In this paper we reconsider the original Kolmogorov normal form algorithm [
Citation: Marco Sansottera, Veronica Danesi. Kolmogorov variation: KAM with knobs (à la Kolmogorov)[J]. Mathematics in Engineering, 2023, 5(5): 1-19. doi: 10.3934/mine.2023089
In this paper we reconsider the original Kolmogorov normal form algorithm [
[1] | V. I. Arnold, Proof of a theorem of A. N. Kolmogorov on the invariance of quasi–periodic motions under small perturbations of the Hamiltonian, (Russian), Usp. Mat. Nauk, 18 (1963), 13–40. https://doi.org/10.1070/RM1963v018n05ABEH004130 doi: 10.1070/RM1963v018n05ABEH004130 |
[2] | G. Benettin, L. Galgani, A. Giorgilli, J. M. Strelcyn, A proof of Kolmogorov's theorem on invariant tori using canonical transformations defined by the Lie method, Nuov. Cim. B, 79 (1984), 201–223. https://doi.org/10.1007/bf02748972 doi: 10.1007/bf02748972 |
[3] | A. Celletti, A. Giorgilli, On the numerical optimization of KAM estimates by classical perturbation theory, Z. angew. Math. Phys., 39 (1988), 743–747. https://doi.org/10.1007/BF00948734 doi: 10.1007/BF00948734 |
[4] | H. Christodoulidi, C. Efthymiopoulos, T. Bountis, Energy localization on $q$-tori, long-term stability, and the interpretation of Fermi-Pasta-Ulam recurrences, Phys. Rev. E, 81 (2010), 016210. https://doi.org/10.1103/PhysRevE.81.016210 doi: 10.1103/PhysRevE.81.016210 |
[5] | H. Christodoulidi, C. Efthymiopoulos, Low-dimensional q-tori in FPU lattices: Dynamics and localization properties, Physica D, 261 (2013), 92–113. https://doi.org/10.1016/j.physd.2013.07.007 doi: 10.1016/j.physd.2013.07.007 |
[6] | A. M. Davie, The critical function for the semistandard map, Nonlinearity, 7 (1994), 219. https://doi.org/10.1088/0951-7715/7/1/009 doi: 10.1088/0951-7715/7/1/009 |
[7] | J. Féjoz, Démonstration du 'théorème d'Arnold' sur la stabilité du système planétaire (d'après Herman), Ergod. Theor. Dyn. Syst., 24 (2004), 1521–1582. https://doi.org/10.1017/S0143385704000410 doi: 10.1017/S0143385704000410 |
[8] | C. Froeschlé, A. Giorgilli, E. Lega, A. Morbidelli, On the measure of the structure around an invariant KAM torus: analytical and numerical investigation, Symposium - International Astronomical Union, 172 (1996), 293–298. https://doi.org/10.1017/S007418090012755X doi: 10.1017/S007418090012755X |
[9] | L. Galgani, Foundations of physics in Milan, Padua and Paris. Newtonian trajectories from celestial mechanics to atomic physics, Mathematics in Engineering, 3 (2021), 1–24. https://doi.org/10.3934/mine.2021045 doi: 10.3934/mine.2021045 |
[10] | G. Gallavotti, Twistless KAM tori, Commun. Math. Phys., 164 (1994), 145–156. https://doi.org/10.1007/BF02108809 |
[11] | G. Gallavotti, Twistless KAM tori, quasi flat homoclinic intersections, and other cancellations in the perturbation series of certain completely integrable Hamiltonian systems: a review, Rev. Math. Phys., 6 (1994), 343–411. https://doi.org/10.1142/S0129055X9400016X doi: 10.1142/S0129055X9400016X |
[12] | G. Gallavotti, G. Gentile, Majorant series convergence for twistless KAM tori, Ergod. Theor. Dyn. Syst., 15 (1995), 857–869. https://doi.org/10.1017/S0143385700009676 doi: 10.1017/S0143385700009676 |
[13] | A. Giorgilli, Classical constructive methods in KAM theory, Planet. Space Sci., 46 (1998), 1441–1451. https://doi.org/10.1016/S0032-0633(98)00045-2 doi: 10.1016/S0032-0633(98)00045-2 |
[14] | A. Giorgilli, Notes on exponential stability of Hamiltonian systems, In: Dynamical systems, Part I, 2003, 87–198. |
[15] | A. Giorgilli, Notes on Hamiltonian dynamical systems, Cambridge University Press, 2022. https://doi.org/10.1017/9781009151122 |
[16] | A. Giorgilli, U. Locatelli, On classical series expansions for quasi-periodic motions, Mathematical Physics Electronic Journal, 3 (1997), 5. |
[17] | A. Giorgilli, U. Locatelli, Kolmogorov theorem and classical perturbation theory, Z. angew. Math. Phys., 48 (1997), 220–261. https://doi.org/10.1007/PL00001475 doi: 10.1007/PL00001475 |
