We study partial Hölder regularity for nonlinear elliptic systems in divergence form with double-phase growth, modeling double-phase non-Newtonian fluids in the stationary case.
Citation: Giovanni Scilla, Bianca Stroffolini. Partial regularity for steady double phase fluids[J]. Mathematics in Engineering, 2023, 5(5): 1-47. doi: 10.3934/mine.2023088
We study partial Hölder regularity for nonlinear elliptic systems in divergence form with double-phase growth, modeling double-phase non-Newtonian fluids in the stationary case.
[1] | M. Abdelwahed, L. C. Berselli, N. Chorfi, On the uniqueness for weak solutions of steady double-phase fluids, Adv. Nonlinear Anal., 11 (2022), 454–468. https://doi.org/10.1515/anona-2020-0196 doi: 10.1515/anona-2020-0196 |
[2] | E. Acerbi, G. Mingione, Regularity results for stationary electro-rheological fluids, Arch. Rational Mech. Anal., 164 (2002), 213–259. https://doi.org/10.1007/s00205-002-0208-7 doi: 10.1007/s00205-002-0208-7 |
[3] | R. A. Adams, Sobolev spaces, New York-London: Academic Press, 1975. |
[4] | P. Baroni, M. Colombo, G. Mingione, Nonautonomous functionals, borderline cases and related function classes, St. Petersburg Math. J., 27 (2016), 347–379. https://doi.org/10.1090/spmj/1392 doi: 10.1090/spmj/1392 |
[5] | P. Bella, M. Schäffner, On the regularity of minimizers for scalar integral functionals with $(p, q)$-growth, Anal. PDE, 13 (2020), 2241–2257. https://doi.org/10.2140/apde.2020.13.2241 doi: 10.2140/apde.2020.13.2241 |
[6] | C. Bennett, R. Sharpley, Interpolation of operators, Boston, MA: Academic Press Inc., 1988. |
[7] | V. Bögelein, F. Duzaar, J. Habermann, C. Scheven, Stationary electro-rheological fluids: low order regularity for systems with discontinuous coefficients, Adv. Calc. Var., 5 (2012), 1–57. https://doi.org/10.1515/acv.2011.009 doi: 10.1515/acv.2011.009 |
[8] | M. E. Bogovskiǐ, Solutions of some problems of vector analysis, associated with the operators div and grad, (Russian), In: Theory of cubature formulas and the application of functional analysis to problems of mathematical physics, Novosibirsk: Akad. Nauk SSSR Sibirsk. Otdel., Inst. Mat., 1980, 5–40. |
[9] | D. Breit, L. Diening, Sharp conditions for Korn inequalities in Orlicz spaces, J. Math. Fluid Mech., 14 (2012), 565–573. https://doi.org/10.1007/s00021-011-0082-x doi: 10.1007/s00021-011-0082-x |
[10] | D. Breit, L. Diening, M. Fuchs, Soleinodal Lipschitz truncations and application in fluid mechanics, J. Differ. Equations, 253 (2012), 1910–1942. https://doi.org/10.1016/j.jde.2012.05.010 doi: 10.1016/j.jde.2012.05.010 |
[11] | M. Carozza, J. Kristensen, A. Passarelli di Napoli, Regularity of minimizers of autonomous convex variational integrals, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5), 13 (2014), 1065–1089. https://doi.org/10.2422/2036-2145.201208_005 doi: 10.2422/2036-2145.201208_005 |
[12] | P. Celada, J. Ok, Partial regularity for non-autonomous degenerate quasi-convex functionals with general growth, Nonlinear Anal., 194 (2020), 111473. https://doi.org/10.1016/j.na.2019.02.026 doi: 10.1016/j.na.2019.02.026 |
[13] | M. Colombo, G. Mingione, Regularity for double phase variational problems, Arch. Rational Mech. Anal., 215 (2015), 443–496. https://doi.org/10.1007/s00205-014-0785-2 doi: 10.1007/s00205-014-0785-2 |
[14] | C. De Filippis, Quasiconvexity and partial regularity via nonlinear potentials, J. Math. Pure. Appl., 163 (2022), 11–82. https://doi.org/10.1016/j.matpur.2022.05.001 doi: 10.1016/j.matpur.2022.05.001 |
[15] | C. De Filippis, F. Leonetti, Uniform ellipticity and $(p, q)$-growth., J. Math. Anal. Appl., 501 (2021), 124451. https://doi.org/10.1016/j.jmaa.2020.124451 doi: 10.1016/j.jmaa.2020.124451 |
[16] | C. De Filippis, B. Stroffolini, Singular multiple integrals and nonlinear potentials, J. Funct. Anal., 285 (2023), 109952. https://doi.org/10.1016/j.jfa.2023.109952 doi: 10.1016/j.jfa.2023.109952 |
[17] | L. Diening, F. Ettwein, Fractional estimates for non-differentiable elliptic systems with general growth, Forum Math., 20 (2008), 523–556. https://doi.org/10.1515/FORUM.2008.027 doi: 10.1515/FORUM.2008.027 |
[18] | L. Diening, P. Kaplicky, S. Schwarzacher, Campanato estimates for the generalized Stokes system, Annali di Matematica, 193 (2014), 1779–1794. https://doi.org/10.1007/s10231-013-0355-5 doi: 10.1007/s10231-013-0355-5 |
[19] | L. Diening, C. Kreuzer, Linear convergence of an adaptive finite element method for the p-laplacian equation, SIAM J. Numer. Anal., 46 (2008), 614–638. https://doi.org/10.1137/070681508 doi: 10.1137/070681508 |
