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Abstract: In this paper we reconsider the original Kolmogorov normal form algorithm [26] with a
variation on the handling of the frequencies. At difference with respect to the Kolmogorov approach,
we do not keep the frequencies fixed along the normalization procedure. Besides, we select the
frequencies of the final invariant torus and determine a posteriori the corresponding starting ones.
In particular, we replace the classical translation step with a change of the frequencies. The algorithm
is based on the original scheme of Kolmogorov, thus exploiting the fast convergence of the Newton-
Kantorovich method.
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Foreword

The present manuscript marks a first step in answering a question raised by Prof. Antonio Giorgilli
in 2014 about our recent result [20] on the construction of lower dimensional elliptic tori in planetary
systems. The question sounded pretty much like “can we fix the final frequencies and determine where
we have to start from?” Indeed, from the mathematical point of view the result in [20] was satisfactory,
we obtained a result that is valid in measure. However, Antonio has always pursued explicit algorithms
that can be effectively implemented in order to study the behavior of a specific dynamical system, like
the dynamics of the solar system or the FPU problem. Thus, the fact that given a specific value of the
frequencies one does not know if the corresponding lower dimensional torus exists or not, left us with
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a bad taste in our mouth∗.
We therefore believe that the manuscript has an appropriate place in this Volume in honor of

Prof. Antonio Giorgilli. We will do our best to follow the line traced by Antonio and preserve his
legacy, always looking for rigorous constructive results†.

1. Introduction

The aim of this paper is to reconsider the proof of the Kolmogorov theorem [26] with a variation on
the handling of the frequencies.

1.1. About the genesis of this approach

The motivation behind the development of this approach has strong connections with the problem
of the persistence of lower dimensional elliptic invariant tori under sufficiently small perturbations.
Indeed, in [20] the authors gave an almost constructive proof of the existence of lower dimensional
elliptic tori for planetary systems, adapting the classical Kolmogorov normalization algorithm (see
also [48]) and a result of Pöschel [39], that allows to estimate the measure of a suitable set of non-
resonant frequencies. The key point is that both the internal frequencies of the torus and the transversal
ones vary at each normalization step, and cannot be kept fixed as in Kolmogorov algorithm. This makes
the accumulation of small divisors much more tricky to control and, more important, the result is only
valid in measure and therefore one cannot know a priori if a specific invariant torus exists or not.

A different approach, based on Lindstedt’s series, that allows to control the frequencies has been
proposed in [4, 5] in the context of FPU problem. However, the algorithm has been so far introduced
and used, up to our knowledge, only in a formal way and the literature lacks of rigorous convergence
estimates. Recently, a comparison of the Lindstedt’s method and the Kolmogorov normal form has
been studied in [33].

The idea is to overcome the issue of having a result that is valid only in measure, playing with the
frequency like one does with a control knob, hence the title of the paper. The present work focuses on
full dimensional invariant tori, thus representing a first step in this direction. We are well aware that,
considering full dimensional invariant tori, the original Kolmogorov normalization algorithm allows
to have a complete control of the frequencies, which are kept fixed along the whole normalization
procedure. However, considering lower dimensional elliptic tori, as explained in detail by
Pöschel [39], one cannot keep the frequencies fixed, but have to let them vary. Thus, as a first result,
we decide to adapt the classical Kolmogorov normalization algorithm in order to avoid the translation
that keeps the frequencies fixed by introducing a detuning‡ between the prescribed final frequencies
and the corresponding initial ones, to be determined a posteriori. We remark that a similar approach
has been adopted in [50], dealing with an application of the KAM theorem in dissipative dynamical
systems.

Finally, let us stress that our approach (see also [7, 40]), in principle, also allows to start from a
resonant torus that by construction falls into a strongly nonresonant one.

∗As Antonio said, the result was satisfactory for an analyst, not for a mathematical physicist.
†Where constructive means that one must be able to build: (i) the proof of the theorem, (ii) the code that implement it; (iii) the

computer that run the code; and of course (iv) the desk and the chair where we actually write down the proof.
‡The detuning can be figured as the action of turning a control knob.
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1.2. KAM theory

In order to better illustrate our point of view, we briefly recall here some classical results on KAM
theory. Consider the so-called fundamental problem of dynamics as stated by Poincaré, i.e., a canonical
system of differential equations with Hamiltonian

H(p, q) = H0(p) + εH1(p, q; ε) , (1)

where (p, q) ∈ G × Tn are action-angle variables, being G ⊆ Rn an open set and ε is a small parameter.
The functions H0(p) and H1(p, q; ε) are assumed to be analytic in the variables and in the small
parameter, and bounded. Kolmogorov [26], in his seminal paper, that together with the works of
Moser [36] and Arnold [1] gave birth to the celebrated KAM theory, proved the existence of quasi
periodic solutions for this Hamiltonian, with given strongly nonresonant frequencies.