[18] | A. Giorgilli, U. Locatelli, A classical self–contained proof of Kolmogorov's theorem on invariant tori, In: Hamiltonian systems with three or more degrees of freedom, Dordrecht: Springer, 1999, 72–89. https://doi.org/10.1007/978-94-011-4673-9_8 |
[19] | A. Giorgilli, U. Locatelli, M. Sansottera, Kolmogorov and Nekhoroshev theory for the problem of three bodies, Celest. Mech. Dyn. Astr., 104 (2009), 159–175. https://doi.org/10.1007/s10569-009-9192-7 doi: 10.1007/s10569-009-9192-7 |
[20] | A. Giorgilli, U. Locatelli, M. Sansottera, On the convergence of an algorithm constructing the normal form for lower dimensional elliptic tori in planetary systems, Celest. Mech. Dyn. Astr., 119 (2014), 397–424. https://doi.org/10.1007/s10569-014-9562-7 doi: 10.1007/s10569-014-9562-7 |
[21] | A. Giorgilli, U. Locatelli, M. Sansottera, Improved convergence estimates for the Schröder-Siegel problem, Annali di Matematica, 194 (2015), 995–1013. https://doi.org/10.1007/s10231-014-0408-4 doi: 10.1007/s10231-014-0408-4 |
[22] | A. Giorgilli, U. Locatelli, M. Sansottera, Secular dynamics of a planar model of the Sun-Jupiter-Saturn-Uranus system; effective stability into the light of Kolmogorov and Nekhoroshev theories, Regul. Chaot. Dyn., 22 (2017), 54–77. https://doi.org/10.1134/S156035471701004X doi: 10.1134/S156035471701004X |
[23] | A. Giorgilli, S. Marmi, Convergence radius in the Poincaré-Siegel problem, Discrete Cont. Dyn. Syst. S, 3 (2010), 601–621. https://doi.org/10.3934/dcdss.2010.3.601 doi: 10.3934/dcdss.2010.3.601 |
[24] | A. Giorgilli, A. Morbidelli, Invariant KAM tori and global stability for Hamiltonian systems, Z. angew. Math. Phys., 48 (1997), 102–134. https://doi.org/10.1007/PL00001462 doi: 10.1007/PL00001462 |
[25] | A. Giorgilli, M. Sansottera, Methods of algebraic manipulation in perturbation theory, In: Third La Plata International School on Astronomy and Geophysics: Chaos, diffusion and non–integrability in Hamiltonian Systems Applications to Astronomy, La Plata Observatory, 2011,147–183. |
[26] | A. A. N. Kolmogorov, Preservation of conditionally periodic movements with small change in the Hamilton function, In: Stochastic behavior in classical and quantum Hamiltonian systems, Berlin, Heidelberg: Springer, 1979, 51–56. https://doi.org/10.1007/BFb0021737 |
[27] | A.-S. Libert, M. Sansottera, On the extension of the Laplace-Lagrange secular theory to order two in the masses for extrasolar systems, Celest. Mech. Dyn. Astr., 117 (2013), 149–168. https://doi.org/10.1007/s10569-013-9501-z doi: 10.1007/s10569-013-9501-z |
[28] | U. Locatelli, A. Giorgilli, Invariant tori in the secular motions of the three-body planetary systems, Celest. Mech. Dyn. Astr., 78 (2000), 47–74. https://doi.org/10.1023/A:1011139523256 doi: 10.1023/A:1011139523256 |
[29] | U. Locatelli, A. Giorgilli, From Kolmogorov's normalization algorithm to the orbits in the three-body planetary problem, In: Modern celestial mechanics: from theory to applications, Dordrecht: Springer, 2002,411–415. https://doi.org/10.1007/978-94-017-2304-6_32 |
[30] | U. Locatelli, A. Giorgilli, Construction of Kolmogorov's normal form for a planetary system, Regul. Chaot. Dyn., 10 (2005), 153–171. https://doi.org/10.1070/RD2005v010n02ABEH000309 doi: 10.1070/RD2005v010n02ABEH000309 |
[31] | J. Laskar, Frequency map analysis of an Hamiltonian system, In: Chaos and diffusion in Hamiltonian systems, Gif-sur-Yvette, France: Editions Frontieres, 1994,223–255. |
[32] | J. Laskar, Frequency map analysis and quasi periodic decompositions, In: Hamiltonian systems and Fourier analysis, 2005, 99–134. |
[33] | R. Mastroianni, C. Efthymiopoulos, Kolmogorov algorithm for isochronous Hamiltonian systems, Mathematics in Engineering, 5 (2023), 1–35. https://doi.org/10.3934/mine.2023035 doi: 10.3934/mine.2023035 |
[34] | A. Morbidelli, A. Giorgilli, On a connection between KAM and Nekhoroshev's theorem, Physica D, 86 (1995), 514–516. https://doi.org/10.1016/0167-2789(95)00199-E doi: 10.1016/0167-2789(95)00199-E |