[20] | L. Diening, D. Lengeler, B. Stroffolini, A. Verde, Partial regularity for minimizers of quasiconvex functionals with general growth, SIAM J. Math. Anal., 44 (2012), 3594–3616. https://doi.org/10.1137/120870554 doi: 10.1137/120870554 |
[21] | L. Esposito, F. Leonetti, G. Mingione, Sharp regularity for functionals with $(p, q)$ growth, J. Differ. Equations, 204 (2004), 5–55. https://doi.org/10.1016/j.jde.2003.11.007 doi: 10.1016/j.jde.2003.11.007 |
[22] | J. Frehse, J. Málek, M. Steinhauer, On analysis of steady flows of fluids with shear-dependent viscosity based on the Lipschitz truncation method, SIAM J. Math. Anal., 34 (2003), 1064–1083. https://doi.org/10.1137/S0036141002410988 doi: 10.1137/S0036141002410988 |
[23] | M. Fuchs, G. Seregin, Variational methods for problems from plasticity theory and for generalized Newtonian fluids, Berlin, Heidelberg: Spinger, 2000. https://doi.org/10.1007/BFb0103751 |
[24] | G. P. Galdi, An introduction to the mathematical theory of the Navier-Stokes equations, Volume I: Linearised steady problems, New York, NY: Springer, 1994. https://doi.org/10.1007/978-1-4757-3866-7 |
[25] | F. W. Gehring, The $L^p$-integrability of the partial derivatives of a quasiconformal mapping, Acta Math., 130 (1973), 265–277. https://doi.org/10.1007/BF02392268 doi: 10.1007/BF02392268 |
[26] | E. Giusti, Direct methods in the calculus of variations, World Scientific, 2003. https://doi.org/10.1142/5002 |
[27] | C. Goodrich, G. Scilla, B. Stroffolini, Partial regularity for minimizers of discontinuous quasiconvex integrals with general growth, Proc. Roy. Soc. Edinb. A, 152 (2022), 1191–1232. https://doi.org/10.1017/prm.2021.53 doi: 10.1017/prm.2021.53 |
[28] | M. A. Krasnosel'ski$\mathop {\rm{i}}\limits^ \vee $, Ya. B. Ruticki$\mathop {\rm{i}}\limits^ \vee $, Convex functions and orlicz spaces, Groningen: P. Noordhoff LTD., 1961. |
[29] | M. Křepela, M. Růžička, Solenoidal difference quotients and their application to the regularity theory of the $p$-Stokes system, Calc. Var., 59 (2020), 34. https://doi.org/10.1007/s00526-019-1691-0 doi: 10.1007/s00526-019-1691-0 |
[30] | A. Kufner, O. John, S. Fuc$\mathop {\rm{i}}\limits^ \vee $k, Function spaces, Dordrecht: Springer, 1977. |
[31] | P. Marcellini, Regularity and existence of solutions of elliptic equations with $p, q$-growth conditions, J. Differ. Equations, 90 (1991), 1–30. https://doi.org/10.1016/0022-0396(91)90158-6 doi: 10.1016/0022-0396(91)90158-6 |
[32] | P. Marcellini, Local Lipschitz continuity for $p, q$-PDEs with explicit $ u$-dependence, Nonlinear Anal., 226 (2022), 113066. https://doi.org/10.1016/j.na.2022.113066 doi: 10.1016/j.na.2022.113066 |
[33] | G. Mingione, Regularity of minima: an invitation to the dark side of the calculus of variations, Appl. Math., 51 (2006), 355–426. https://doi.org/10.1007/s10778-006-0110-3 doi: 10.1007/s10778-006-0110-3 |
[34] | G. Mingione, V. Rǎdulescu, Recent developments in problems with nonstandard growth and nonuniform ellipticity, J. Math. Anal. Appl., 501 (2021), 125197. https://doi.org/10.1016/j.jmaa.2021.125197 doi: 10.1016/j.jmaa.2021.125197 |
[35] | P. P. Mosolov, V. P. Mjasnikov, On the correctness of boundary value problems in the mechanics of continuous media, Math. USSR Sb., 17 (1972), 257. https://doi.org/10.1070/SM1972v017n02ABEH001503 doi: 10.1070/SM1972v017n02ABEH001503 |
[36] | J. Ok, Partial Hölder regularity for elliptic systems with non-standard growth, J. Funct. Anal., 274 (2018), 723–768. https://doi.org/10.1016/j.jfa.2017.11.014 doi: 10.1016/j.jfa.2017.11.014 |
[37] | J. Ok, Partial regularity for general systems of double phase type with continuous coefficients, Nonlinear Anal., 177 (2018), 673–698. https://doi.org/10.1016/j.na.2018.03.021 doi: 10.1016/j.na.2018.03.021 |
[38] | J. Ok, G. Scilla, B. Stroffolini, Boundary partial regularity for minimizers of discontinuous quasiconvex integrals with general growth, Commun. Pure Appl. Anal., 21 (2022), 4173–4214. https://doi.org/10.3934/cpaa.2022140 doi: 10.3934/cpaa.2022140 |
[39] | K. R. Rajagopal, M. Růžička, Mathematical modeling of electrorheological materials, Continuum Mech. Thermodyn., 13 (2001), 59–78. https://doi.org/10.1007/s001610100034 doi: 10.1007/s001610100034 |
[40] | M. Růžička, Electrorheological fluids: modeling and mathematical theory, Berlin, Heidelberg: Springer, 2000. https://doi.org/10.1007/BFb0104029 |