , ∀m ∈ Mk−2(e) ,∀e ∈ EE; (3.4)

(U3) the cell polynomial moments of ui,h of order up to k − 2 on E:

1
|E|

∫
E

ui,h m dV, ∀m ∈ Mk−2(E). (3.5)

In this definition, we use the symbols Mk−2(e) and Mk−2(E) to denote a basis for the polynomial spaces
Pk(e) and Pk−2(E), respectively. Suitably scaled monomials or orthogonal polynomials can provide
this basis.

Figure 1 shows the degrees-of-freedom of the three scalar conforming virtual element spaces (k =

1, 2, 3) defined on a pentagonal cell. Using these degrees of freedom, we compute the elliptic projection
operator Π∇,Eu,k : Vh

u,k(E)→ Pk(E), which is defined as∫
E
∇Π∇,Eu,k ch · ∇q dV, =

∫
E
∇ch · ∇q dV, ∀q ∈ Pk(E), (3.6a)∫

∂E
Π∇,Eu,k ch dS =

∫
∂E

ch dS , (3.6b)

where the second condition is needed to fix the kernel of the gradient operator. The local scalar virtual
element space of order k ≥ 1 is defined by

Vh
u,k(E) =

{
ch ∈ H1(E) : ∆ch ∈ Pk(E) and ch |∂E ∈ B

(0)
k (∂E) (3.7)

with
(
ch − Π∇,Eu,k ch, µh

)
E

= 0,∀µh ∈ Pk(E) \Pk−2(E)
}

where Pk(E)\Pk−2(E) denotes as the space spanned by the monomials of degree k and k − 1 on E, and

B(0)
k (∂E) =

{
ch ∈ C0(∂E) : ch |e ∈ Pk(e), ∀e ∈ EE

}
.

k = 1 k = 2 k = 3

Figure 1. The degrees-of-freedom of the scalar conforming virtual element spaces Vh
u,k(E),

(k = 1, 2, 3) on a pentagonal cell, which approximates the components of the vector-valued
field u, solving the momentum balance equation. Green circles, red squares, and blue crosses
are (U1), (U2), and (U3), respectively.
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According to this definition, the orthogonal projection Π0,E
u,kch of a virtual element function ch onto

the polynomial space of degree k, defined as,∫
E

(
Π0,E

u,kch − ch

)
q = 0, ∀q ∈ Pk(E),

is also computable. The global conforming space of vector-valued virtual element field of order k ≥ 1,
i.e., the finite-dimensional space Vh

u,k, is obtained by combining all the elemental spaces
[
Vh
u,k(E)

]2.
Building upon the local spaces Vh

u,k(E), k ≥ 1 for all E ∈ Ωh, we define it as

Vh
u,k :=

{
u ∈ Vu : u|E ∈ Vh

u,k(E) ∀E ∈ Ωh

}
. (3.8)

3.1.2. Virtual element bilinear forms and linear functional

In the virtual element setting, we define the bilinear forms Mh
u(·, ·) and Ah

u(·, ·) as the sum of
elemental contributions, which are denoted byME

u(·, ·) andAE
u(·, ·), respectively:

Mh
u(·, ·) : Vh

u,k × Vh
u,k → R, with Mh

u(·, ·) =
∑
E∈Ωh

ME
u(·, ·),

Ah
u(·, ·) : Vh

u,k × Vh
u,k → R, with Ah

u(·, ·) =
∑
E∈Ωh

AE
u(·, ·).

The local bilinear formMh,E
u (·, ·) is given by

ME
u(uh,vh) =

∫
E
ρΠ0,E

u,kuh · Π
0,E
u,kvh dV + S E

m(uh,vh), (3.9)

where S E
m(·, ·) is the local stabilization term forMh,E

u . The bilinear formME
u depends on the orthogonal

projections Π0
u,kuh and Π0

u,kvh, which are computable from the degrees of freedom of uh and vh,
respectively, see the previous section. The local bilinear formAh,E

u (·, ·) is given by

AE
u(uh,vh) =

∫
E

Π0,E
u,k−1σ(uh) : Π0,E

u,k−1ε(vh) dV + S E
a (uh,vh), (3.10)

where S E
a (·, ·) is the local stabilization term for AE

u. The bilinear form AE
u depends on the orthogonal

projections Π0,E
u,k−1σ(uh) and Π0,E

u,k−1ε(vh), which are computable from the degrees of freedom of uh and
vh, respectively, see the previous section.

The local stabilization terms S E
m(·, ·), S E

a (·, ·) : Vh
u,k×Vh

u,k → R can be any symmetric and coercive
bilinear forms that are computable from the degrees of freedom, and suitably provides the k-consistency
and stability property. The role of the stabilization in the VEM is discussed in detail in [23]. The
stabilization used in our implementation is discussed in Subsection 4.2.