The original idea of Kolmogorov is to select the actions p∗ ∈ G such that the frequency vector
ω = ∇pH0(p∗) satisfies a Diophantine condition

|k · ω| > γ|k|−τ , for all k ∈ Zn, k , 0 , (2)

for some positive γ and τ ≥ n − 1. Hence the term H0 in (1) can be expanded in a neighborhood
of p∗, denoting again by p the translated actions, and (forgetting the unessential constant term) the
Hamiltonian reads

H(p, q) = ω · p + O(p2) + εH1(p, q; ε) . (3)

The Kolmogorov theorem ensures the persistence of the torus p = 0 (p = p∗ in the original variables)
carrying quasi-periodic solutions with frequencies ω, if ε is small enough and H0(p) is nondegenerate.

Let us stress here a technical point. The role of the nondegeneracy assumption on H0(p) is twofold:
(i) it allows to select the desired frequencies, parameterized by the actions; (ii) it allows to perform
the translation step that keeps the frequency fixed along the normalization procedure. However, if the
Hamiltonian is already in the form (3) or satisfies the so-called twistless property, i.e., it consists of a
sum of a kinetic term, quadratic in p, and of a potential energy, depending only on the angles, it turns
out that the nondegeneracy assumption can be removed, see, e.g., [10–12, 16].

Nowadays, the literature about KAM theory is so vast that an exhaustive list would fill several pages.
Indeed, quoting Pöschel [40], After all, KAM theory is not only a collection of specific theorems, but
rather a methodology, a collection of ideas of how to approach certain problems in perturbation theory
connected with “small divisors”. Hence, as this is a paper in honor of Antonio Giorgilli, we have
decided to just mention his main contributions in the field§, i.e., [2,3,8,13,16–20,22,24,28–30,34,35,
49].

A final remark is about the so-called quadratic (or superconvergent or Newton-like) method,
originally adopted by Kolmogorov and considered crucial until Russmann [41, 42] pointed out that a
careful analysis of the accumulation of the small divisors allows to sharpen some estimates and get rid
of it. Eventually, a proof of Kolmogorov theorem via classical expansion in a small parameter has
been obtained by Giorgilli and Locatelli in [18]. The approach based on classical expansions allows
to unveil the mechanism of the accumulation of the small divisors and leads in a natural way to

§For an historical account on the role played by Antonio on the development of KAM theory in Milan, see [9] in this same Special
Issue.
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introduce a more relaxed nonresonant condition for the frequency vector ω, the so-called τ-condition
introduced by Antonio in [23] and later adopted in [20, 21], precisely

−
∑
r≥1

logαr

r(r + 1)
= Γ < ∞ , with min

0<|k|≤rK
|k · ω| ≥ αr , (4)

where K and Γ are two positive constants. Such a non-resonance condition is equivalent to the Bruno’s
one, which is the weakest one that can be assumed to prove the persistence of invariant tori (see
[6,16,52,53]). Furthermore, the classical approach is the only way to directly implement KAM theory
in practical applications via computer algebra (see, e.g., [25]) and it proved advantageous in different
contexts, e.g., the construction of lower dimensional elliptic tori in planetary systems in [48, 49], the
study of the long term dynamics of exoplanets in [27,47,51], the investigation of the effective stability
in the spin-orbit problem in [45, 46], the design of an a priori control for symplectic maps related to
betatronic motion in [44] and the continuation of periodic orbits on resonant tori in [37, 38, 43].

In the present paper, we adopt the original quadratic approach by Kolmogorov, which turns out
to be better suited in order to devise a normal form algorithm that introduces a detuning of the initial
frequencies that will be determined along the normalization procedure and complement it with rigorous
convergence estimates.

1.3. Statement of the main result

Consider a 2n-dimensional phase space with canonical action-angle variables (p, q) ∈ G×Tn, where
G ⊆ Rn is an open set containing the origin.