[35] | A. Morbidelli, A. Giorgilli, Superexponential stability of KAM tori, J. Stat. Phys., 78 (1995), 1607–1617. https://doi.org/10.1007/BF02180145 doi: 10.1007/BF02180145 |
[36] | J. Moser, On invariant curves of area–preserving mappings of an annulus, Nachr. Akad. Wiss. Gött. II, 1962 (1962), 1–20. |
[37] | T. Penati, V. Danesi, S. Paleari, Low dimensional completely resonant tori in Hamiltonian Lattices and a Theorem of Poincaré, Mathematics in Engineering, 3 (2021), 1–20. https://doi.org/10.3934/mine.2021029 doi: 10.3934/mine.2021029 |
[38] | T. Penati, M. Sansottera, V. Danesi, On the continuation of degenerate periodic orbits via normal form: full dimensional resonant tori, Commun. Nonlinear Sci. Numer. Simulat., 61 (2018), 198–224. https://doi.org/10.1016/j.cnsns.2018.02.003 doi: 10.1016/j.cnsns.2018.02.003 |
[39] | J. Pöschel, On elliptic lower dimensional tori in Hamiltonian systems, Math. Z., 202 (1989), 559–608. https://doi.org/10.1007/BF01221590 doi: 10.1007/BF01221590 |
[40] | J. Pöschel, A lecture on the classical KAM theorem, In: Smooth ergodic theory and its applications, American Mathematical Society, 2001,707–732. |
[41] | H. Rüssmann, Non–degeneracy in the perturbation theory of integrable dynamical systems, In: Number theory and dynamical systems, Cambridge University Press, 1989, 5–18. https://doi.org/10.1017/CBO9780511661983.002 |
[42] | H. Rüssmann, On the frequencies of quasi periodic solutions of analytic nearly integrable Hamiltonian systems, In: Seminar on dynamical systems, Basel: Birkhäuser, 1994,160–183. https://doi.org/10.1007/978-3-0348-7515-8_13 |
[43] | M. Sansottera, V. Danesi, T. Penati, S. Paleari, On the continuation of degenerate periodic orbits via normal form: lower dimensional resonant tori, Commun. Nonlinear Sci. Numer. Simulat., 90 (2020), 105360. https://doi.org/10.1016/j.cnsns.2020.105360 doi: 10.1016/j.cnsns.2020.105360 |
[44] | M. Sansottera, A. Giorgilli, T. Carletti, High-order control for symplectic maps, Physica D, 316 (2016), 1–15. https://doi.org/10.1016/j.physd.2015.10.012 doi: 10.1016/j.physd.2015.10.012 |
[45] | M. Sansottera, C. Lhotka, A. Lemaître, Effective stability around the Cassini state in the spin-orbit problem, Celest. Mech. Dyn. Astr., 119 (2014), 75–89. https://doi.org/10.1007/s10569-014-9547-6 doi: 10.1007/s10569-014-9547-6 |
[46] | M. Sansottera, C. Lhotka, A. Lemaître, Effective resonant stability of Mercury, Mon. Not. Roy. Astron. Soc., 452 (2015), 4145–4152. https://doi.org/10.1093/mnras/stv1429 doi: 10.1093/mnras/stv1429 |
[47] | M. Sansottera, A.-S. Libert, Resonant Laplace-Lagrange theory for extrasolar systems in mean-motion resonance, Celest. Mech. Dyn. Astr., 131 (2019), 38. https://doi.org/10.1007/s10569-019-9913-5 doi: 10.1007/s10569-019-9913-5 |
[48] | M. Sansottera, U. Locatelli, A. Giorgilli, A semi-analytic algorithm for constructing lower dimensional elliptic tori in planetary systems, Celest. Mech. Dyn. Astr., 111 (2011), 337–361. https://doi.org/10.1007/s10569-011-9375-x doi: 10.1007/s10569-011-9375-x |
[49] | M. Sansottera, U. Locatelli, A. Giorgilli, On the stability of the secular evolution of the planar Sun-Jupiter-Saturn-Uranus system, Math. Comput. Simulat., 88 (2013), 1–14. https://doi.org/10.1016/j.matcom.2010.11.018 doi: 10.1016/j.matcom.2010.11.018 |
[50] | L. Stefanelli, U. Locatelli, Kolmogorov's normal form for equations of motion with dissipative effects, Discrete Contin. Dyn. Syst. B, 17 (2012), 2561–2593. https://doi.org/10.3934/dcdsb.2012.17.2561 doi: 10.3934/dcdsb.2012.17.2561 |
[51] | M. Volpi, U. Locatelli, M. Sansottera, A reverse KAM method to estimate unknown mutual inclinations in exoplanetary systems, Celest. Mech. Dyn. Astr., 130 (2018), 36. https://doi.org/10.1007/s10569-018-9829-5 doi: 10.1007/s10569-018-9829-5 |
[52] | J.-C. Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de $(C, 0)$, C. R. Acad. Sci. Paris Sér. I Math., 306 (1988), 55–58. |
[53] | J.-C. Yoccoz, Petits diviseurs en dimension 1, Société mathématique de France, 1995. |