Finally, we approximate the right-hand side (3.1) of the semi-discrete formulation as follows:

F h
u(vh) =

∑
E∈Ωh

F E
u (vh) +

∑
e∈ΓN

F e
u(vh), ∀vh ∈ Vh

k , (3.11)

where

F E
u (vh) =

∫
E
f · Π0,E

u,k(vh) dV, F e
u(vh) =

∫
e
gN · vh dS . (3.12)

The linear functional F h
u(·) is clearly computable since the edge trace vh|e is a polynomial and Π0,E

u,k(vh)
is computable from the degrees of freedom of vh.
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3.2. VEM for the fourth-order phase-field equation

The virtual element method approximates the variational formulation (2.10) as follows

Find dh ∈ Vh
d,r such that Ah

d(dh, ch) = 0, ∀ch ∈ Vh
d,r. (3.13)

In this formulation, Vh
d,r is the H2-conforming approximation of the space H2(Ω) provided by the VEM,

dh and ch are the trial and test functions from this space.

3.2.1. Degrees of freedom, projection operators, local and global spaces

On every mesh element E ∈ Ωh, the following set of values comprises the degrees of freedom of a
virtual element function ch as shown in Figure 2:

(D1) for r ≥ 2, ch(xv), ∂xch(xv), ∂ych(xv) for any vertex v of ∂E;

(D2) for r ≥ 4,
1
|e|

∫
e

qch dS for any q ∈ Pr−4(e), and any edge e ∈ EE;

(D3) for r ≥ 3,
∫

e
q∂nch dS for any q ∈ Pr−3(e), and any edge e ∈ EE;

(D4) for r ≥ 2,
1
|E|

∫
E

qv dV for any q ∈ Pr−2(E).

Consider the integer r ≥ 2 and the bilinear formB(u, v) = α2Ad,2(u, v)+α1Ad,1(u, v) with α2, α1 > 0.
We define the elliptic projection operator ΠL,Ed,r : H2(E) → Pr(E) such that for every v ∈ H2(E), the
r-degree polynomial ΠL,Ed,r v is the solution to the variational problem:

B
(
ΠL,Ed,r v − v, q

)
= 0, ∀q ∈ Pr(E), (3.14)∫

∂E

(
ΠL,Ed,r v − v

)
dS = 0. (3.15)

r = 2 r = 3 r = 4

Figure 2. The degrees-of-freedom of the scalar conforming virtual element spaces Vh
d,r(E),

(r = 1, 2, 3) on a pentagonal cell, which approximates the scalar field solving the high-order
phase-field equation. The solid green circles and empty red cirles are (D1), solid red squares
are (D2), empty red squares are (D3), and blue crosses are (D4).
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The elliptic projection operator ΠL,Ed,r : H2(E)∩C1(Ē)→ Pr(E) for any integer number r ≥ k is such
that ΠL,Ed,r d for all d ∈ H2(E) ∩C1(Ē) is the the solution of the finite-dimensional variational problem

B(ΠL,Ed,r d, q) = B(d, q), q ∈ Pr(E), (3.16)

with the following additional conditions(
ΠL,Ed,r d, 1

)
L2(E)

= (d, 1)L2(E) , (3.17)

and for i = {x, y}: (
∂iΠ

L,E
d,r d, 1

)
L2(E))

= (∂id, 1)L2(E)) . (3.18)

For r ≥ 3, the local virtual element space on element E is defined by

Vh
d,r(E) =

{
dh ∈ H2(E) : Ldh ∈ Pr−4(E) and dh |∂E ∈ B

(1)
r (∂E) with

(
dh − ΠL,Ed,r dh, µh

)
E

= 0,

∀µh ∈ Pr(E) \Pr−2(E)
}

where
B(1)

r (∂E) =
{
dh ∈ C1(∂E) : dh |e ∈ Pr(e), ∂ndh |e ∈ Pr−1(e), ∀e ∈ EE

}
. (3.19)

For r = 2, we have the special case of the low-order virtual element space:

Vh
d,r(E) =

{
dh ∈ H2(E) :Ldh = 0 and dh ∈ P3(e), ∂ndh ∈ P1(e), (3.20)

∀e ∈ ∂E with
(
dh − ΠL,Ed,r dh, µh

)
E

= 0, ∀µh ∈ P2(E)
}
.