The Hamiltonian (1) is assumed to be a bounded real analytic function for sufficiently small values
of ε and real bounded holomorphic function of the (p, q) variables in the complex domain Dρ0,σ0 =

Gρ0×T
n
σ0

where ρ0 andσ0 are positive parameters, Gρ0 =
⋃

p∈G ∆ρ0(p), with ∆ρ0(p) = {z ∈ Cn : |p j−z j| <

ρ0} and Tn
σ0

= {q ∈ Cn : |Im(q j)| < σ0} that are the usual complex extensions of the real domains.
Given a point p0 ∈ G, denote by ω0(p0) ∈ Rn the corresponding frequency vector and expand the

Hamiltonian H0 in a neighborhood of p0, denoting again by p the translated actions p − p0, precisely

H(p, q) = ω0 · p + O(p2) + εH1(p, q; ε) . (5)

As remarked in the previous subsection, one can assume a nondegeneracy condition on H0(p) so as
to ensure that the frequency vector is parameterized by the actions. However, if the Hamiltonian is
already in this form, no nondegeneracy assumption is required.

We can now state our main theorem

Theorem 1.1. Consider the Hamiltonian (5) and pick a strongly nonresonant frequency vector ω ∈
Rn satisfying the Diophantine condition (2) with some γ > 0 and τ ≥ n − 1. Then there exists a
positive ε∗ such that the following statement holds true: for |ε| < ε∗ there exist a frequency vector ω0

and a real analytic near to the identity canonical transformation (p, q) = C(∞)(p(∞), q(∞)) leading the
Hamiltonian (5) in normal form, i.e.,

H(∞) = ω · p(∞) + O(p(∞)2) . (6)

A more quantitative statement, including a detailed definition of the threshold on the smallness of
the perturbation, is given in Proposition 4.1.
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A few comments are in order. At difference with respect to the original Kolmogorov theorem,
we do not keep the frequencies fixed along the normalization procedure. The idea, that will be fully
detailed in the next section, is to replace the classical translation step with an unknown detuning δω
of the frequencies. Thus, once selected the final KAM torus, the theorem ensures the existence of
a starting one which is invariant in the integrable approximation with ε = 0 and, by construction,
falls into the wanted invariant torus. Let us remark that in order to apply the Kolmogorov theorem,
e.g., for constructing an invariant torus for a planetary system, it is somehow natural to determine
the final angular velocity vector ω by using some numerical techniques like, e.g., Frequency Analysis
(see [31, 32]).

2. Analytic setting and expansion of the Hamiltonian

We now define the norms we are going to use. For real vectors x ∈ Rn, we use

|x| =
n∑

j=1

|x j| .

For an analytic function f (p, q) with q ∈ Tn, we use the weighted Fourier norm

‖ f ‖ρ,σ =
∑
k∈Zn

| fk|ρe|k|σ ,

with
| fk|ρ = sup

p
| fk(p)| .

We introduce the classes of functions Pl, with integers l ≥ 0, such that g ∈ Pl can be written as

g(p, q) =
∑
|m|=l

∑
k

cm,k pmeik·q ,

with cm,k ∈ C. For consistency reasons, we also setP−1 = {0}. Finally, we will also omit the dependence
of the functions from the variables, unless it has some special meaning.

The Hamiltonian (5), expanded in power series of the actions p, reads

H(p, q) = ω0 · p +
∑
l≥0

hl , (7)

where hl ∈ Pl are bounded as

‖h0‖ρ,σ ≤ εE , ‖h1‖ρ,σ ≤
εE
2

and ‖hl‖ρ,σ ≤
E
2l for l ≥ 2 . (8)

provided ρ0 ≤ 1/4, with E = 2n−1E0 where

E0 = max

 sup
p∈∆ρ0

|H0(p)| , sup
(p,q)∈Dρ0 ,σ0

|H1(p, q; ε)|

 . (9)
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3. Formal algorithm

We present in this section the algorithm leading the Hamiltonian (7) in normal form. The procedure
is described here from a purely formal point of view, while the study of the convergence is postponed
to the next section.

First we introduce the unknown detuning δω and rewrite the Hamiltonian as

H(p, q) = ω · p + δω · p +
∑
l≥0

hl(p, q) , (10)

with hl ∈ Pl. Let us stress again that the quantity δω is unknown and will be determined at the end of
the normalization procedure.

As in the original Kolmogorov proof scheme, the algorithm consists in iterating infinitely many
times a single normalization step: starting from H, we apply two near to the identity canonical
transformations with generating functions χ0(q) and χ1(p, q), i.e.,

H′ = exp(Lχ1) ◦ exp(Lχ0)H .

The generating functions are determined in order to kill the unwanted terms h0(q) and h1(p, q). At
difference with respect to the original approach designed by Kolmogorov we do not introduce a
translation of the actions p, since we do not keep fixed the initial frequency ω0. Indeed, in our
algorithm the role of the translation step is played by the detuning of the frequency δω.

The functions χ0(q) and χ1(p, q) are determined by solving

Lχ0ω · p + h0 = 0 , (11)

Lχ1ω · p +
∑
s≥0

1
s!

Ls
χ0

hs+1 =
∑
s≥0

1
s!
〈Ls

χ0
hs+1〉q , (12)

where 〈·〉q denotes the average with respect to the angles q.
First, considering the Fourier expansion of h0, and neglecting the constant term, one has

h0(q) =
∑
k,0

ckeik·q ,

and can easily check that the solution of (11) is given by

χ0(q) =
∑
k,0

ck

ik · ω
eik·q .

The intermediate Hamiltonian Ĥ = exp(Lχ0)H reads

Ĥ(p, q) = ω · p + δω′ · p +
∑
l≥0

ĥl(p, q) , (13)
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with

δω′ · p = δω · p +

∞∑
s=0

1
s!
〈Ls

χ0
hs+1〉q ,

ĥ0 = Lχ0

(
δω′ · p −

∞∑
s=1

1
s!
〈Ls

χ0
hs+1〉q

)
+ Lχ0

(
h1 − 〈h1〉q

)
+

∞∑
s=2

1
s!

Ls
χ0

hs ,

ĥ1 =

∞∑
s=0

1
s!

Ls
χ0

hs+1 +
(
δω − δω′

)
· p ,

ĥl =

∞∑
s=0

1
s!

Ls
χ0

hs+l , for l ≥ 2 .

(14)

where the unessential constant term 〈h0〉q has been neglected in the expression above.
Second, considering the Fourier expansion

ĥ1(p, q) =
∑
k,0

ĉk(p)eik·q ,

one can easily check that the solution of (12) is given by

χ1(p, q) =
∑
k,0

ĉk(p)
ik · ω

eik·q .

We complete the normalization step by computing the Hamiltonian H′ = exp(Lχ1)Ĥ that takes the
form (10) with δω′ as in (14) and

h′0 =

∞∑
s=0

1
s!

Ls
χ1

ĥ0 ,

h′1 =

∞∑
s=1

s
(s + 1)!

Ls
χ1

ĥ1 +

∞∑
s=1

1
s!

Ls
χ1
δω′ · p ,

h′l =

∞∑
s=0

1
s!

Ls
χ1

ĥl for l ≥ 2 .

(15)

The justification of the formulæ (14) and (15) is just a matter of straightforward computations,
exploiting (11) and (12).

4. Quantitative estimates

In this section, we translate our formal algorithm into a recursive scheme of estimates on the norms
of the functions. This essentially requires to bound the norm of the Lie series. In order to shorten the
notation, we will replace | · |α(ρ,σ) by | · |α and ‖ · ‖α(ρ,σ) by ‖ · ‖α, being α any positive real number. The
useful estimates are collected in the following statements.

Mathematics in Engineering Volume 5, Issue 5, 1–19.



8

Lemma 4.1. Let f and g be analytic respectively in D1 and D(1−d′) for some 0 ≤ d′ < 1 with finite
norms ‖ f ‖1 and ‖g‖1−d′ . Therefore,

i. for 0 < d < 1 and for 1 ≤ j ≤ n we have∥∥∥∥∥∥ ∂ f
∂p j

∥∥∥∥∥∥
(1−d)

≤
1

dρ
‖ f ‖1 ,

∥∥∥∥∥∥ ∂ f
∂q j

∥∥∥∥∥∥
(1−d)

≤
1

edσ
‖ f ‖1 ; (16)

ii. for 0 < d < 1 − d′ we have

‖{ f , g}‖(1−d′−d) ≤
2

ed(d + d′)ρσ
‖ f ‖1‖g‖(1−d′) . (17)

Lemma 4.2. Let d and d′ be real numbers such that d > 0 , d′ ≥ 0 and d + d′ < 1 ; let X and g be two
analytic functions on D(1−d′) having finite norms ‖X‖1−d′ and ‖g‖1−d′ , respectively. Then, for j ≥ 1, we
have

1
j!

∥∥∥L j
Xg

∥∥∥
1−d−d′

≤
1
e2

(
2e
ρσ

) j 1
d2 j ‖X‖

j
1−d′‖g‖1−d′ . (18)

The proofs of these lemmas are straightforward and can be found, e.g., in [14].
We are now ready to write the statement of Theorem 8.1 in a more detailed form.