Note that Pr(E) ⊂ Vh
d,r(E). Building upon the local spaces Vh

d,r(E), r ≥ 2, for all E ∈ Ωh the global
conforming virtual element space Vh

d,r is defined as

Vh
d,r :=

{
dh ∈ H2(Ω) : dh |E ∈ Vh

d,r(E) ∀E ∈ Ωh

}
. (3.21)

This implies that Vh
d,r ⊂ C1(Ω) because dh ∈ H2(E) in each element and C1-regularity across the internal

mesh faces.

3.2.2. Virtual element bilinear forms and linear functional

Let E ∈ Ωh be a mesh element, and consider the bilinear formsAE
d,2,A

E
d,1,A

E
d,0 : Vh

d,r(E)×Vh
d,r(E)→

R given by integrating on E instead of Ω in the corresponding bilinear forms in (2.11)-(2.12). Let
AE

d (·, ·) = α2A
E
d,2(·, ·) + α1A

E
d,1(·, ·) + α0A

E
d,0(·, ·). We use the elliptic projection ΠL,Ed,r and the L2-

orthogonal projection Π0,E
d,r to define the virtual element bilinear formAE

d : Vh
d,r(E) × Vh

d,r(E)→ R:

AE
d (dh, ch) := α2A

E
d,2(ΠL,Ed,r dh,Π

L,E
d,r ch) + α1A

E
d,1(ΠL,Ed,r dh,Π

L,E
d,r ch)

+ α0A
E
d,0(Π0,E

d,r dh,Π
0,E
d,r ch) + S E

h

(
dh − ΠL,Ed,r dh, ch − ΠL,Ed,r ch

)
.

Herein, the stabilization term is also built by using the projection ΠL,Ed,r (ch), and the usual formula, so
that the bilinear form S E

h : Vh
d,r(E) × Vh

d,r(E) → R can be any symmetric, positive definite, bilinear
form that suitably provides the k-consistency and stability properties. The stabilization used in our
implementation is discussed in Subsection 4.3.
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4. Implementation

In this section, we follow the general guidelines of [19] and briefly describe how we implemented
the VEM for the second-order elastodynamics equation and the fourth-order phase-field equation,
respectively.

4.1. Vector and matrix notation

In this section, we introduce VEM vector and matrix notations that will be used in the following
sections. We have introduced two virtual element spaces, H1-conforming Vh

u,k and H2-conforming Vh
d,r.

For conciseness, we use the virtual element space Vh
u,k as an example to introduce vector and matrix

notations. Such notations can be easily extended to Vh
d,r.

We consider the following compact notation. For all element E ∈ Ωh, we locally number the degrees
of freedom (U1), (U2), and (U3) from 1 to Ndofs. Then, we introduce the bounded, linear functionals
dofi : Vh

u,k(E)→ R, i = 1, . . . ,Ndofs, such that

dofi (vh) := i-th degree of freedom of vh

for vh ∈ Vh
u,k(E). Let ΛE =

{
dofi (·)

}
i denote the set of such functionals and collect the degrees of

freedom of vh in the vector vh =
(
dof1 (vh) , . . . , dofNdofs (vh)

)T . Since the degrees of freedom (U1),
(U2), and (U3) are unisolvent in Vh

u,k(E), the triplet
(
E,Vh

u,k(E),ΛE
)

is a finite element in the sense of
Ciarlet [16]. This property implies the existence of a Lagrangian basis set

{
ϕui

}
i, with ϕui ∈ Vh

u,k(E),
i = 1, . . . ,Ndofs, which satisfies

dofi

(
ϕuj

)
= δi j, i, j = 1, 2, . . . ,Ndofs.

We refer to the basis function set
{
ϕui

}
i as the “canonical” basis of Vh

u,k(E). We introduce the compact
notation

ϕϕϕu(x) =
(
ϕu1 (x), . . . , ϕuNdofs(x)

)T
,

and write the expansion of a virtual element function vh on such a basis set as

vh(x) = ϕϕϕu(x)Tvh =

Ndofs∑
i=1

dofi (vh) , ϕui (x) ∀x ∈ E.

We also introduce a compact notation for the basis of the polynomial subspace Pk(E) ⊂ Vh
u,k(E),

which reads as

mmmu(x) =
(
mu

1 (x), . . . ,mu
nk

(x)
)T
,

where nk is the cardinality of Pk(E). Since the polynomials mu
α (x) are also virtual element functions,

we can expand them on the canonical basis ϕϕϕ. We express such expansions as

mmmu(x)T = ϕϕϕu(x)TDDDu,
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where matrix DDDu has size Ndofs × nk and collects all the expansion coefficients

Du
i` = dofi

(
mu
`

)
,

so that

mu
` (x) =

Ndofs∑
i=1

ϕui (x)Du
i` ` = 1, . . . , nk.