Proposition 4.1. Consider the Hamiltonian (10) and assume the following hypotheses:

(i) hl, for l ≥ 0, satisfy (8);

(ii) ω ∈ Rn satisfy the Diophantine condition (2) with some γ > 0 and τ ≥ n − 1.

Then, there exists a positive ε∗ depending on n, τ, γ, ρ and σ such that for |ε| < ε∗ and δ ≤ 1/8 there
exists a real analytic near to the identity canonical transformation (p, q) = C(p′, q′) satisfying

|p j − p′j| ≤ δ
τ+3ρ , |q j − q′j| ≤ δ

τ+3σ , j = 1 , . . . , n , (19)

for all (p′, q′) ∈ D1−4δ which gives the Hamiltonian the Kolmogorov normal form (6). Moreover, the
detuning is bounded as

‖δω · p‖ 1
2
≤

E
2
δ2τ+4 .

The proof of this Proposition is given in the next two subsections. Indeed, it is divided in two parts:
first the quantitative analytic estimates for a single step are obtained in the so-called Iterative Lemma,
and finally the convergence of the infinite sequence of iterations is proved.

4.1. The iterative lemma

The aim of this subsection is to translate the algorithm of Section 3 into a scheme of estimates for
the norms of all functions involved.

Lemma 4.3. Let H be as in (10) and assume that the hypotheses (i)–(ii) of Proposition 4.1 hold true.
Let δ ≤ 1/8 and ρ∗, σ∗ be positive constants satisfying

(1 − 4δ)ρ ≥ ρ∗ and (1 − 4δ)σ ≥ σ∗ .
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Then there exists a positive constant Λ = Λ(n, τ, γ, ρ∗, σ∗) such that the following holds true: if

Λ

δ3τ+6ε ≤ 1 , (20)

assuming that the following “a priori” bound on the detunings holds true,

‖δω′ · p‖1−δ ≤
ε

2δτ+2 ,

then there exists a canonical transformation (p, q) = C(p′, q′) satisfying

|p j − p′j| ≤
Λε

δ3τ+6 δ
τ+3ρ ≤ δτ+3ρ ,

|q j − q′j| ≤
Λε

δ3τ+6 δ
τ+3σ ≤ δτ+3σ , j = 1 , . . . , n ,

(21)

for all (p′, q′) ∈ D1−4δ, which brings the Hamiltonian in the Kolmogorov normal form (6) with the same
ω and with new functions δω′ · p and h′l , for l ≥ 1, satisfying the hypotheses (i)–(ii) with new positive
constants ε′, ρ′, σ′ given by

ε′ =
Λ

δ3τ+6ε
2 , ρ′ = (1 − 4δ)ρ and σ′ = (1 − 4δ)σ .

Furthermore, the variation of the detuning frequency vector is bounded as follows

‖δω′ · p − δω · p‖1−2δ ≤
Λε

δ3τ+6 δ
2τ+4 E

2
≤ δ2τ+4 E

2
.

A crucial role in the proof of the Iterative Lemma is played by the control of the accumulation
of the small divisors. This topic has been deeply investigated by Antonio Giorgilli, see, e.g., [15,
Section 8.2.4].

We now collect all the estimates that allow to prove Lemma 4.3. Recalling the Diophantine
condition (2), the elementary inequality |k|τe−|k|δσ ≤

(
τ

eδσ

)τ
allows us to easily bound the generating

function χ0 as

‖χ0‖1−δ ≤
1
γ

(
τ

eδσ

)τ
εE ≤

K1

δτ
ε , K1 =

1
γ

(
τ

eσ

)τ
E .

It is now convenient to provide some useful estimates to bound the terms appearing in Ĥ. Assuming
the smallness condition on ε

2eK1ε

δτ+2ρσ
≤

1
2
,
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we easily get

‖Lχ0h1‖1−2δ ≤
1
e2

(
2e
δ2ρσ

K1

δτ
ε

)
εE
2
≤

K2

δτ+2

1
2
ε2 , K2 =

2K1E
eρσ

,

‖Lχ0hl+1‖1−2δ ≤
1
e2

(
2e
δ2ρσ

K1

δτ
ε

)
E

2l+1 ≤
K2

δτ+2

1
2l+1ε ,∑

s≥2

1
s!
‖Ls

χ0
hl+s‖1−2δ ≤

∑
s≥2

1
e2

(
2e
δ2ρσ

K1

δτ
ε

)s E
2l+s

≤
1
e2

(
2e
δ2ρσ

K1

δτ
ε

)2 E
2l+2

∑
s≥0

(
eK1ε

δτ+2ρσ

)s

≤
K3

δ2τ+4

1
2l+2ε

2 , K3 =
23K2

1 E
ρ2σ2 ,∑

s≥2

s
s!
‖Ls

χ0
hs‖1−2δ ≤

∑
s≥2

s
e2

(
2e
δ2ρσ

K1

δτ
ε

)s E
2s

≤
1
e2

(
2e
δ2ρσ

K1

δτ
ε

)2 E
22

∑
s≥0

(s + 2)
(

eK1ε

δτ+2ρσ

)s

≤
K4

δ2τ+4

1
22ε

2 , K4 =
24K2

1 E
ρ2σ2 ,

(22)