Following this notation, we also express the action of a differential operator D, e.g., D = ∆ or
D = ∇, in a entry-wise way, so that

Dϕϕϕu(x) =
(
Dϕu1 (x), . . . ,DϕuNdofs(x)

)T
,

and

Dmmmu(x) =
(
Dmu

1 (x), . . . ,Dmu
nk

(x)
)T
.

Similarly, we express the action of the projectors Π∇,Eu,k , and Π0,E
u,k on the canonical basis functions ϕϕϕu

and their expansion on the polynomial basis mmmu as follows:

Π∇,Eu,kϕϕϕ
T
u =

[
Π∇,Eu,kϕ

u
1 ,Π

∇,E
u,kϕ

u
2 , . . .Π

∇,E
u,kϕ

u
Ndofs

]
= mmmT

u ΠΠΠ∇,Eu,k ,

Π0,E
u,kϕϕϕ

T
u =

[
Π0,E

u,kϕ
u
1 ,Π

0,E
u,kϕ

u
2 , . . .Π

0,E
d,kϕ

u
Ndofs

]
= mmmT

u ΠΠΠ0,E
u,k,

where ΠΠΠ∇,Eu,k and ΠΠΠ0,E
u,k are the matrix representation of Π∇,Eu,k and Π0,E

u,k, respectively. The expansion
coefficients for the three projection operators applied to the basis function ϕ j are collected along the
j-th column of the projection matrices ΠΠΠ∇,Eu,k , and ΠΠΠ0,E

u,k .

Remark 1. The vector and matrix notation for the fourth-order phase-field equation can be written in
a similar fashion, such as, the virtual element space Vh

d,r(E), degree of freedoms (D1)–(D4), canonical
basis ϕϕϕd, the polynomial basis mmmd, and more.

4.2. VEM implementation for the linear momentum equation

In this section, we start with constructing elliptic and L2 projectors, followed by assembling local
mass and stiffness matrices.

4.2.1. Elliptic projector

The elliptic projector Π∇,Eu,k is defined as, for vh ∈ Vh
u,k(E),∫

E
∇Π∇,Eu,k vh · ∇q dV =

∫
E
∇vh · ∇q dV, ∀q ∈ Pk(E). (4.1)

Using vector and matrix notation as introduced in Section 4.1, we have∫
E
∇mmmu · ∇

(
Π∇,Eu,kϕϕϕ

T
u

)
dV =

∫
E
∇mmmu · ∇ϕϕϕ

T
udV. (4.2)
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Substituting Π∇,Eu,kϕϕϕ
T
u with mmmT

uΠΠΠ∇,Eu,k , we obtain∫
E
∇mmmu · ∇ϕϕϕ

T
u dV =

∫
E
∇mmmu · ∇

(
mmmT

uΠΠΠ∇,Eu,k

)
dV =

∫
E
∇mmmu · ∇mmmT

udV ΠΠΠ∇,Eu,k . (4.3)

As a consequence, we have the following matrix equation

G̃GGuΠΠΠ∇,Eu,k = B̃BBu (4.4)

where

G̃GGu =

∫
E
∇mmmu · ∇mmmT

udV, B̃BBu =

∫
E
∇mmmu · ∇ϕϕϕ

T
udV =

∫
E
−∆mmmuϕϕϕu dV +

∫
∂E
∂n(mmmu)ϕϕϕT

u dS .

However, G̃GGu is singular. We additionally define

GGG0
uΠΠΠ∇,Eu,k = BBB0

u, for GGG0
u =



∫
∂E

mmmT
u dS

0T

...

0T

 and BBB0
u =



∫
∂E
ϕϕϕT
u dS

0T

...

0T

 . (4.5)

Collecting Eqs (4.4) and (4.5), we obtain

GGGuΠΠΠ∇,Eu,k = BBBu with GGGu = G̃GGu + GGG0
u, and BBBu = B̃BBu + BBB0

u. (4.6)

It is worth noting that GGGu is nonsingular by construction, and we can formally state that ΠΠΠ∇,Eu,k = GGG−1
u BBBu.