where, in the last two inequalities, we used the well known sums

∑
s≥0

xs =
1

1 − x
≤ 2 and

∑
s≥1

sxs =
x

(1 − x)2 ≤ 2 , for |x| ≤
1
2
.

We now estimate the difference between the detunings, precisely,

‖δω′ · p − δω · p‖1−2δ ≤
∑
s≥0

1
s!
‖Ls

χ0
hl+1‖1−2δ

≤
εE
2

+
K2

δτ+2

1
22ε +

23K2
1 E

δ2τ+4ρ2σ2

1
23ε

2

≤
εE
2

+
K2

δτ+2

1
22ε +

(
2eK1ε

δτ+2ρσ

)
K2

δτ+2

1
22ε

≤
K5

δτ+2

ε

2
, K5 = E + K2 .

(23)
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We now bound the term appearing in (13). The norm of the function ĥ0 is bounded as

‖ĥ0‖1−2δ ≤

∥∥∥∥∥Lχ0

(
δω′ · p −

∞∑
s=1

1
s!
〈Ls

χ0
hs+1〉q

)
+ Lχ0

(
h1 − 〈h1〉q

)
+

∞∑
s=2

1
s!

Ls
χ0

hs

∥∥∥∥∥
1−2δ

≤
∥∥∥Lχ0δω

′ · p
∥∥∥

1−2δ
+

∥∥∥∥∥∑
s≥2

s
s!

Ls
χ0

hs

∥∥∥∥∥
1−2δ

+ ‖Lχ0h1‖1−2δ +

∥∥∥∥∥∑
s≥2

1
s!

Ls
χ0

hs

∥∥∥∥∥
1−2δ

≤
1
e2

(
2e
δ2ρσ

K1

δτ
ε

)
ε

2δτ+2 +
K4

δ2τ+4

1
22ε

2

+
K2

δτ+2

1
2
ε2 +

K3

δ2τ+4

1
22ε

2

≤
K6

δ2τ+4ε
2 , K6 =

K2

2E
+

K4

22 +
K2

2
+

K3

22 ,

while the norm of ĥ1 satisfies

‖ĥ1‖1−2δ ≤
∑
s≥0

1
s!
‖Ls

χ0
hs+1‖1−2δ

≤
εE
2

+
K2

δτ+2

1
22ε +

K3

δ2τ+4

1
23ε

2

≤
εE
2

+
K2

δτ+2

1
22ε +

(
2eK1ε

δτ+2ρσ

)
K2

δτ+2

1
22ε

≤
K5

δτ+2

ε

2
.

Finally, ĥl, for l ≥ 2, one has

‖ĥl‖1−2δ ≤
∑
s≥0

1
s!
‖Ls

χ0
hs+l‖1−2δ

≤
E
2l +

K2

δτ+2

1
2l+1ε +

K3

δ2τ+4

1
2l+2ε

2

≤
E
2l +

(
2eK1ε

δτ+2ρσ

)
E

2e2

1
2l +

(
2eK1ε

δτ+2ρσ

)2 E
2e2

1
2l

≤
K7

2l , K7 = E +
E
e2 .

This concludes the estimates for the first half of the normalization step.
Exploiting again the Diophantine condition (2) we easily bound the generating function χ1 as

‖χ1‖1−3δ ≤
1
γ

(
τ

eδσ

)τ K5

δτ+2

1
2
ε ≤

K8

δ2τ+2

1
2
ε , K8 =

1
γ

(
τ

eσ

)τ
K5 .

Mathematics in Engineering Volume 5, Issue 5, 1–19.



12

Assuming the smallness condition
2e‖χ1‖1−3δ

δ2ρσ
≤

1
2
,

that can be written as
2eK8ε

δ2τ+4ρσ
≤ 1 ,

we now bound the terms appearing in (15). The norm of the function h′0 is bounded as

‖h′0‖1−4δ ≤
∑
s≥0

1
e2

(
2e
δ2ρσ

K8

δ2τ+2

1
2
ε

)s K6

δ2τ+4ε
2

≤
K6

e2δ2τ+4ε
2
∑
s≥0

(
eK8ε

δ2τ+4ρσ

)s

≤
K9

δ2τ+4ε
2 , K9 =

2K6

e2 .

Similarly we get

‖h′1‖1−4δ ≤
∑
s≥1

1
s!

∥∥∥Ls
χ1

ĥ1

∥∥∥
1−4δ

+
∑
s≥1

1
s!

∥∥∥Ls
χ1
δω′ · p

∥∥∥
1−4δ

≤
∑
s≥1

1
e2

(
2e
δ2ρσ

K8

δ2τ+2

1
2
ε

)s ( K5

δτ+2

1
2
ε +

1
δτ+2

1
2
ε

)
≤

1
e2

(
2e
δ2ρσ

K8

δ2τ+2

1
2
ε

) (
K5

δτ+2

1
2
ε +

1
δτ+2

1
2
ε

)
∑
s≥0

(
2e
δ2ρσ

K8

δ2τ+2

1
2
ε

)s

≤
K8

eδ2τ+4ρσ

(
K5 + 1
δτ+2

)
2
ε2

2

≤
K10

δ3τ+6

ε2

2
, K10 =

2(K5 + 1)K8

eρσ
.

For l ≥ 2, we bound the norm of h′l as

‖h′l‖1−4δ ≤
∑
s≥0

1
s!

∥∥∥Ls
χ1

ĥl

∥∥∥
1−4δ

≤
∑
s≥0

1
e2

(
2e
δ2ρσ

K8

δ2τ+2

1
2
ε

)s K7

2l

≤
K11

2l , K11 =
2K7

e2 .

To finish, we need to provide the convergence of the near to the identity change of coordinates.
The first change of coordinates is bounded as follows

exp(Lχ0) p̂ j = p̂ j +
∂χ0

∂q j

∣∣∣∣∣
(q̂,p̂)

,

exp(Lχ0)q̂ j = q̂ j ,
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The second change of coordinates is bounded as

‖ exp(Lχ1)p′ − p′‖1−4δ ≤
∑
s≥1

1
s!
‖Ls

χ1
p′‖1−4δ

≤
∑
s≥1

1
s!

(s − 1)!
e2

(
2e
δ2ρσ

‖χ1‖1−4δ

)s−1

‖Lχ1 p′‖1−4δ

≤
‖χ1‖

e3δσ

∑
s≥1

1
s

(
2e
δ2ρσ

‖χ1‖1−4δ

)s−1

≤
δρ

2

(
1
e4

2eK8ε

δ2τ+4ρσ

)
,

and similar computations give

‖ exp(Lχ1)q
′ − q′‖1−4δ ≤

δσ

2

(
1
e3

2eK8ε

δ2τ+4ρσ

)
. (24)

Combining these bounds we eventually get

‖p′ − p‖1−4δ ≤
δρ

2
1
e4

2eK8ε

δ2τ+4ρσ
+

1
eδσ

K1

δτ
ε

≤
δρ

2

(
1
e4

2eK8

δ2τ+4ρσ
+

2K1

eδτ+2ρσ

)
ε .

(25)

In order to conclude the proof, we now collect all the estimates. We define Λ as

Λ = max
(
1, K j for j = 1, . . . , 11 ,

2eK1

ρσ
,

2eK8

ρσ

)
.

Let us stress that Λ depends only on τ, γ, ρ∗, σ∗ and n (implicitly via τ). Thus all the convergence
conditions are summarized by

Λ

δ3τ+6ε ≤ 1 ,

and trivial computations conclude the proof of Lemma 4.3.

4.2. Conclusion of the proof

By repeated application of the iterative lemma, we construct an infinite sequence {Ĉ(k)}k≥1 of near
the identity canonical transformations

(p(k−1), q(k−1)) = Ĉ(k)(p(k), q(k)) ,

where the upper index labels the coordinates at the k-th step. This introduces a sequence {H(k)}k≥1 of
Hamiltonians, where H(0) = H is the original one, satisfying

εk =
Λ

δ3τ+6
k

ε2
k−1 , (26)
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ρk = (1 − 4δk)ρk−1 , (27)
σk = (1 − 4δk)σk−1 . (28)

These sequences depend on the arbitrary sequence {δk}k≥1, that must be chosen so that for every k one
has δk ≤ 1/8 and

Λ

δ3τ+6
k

εk−1 ≤ 1 , (29)

(1 − 4δk)ρk−1 ≥ ρ
∗ > 0 , (30)