4.2.2. L2 orthogonal projectors

Recall the definition of the L2-orthogonal projector Π0,E
u,k acting on a scalar vh ∈ Vh

u,k(E), is∫
E

(
Π0,E

u,kvh

)
q dV =

∫
E

vhq dV, ∀q ∈ Pk(E). (4.7)

Rewrite Eq (4.7) using vector and matrix notation as∫
E

mmmu Π0,E
u,kϕϕϕ

T
u dV =

∫
E

mmmuϕϕϕ
T
udV. (4.8)

We replace Π0,E
u,kϕϕϕ

T
u with mmmT

uΠΠΠ0,E
u,k, and obtain∫

E
mmmuϕϕϕ

T
u dV =

∫
E

mmmu mmmT
uΠΠΠ0,E

u,k dV =

∫
E

mmmu mmmT
udV ΠΠΠ0,E

u,k. (4.9)

The above equation can be rewritten as

HuΠΠΠ0,E
u,k = Cu, (4.10)
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where

Hu =

∫
E

mmmu mmmT
udV,

and

Cu =

∫
E

mmmuϕϕϕ
T
udV.

We remark that Hu is nonsingular, therefore ΠΠΠ0,E
u,k = H−1

u Cu.
In addition, the L2-orthogonal projector acting on ∇vh, for vh ∈ Vh

u,k(E) is defined as∫
E

(
Π0,E

u,k−1∇vh

)
· q dV =

∫
E
∇vh · q dV (4.11)

= −

∫
E

vh∇ · q dV +

∫
∂E

vhq · n dS , ∀q ∈ [Pk−1(E)]2 .

We can choose q =
[
qup, 0

]T or q =
[
0, qdown

]T
where qup, qdown ∈ Pk−1(E). The above equation can be

split into the following two equations,∫
E

(
Π0,E

u,k−1∂xvh

)
qup dV =

∫
E
∂xvhqup dV, ∀qup ∈ Pk−1(E), (4.12)∫

E

(
Π0,E

u,k−1∂yvh

)
qdown dV =

∫
E
∂yvhqdown dV, ∀qdown ∈ Pk−1(E). (4.13)

We start with the first equation,∫
E

mmmu,k−1 (∂xϕϕϕu)T dV =

∫
E

mmmu,k−1

(
Π0,E

u,k−1 (∂xϕϕϕu)T
)

dV

=

∫
E

mmmu,k−1 (∂xmmmu)T dV ΠΠΠ0,x,E
u,k−1.

As a result, the above equation can be cast into

Hu,k−1ΠΠΠ
0,x,E
u,k−1 = Cx

u,k−1, (4.14)

where

Hu,k−1 =

∫
E

mmmu,k−1 (∂xmmmu)T dV =

∫
E

(
mmmu,k−1

) (
mmmu,k−1

)T dV, (4.15)

and

Cx
u,k−1 =

∫
E

mmmu,k−1 (∂xϕϕϕu)T dV = −

∫
E
∂xmmmu,k−1ϕϕϕ

T
udV +

∫
∂E

(mmmu,k−1)nxϕϕϕ
T
u dS . (4.16)

Following a similar procedure, we have the matrix equation for ΠΠΠ
0,y,E
u,k−1

Hu,k−1ΠΠΠ
0,y,E
u,k−1 = Cy

u,k−1, (4.17)

where

Cy
u,k−1 =

∫
E

mmmu,k−1

(
∂yϕϕϕu

)T
dV = −

∫
E
∂ymmmu,k−1ϕϕϕ

T
udV +

∫
∂E

(mmmu,k−1)nyϕϕϕ
T
u dS . (4.18)

It is easy to see that Hu,k−1 is invertible, therefore,

ΠΠΠ0,x,E
u,k−1 = H−1

u,k−1Cx
u,k−1 and ΠΠΠ

0,y,E
u,k−1 = H−1

u,k−1Cy
u,k−1.
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4.2.3. Local matrices

After constructing projection matrices, we can assemble the local mass and stiffness matrices. We
follow two major ideas in this section. The first idea is that we split the vector-valued function into two
scalar-valued components, i.e.,

u ∈ V h
u,k(E) =

[
Vh
u,k(E)

]2
, and u =

[
uup, 0

]T
+

[
0, udown

]T
, where uup, udown ∈ Vh

u,k(E). (4.19)

Second, it is well-known that we can split the local matrix into consistency and stability terms in VEM.
The consistency term is calculated using polynomials, while the stability term is approximated using
the local degrees of freedom.

Using the splitting idea Eq (4.19), we can rewrite the mass term as in the variational form Eq (2.8)
as

ME
u(u,v) =

∫
e
ρuupvup + ρudownvdowndV, ∀u,v ∈ V h

u,k(E). (4.20)

The local mass matrix is defined as

MMMu
E := MMMu,cons

E + MMMu,stab
E . (4.21)

We neglect the stability term of the local mass matrix, namely, MMMu,stab
E = 0. Therefore, the local mass

matrix is given by

MMMu
E = MMMu,cons

E :=
[

MMMu,cons,up,up
E 0

0 MMMu,cons,down,down
E

]
.

Using the L2-projector Π0,E
u,k and adopting the vector and matrix notations, we have

MMMu,cons,up,up
E = MMMu,cons,down,down

E =

∫
E
ρ
(
Π0,E

u,kϕϕϕu
)
·
(
Π0,E

u,kϕϕϕu
)

dV = ρ
(
ΠΠΠ0,E

u,k

)THuΠΠΠ0,E
u,k , (4.22)

where we have assumed the density of the material, ρ, is a constant.
Next, substituting Eqs (2.2) and (2.3) into the stiffness term in the variational formulation Eq (2.8),

we arrive at

AE
u(u,v) = AE,dev

u (u,v) +AE,vol
u (u,v),

where

AE,dev
u (u,v) := 2µ

∫
E

gu(x)σdev(u) : ε(v)dV, and AE,vol
u (u,v) := (λ + µ)

∫
E

gu(x)σvol(u) : ε(v)dV.

Moreover, using Eq (4.19) and expanding ε(u), we further obtain

AE,dev
u (u,v) = µ

∫
E

gu (∂xvup) (∂xuup) + gu

(
∂yvup

) (
∂yuup

)
dV

+ µ

∫
E

gu

(
∂yvup

) (
∂xudown

)
− gu (∂xvup)

(
∂yudown

)
dV

+ µ

∫
E

gu

(
∂xvdown

) (
∂yuup

)
− gu

(
∂yvdown

)
(∂xuup) dV
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+ µ

∫
E

gu

(
∂xvdown

) (
∂xudown

)
+ gu

(
∂yvdown

) (
∂yudown

)
dV, (4.23)

and

AE,vol
u (u,v) = (λ + µ)

∫
E

gu (∂xvup) (∂xuup) dV + (λ + µ)
∫

E
gu (∂xvup)

(
∂yudown

)
dV

+ (λ + µ)
∫

E
gu

(
∂yvdown

)
(∂xuup) dV + (λ + µ)

∫
E

gu

(
∂yvdown

) (
∂yudown

)
dV. (4.24)

Now, we are ready to assemble the stiffness matrix, which consists of consistency and stability terms
as

KKKu
E := KKKu,cons

E + KKKu,stab
E . (4.25)

From (4.23), we obtain the consistency term

KKKu,cons
E =

 KKKu,cons,up,up
E,dev KKKu,cons,up,down

E,dev

KKKu,cons,down,up
E,dev KKKu,cons,down,down

E,dev

 +

 KKKu,cons,up,up
E,vol KKKu,cons,up,down

E,vol

KKKu,cons,down,up
E,vol KKKu,cons,down,down

E,vol

 . (4.26)

We first address the deviatoric terms, and the volumetric components follow similarly. Using Π0,x,E
u,k−1,

Π
0,y,E
u,k−1, and Eq (4.23), we obtain

KKKu,cons,up,up
E,dev = µ

(
ΠΠΠ0,x,E

u,k−1

)T
Hxx

g ΠΠΠ0,x,E
u,k−1 + µ

(
ΠΠΠ

0,y,E
u,k−1

)T
Hyy

g ΠΠΠ
0,y,E
u,k−1,

KKKu,cons,up,down
E,dev = µ

(
ΠΠΠ

0,y,E
u,k−1

)T
Hyx

g ΠΠΠ0,x,E
u,k−1 − µ

(
ΠΠΠ0,x,E

u,k−1

)T
Hxy

g ΠΠΠ
0,y,E
u,k−1,

KKKu,cons,down,up
E,dev = µ

(
ΠΠΠ0,x,E

u,k−1

)T
Hxy

g ΠΠΠ
0,y,E
u,k−1 − µ

(
ΠΠΠ

0,y,E
u,k−1

)T
Hyx

g ΠΠΠ0,x,E
u,k−1,

KKKu,cons, down,down
E,dev = µ

(
ΠΠΠ0,x,E

k−1

)T
Hxx

g ΠΠΠ0,x,E
u,k−1 + µ

(
ΠΠΠ

0,y,E
u,k−1

)T
Hyy

g ΠΠΠ
0,y,E
u,k−1,

where

Hxx
g :=

∫
E

gu(x) (∂xmu) (∂xmu)T dV , Hxy
g :=

∫
E

gu(x) (∂xmu)
(
∂ymu

)T
dV,

Hyx
g :=

∫
E

gu(x)
(
∂ymu

)
(∂xmu)T dV , Hyy

g :=
∫

E
gu(x)

(
∂ymu

) (
∂ymu

)T
dV.