(1 − 4δk)σk−1 ≥ σ
∗ > 0 . (31)

Let us now make a choice of the parameters¶, precisely

εk = εk+1
0 and δk =

1
αk ,

where α is real positive constant to be determined.
Let’s start with (29), that reads

Λ(α3τ+6)kεk
0 ≤ 1 , (32)

and holds true provided

ε0 ≤
1

Λα3τ+6 . (33)

Consider now the restrictions δk. We immediately get∑
k≥1

δk =
∑
k≥1

α−k ≤
1
8
, for α ≥ 9 . (34)

We now prove that (31) and (30) hold true. Starting with

ln
∏
k≥1

(1 − 4δk) =
∑
k≥1

ln(1 − 4δk) ,

we easily get
0 ≥

∑
ln(1 − 4δk) ≥ −8 ln 2

∑
k≥1

δk > − ln 2 ,

from which we have ρ∗ = ρ/2 and σ∗ = σ/2.
Let us now focus on the sequence of the detuning frequency vectors {δω(k)}k≥0, which requires some

additional care. Indeed, Lemma 4.3 holds true provided ‖δω(k) · p‖1−δk ≤
εk−1
2δτ+2

k
and the sequence εk, by

definition, satisfy limk→∞ δω
(k) = 0. The recursive definition in (14) allows us to compute δω(k) · p as

δω(k) · p =
∑
j≥k+1

(
δω( j−1) · p − δω( j) · p

)
, for k ≥ 0 , (35)

and by using the inequality (23), we get

‖δω(k) · p‖1−δk ≤

∞∑
j=k+1

K5

δτ+2
j

ε j−1 .

¶The choice is rather arbitrary, see [15], footnote 6, chapter 8.
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Thus, the applicability of the Iterative Lemma 4.3 is then verified a posteriori, if the inequality∑
j≥k+1

K5

δτ+2
j

ε j−1 ≤
εk−1

δτ+2
k

(36)

holds true for every positive integer k. We can rewrite this condition as

K5

∑
j≥k+1

(ατ+2ε0) j = K5
(ατ+2ε0)k+1

1 − ατ+2ε0
≤ (ατ+2ε0)k

from which we get

ε0 ≤
1

ατ+2(K5 + 1)
. (37)

Hence, once the choice of α is made so as to satisfy (34), α ≥ 9, one has two additional smallness
conditions on ε0, (33) and (37), that affects the threshold on the small parameter ε∗.

It remains to prove that the canonical transformation is well defined on some domain. To this end,
consider the sequence of domains {∆ρk ,σk}k≥0 with ρk and σk as in (27) and (28).

Then the canonical transformation Ĉ(k) : ∆ρk ,σk → ∆ρk−1,σk−1 is analytic. Therefore, by composition,
the transformation

C(k) = Ĉ(k) ◦ · · · ◦ Ĉ(1)

is canonical and analytic. Moreover, in view of (25) and (24) we have

|p(k) − p(k−1)| ≤ σ

k∑
j=1

δτ+3
j and |q(k) − q(k−1)| ≤ ρ

k∑
j=1

δτ+3
j ,

thus, since
∑

j≥1 δ j is convergent, the sequence {C(k)}k≥1 converges absolutely to

C(∞) : ∆ρ∗,σ∗ → ∆ρ0,σ0 ,

with ρ∗ = ρ0/2 and σ∗ = σ0/2. The absolute convergence implies the uniform convergence in any
compact subset of ∆ρ∗,σ∗ , hence C(∞) is analytic. Finally, denoting by (p(∞), q(∞)) the canonical
coordinates in ∆ρ∗,σ∗ , and we immediately get

|p(∞)
j − p(0)

j | ≤
σ

8τ+3 and |q(∞)
j − q(0)

j | ≤
ρ

8τ+3 .

Lastly, we now focus on the sequence of detunings. We can bound the norm of δω(0) exploiting the
recursive definition

δω(0) · p =
∑
j≥1

(
δω( j−1) · p − δω( j) · p

)
.

Indeed, one easily gets

‖δω(0) · p‖ 1
2
≤

∑
j≥1

Λ

δτ+2
j

ε j−1E
2
≤

E
2

∑
j≥1

Λε j−1

δτ+2
j

≤
E
2

∑
j≥1

δ2τ+4
j ≤

E
2

1
82τ+4 .

By the properties of the Lie series transformation, one also has that the sequence {H(k)}k≥0 converges
to an analytic function H(∞) which by construction is in normal form. This concludes the proof of
Proposition 4.1.
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