It is evident that
Hxx

g = Hxy
g = Hyx

g = Hyy
g =

∫
E

gu(x)
(
mmmu,k−1

) (
mmmu,k−1

)T dV. (4.27)

Then, the components of the volumetric term of the local stiffness matrix can be derived from Eq (4.24)
as,

KKKu,cons,up,up
E,vol = (λ + µ)

(
ΠΠΠ0,x,E

u,k−1

)T
Hxx

g ΠΠΠ0,x,E
u,k−1,

KKKu,cons,up,down
E,vol = (λ + µ)

(
ΠΠΠ0,x,E

u,k−1

)T
Hxy

g ΠΠΠ
0,y,E
u,k−1,

KKKu,cons,down,up
E,vol = (λ + µ)

(
ΠΠΠ

0,y,E
u,k−1

)T
Hyx

g ΠΠΠ0,x,E
u,k−1,
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KKKu,cons,down,down
E,vol = (λ + µ)

(
ΠΠΠ

0,y,E
u,k−1

)T
Hyy

g ΠΠΠ
0,y,E
u,k−1.

Finally, we follow [26] and adopt the stability term of the stiffness matrix as

KKKu,stab
E = max(2µ, λ)


(
III −DDDuΠΠΠ∇,Eu,k

)T (
III −DDDuΠΠΠ∇,Eu,k

)
0

0
(
III −DDDuΠΠΠ∇,Eu,k

)T (
III −DDDuΠΠΠ∇,Eu,k

)  .
The stability matrix KKKu,stab

E should scale with the consistency matrix KKKu,cons
E , which depends on the

Lame parameters. Therefore, we let KKKu,stab
E scale with max(2µ, λ). We remark that more options to

design the stability term can be found in [17, 18], and [29, 30] for nearly incompressible material,
where the stabilization term depends on the Lame parameters.

4.2.4. Right-hand side approximation

Using the compact notation again, we rewrite the virtual element approximation of the first term of
F h

u, see Eq (3.11), as

F E
u (vh) =

∫
E
f · Π0,E

u,kvh dV =

∫
E
f ·

 Π0,E
u,kϕϕϕu

Π0,E
u,kϕϕϕu

 dV =

∫
E
f ·

 mT
uΠΠΠ0,E

u,k

mT
uΠΠΠ0,E

u,k

 dV. (4.28)

4.3. VEM implementation for the fourth-order phase field equation

In this section, we follow a similar procedure as in Section 4.2 and discuss how to construct elliptic
and L2-orthogonal projectors, and the fourth-order equation’s local mass and stiffness matrices.

4.3.1. Elliptic projectors

In this section, we first construct Π∇,Ed,r , followed by ΠL,Ed,r . The elliptic projector Π∇,Ed,r is defined as,
for vh ∈ Vh

d,k(E)

AE
d,1

(
Π∇,Ed,r vh,Π

∇,E
d,r vh

)
=

∫
E

(
∇Π∇,Ed,r vh

)
· ∇q dV =

∫
E
∇vh · ∇q dV, ∀q ∈ Pr(E).

The above equation can be recast into the following matrix equation:

G̃GGd,1 ΠΠΠ∇,Ed,r = B̃BBd,1, (4.29)

where

G̃GGd,1 :=
∫

E
∇mmmd · ∇mmmT

d dV, B̃BBd,1 :=
∫

E
∇mmmd · ∇ϕϕϕ

T
d dV.

To fix the kernel of the differential operator ∇, we additionally require

GGG0
d ΠΠΠ∇,Ed,r = BBB0

d, with GGG0
d :=



∫
∂E

mmmT
d dS

0T

...

0T

 , and BBB0
d :=



∫
∂E
ϕϕϕT

d dS

0T

...

0T

 . (4.30)
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Gathering Eqs (4.29) and (4.30), we arrive at

GGGd,1ΠΠΠ
∇,E
u,r = BBBd,1 with GGGu = G̃GGd,1 + GGG0

d, and BBBd = B̃BBd,1 + BBB0
d. (4.31)

Next, from the definition of ΠL,Ed,r ,

α2A
E
d,2

(
ΠL,Ed,r vh,Π

L,E
d,r vh

)
+ α1A

E
d,1

(
ΠL,Ed,r vh,Π

L,E
d,r vh

)
= α2

∫
E

∆vh∆q dV + α1

∫
E
∇vh · ∇q dV, ∀q ∈ Pr(E),

we obtain

G̃GGd ΠΠΠL,Ed,r = B̃BBd, (4.32)

where

G̃GGd := α2G̃GGd,2 + α1G̃GGd,1, G̃GGd,2 :=
∫

E
∆mmmd ∆mmmT

d dV,

B̃BBd := α2B̃BBd,2 + α1B̃BBd,1, B̃BBd,2 :=
∫

E
∆mmmd ∆ϕϕϕT

d dV.

A (double) integration by parts of the right-hand-side of the definition of B̃BBd yields

α2B̃BBd,2 + α1B̃BBd,1 = α2

∫
E

∆mmmd ∆ϕϕϕT
d dV + α1

∫
E
∇mmmd · ∇ϕϕϕ

T
d dV

=

∫
E

[
α2∆

2mmmd − α1∆mmmd

]
ϕϕϕddV +

∫
∂E

[(
∂n(−α2mmmd + α1mmmd)

)
ϕϕϕT

d + α2∆mmmd
(
∂nϕϕϕ

T
d
)]

dS .

Collecting Eqs (4.30) and (4.32), we have

GGGd ΠΠΠL,Ed,r = BBBd, with GGGd = G̃GGd + GGG0
d, BBBd = B̃BBd + BBB0

d. (4.33)

It is worth noting that Eq (4.30) also fixes the kernel of L, namely, GGG0
d ΠΠΠL,Ed,r = BBB0

d. Therefore, GGGd,1 and
GGGd are nonsingular by construction, and we can formally state that

ΠΠΠ∇,Ed,r = GGG−1
d,1BBBd,1, and ΠΠΠL,Ed,r = GGG−1

d BBBd. (4.34)

4.3.2. L2-orthogonal projector

Recall that Π0,E
d,r is defined as, for vh ∈ Vh

d,k(E)

AE
d,0

(
Π0,E

d,r vh,Π
0,E
d,r vh

)
=

∫
E

(
Π0,E

d,r vh

)
q dV =

∫
E

vhq dV, ∀q ∈ Pr(E).

The construction of the L2 projection matrix ΠΠΠ0,E
d,r is similar to the derivation of Eq (4.10), therefore

ΠΠΠ0,E
d,r = H−1

d Cd, (4.35)

where

Hd :=
∫

E
mmmd mmmT

d dV, and Cd :=
∫

E
mmmd ϕϕϕ

T
d dV.
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4.3.3. Local matrices

The construction of the local mass matrices uses the L2-orthogonal projection, Π0,E
d,r . Following a

similar procedure to obtain Eq (4.22), we have

MMMd
E := MMMd,cons

E = α0Ad,0

(
Π0,E

d,kϕϕϕd,Π
0,E
d,kϕϕϕ

T
d

)
= α0

(
ΠΠΠ0,E

d,k

)THd ΠΠΠ0,E
d,k ,

and

MMMd,Ht
E := MMMd,Ht ,cons

E = Agd

(
Π0,E

d,kϕϕϕd,Π
0,E
d,kϕϕϕ

T
d
)

=
(
ΠΠΠ0,E

d,k

)THd,Ht ΠΠΠ
0,E
d,k ,

where we have assumed the linear function gd(d) = d and

Hd,Ht :=
∫

E
Ht(x)mmmd mmmT

d dV.

Note that we do not need to specify stabilization terms in the local mass matrices.
The stiffness matrix is given by the sum of two terms: a rank-deficient consistency term, which

guarantees the consistency of the approximation, and a stability term, which fixes the correct rank:

KKKd
E := KKKd,cons

E + KKKd,stab
E ,

where

KKKd,cons
E = α2Ad,2

(
ΠL,Ed,r ϕϕϕd,Π

L,E
d,r ϕϕϕd

)
+ α1Ad,1

(
ΠL,Ed,r ϕϕϕd,Π

L,E
d,r ϕϕϕd

)
=

(
ΠΠΠL,Ed,r

)T G̃GGd ΠΠΠL,Ed,r

and

KKKstab
E =

(
III −DDDd ΠΠΠL,Ed,r

)T (
III −DDDd ΠΠΠL,Ed,r

)
.

It is worth noting that we can also use other stabilizations as in [31].

5. Conclusions

In this work, we present, in detail, using vector and matrix notation, how to implement two
distinct virtual element methods for approximating a time-dependent, second-order momentum balance
equation and a fourth-order elliptic equation. Specifically for the momentum equation, we discuss the
implementation details by adopting a deviatoric and volumetric strain split. Such split is essential to
model various material behavior such as hardening and softening.

The momentum balance equation governs the linear elastodynamic IBVP; the second equation
mathematically models crack propagation in materials. Future works include coupling the second-
order elastodynamic equation with the fourth-order phase-field equation. When connected, these two
PDEs constitute fourth-order phase-field models of dynamic-brittle fractures, similar to those presented
in [24,25]. We plan to solve the coupled equations using virtual element methods discussed in the work
and study dynamic brittle fracture problems.
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