We study layered solutions in a one-dimensional version of the scalar Ginzburg-Landau equation that involves a mixture of a second spatial derivative and a fractional half-derivative, together with a periodically modulated nonlinearity. This equation appears as the Euler-Lagrange equation of a suitably renormalized fractional Ginzburg-Landau energy with a double-well potential that is multiplied by a 1-periodically varying nonnegative factor g(x) with ∫101g(x)dx<∞. A priori this energy is not bounded below due to the presence of a nonlocal term in the energy. Nevertheless, through a careful analysis of a minimizing sequence we prove existence of global energy minimizers that connect the two wells at infinity. These minimizers are shown to be the classical solutions of the associated nonlocal Ginzburg-Landau type equation.
Citation: Ko-Shin Chen, Cyrill Muratov, Xiaodong Yan. Layered solutions for a nonlocal Ginzburg-Landau model with periodic modulation[J]. Mathematics in Engineering, 2023, 5(5): 1-52. doi: 10.3934/mine.2023090
[1] | José Antonio Vélez-Pérez, Panayotis Panayotaros . Wannier functions and discrete NLS equations for nematicons. Mathematics in Engineering, 2019, 1(2): 309-326. doi: 10.3934/mine.2019.2.309 |
[2] | Federico Cluni, Vittorio Gusella, Dimitri Mugnai, Edoardo Proietti Lippi, Patrizia Pucci . A mixed operator approach to peridynamics. Mathematics in Engineering, 2023, 5(5): 1-22. doi: 10.3934/mine.2023082 |
[3] | Qiang Du, Tadele Mengesha, Xiaochuan Tian . $ L^{p} $ compactness criteria with an application to variational convergence of some nonlocal energy functionals. Mathematics in Engineering, 2023, 5(6): 1-31. doi: 10.3934/mine.2023097 |
[4] | Luca Formaggia, Alessio Fumagalli, Anna Scotti . A multi-layer reactive transport model for fractured porous media. Mathematics in Engineering, 2022, 4(1): 1-32. doi: 10.3934/mine.2022008 |
[5] | Luca Franzoi, Riccardo Montalto . Time almost-periodic solutions of the incompressible Euler equations. Mathematics in Engineering, 2024, 6(3): 394-406. doi: 10.3934/mine.2024016 |
[6] | Masashi Misawa, Kenta Nakamura, Yoshihiko Yamaura . A volume constraint problem for the nonlocal doubly nonlinear parabolic equation. Mathematics in Engineering, 2023, 5(6): 1-26. doi: 10.3934/mine.2023098 |
[7] | Giacomo Canevari, Arghir Zarnescu . Polydispersity and surface energy strength in nematic colloids. Mathematics in Engineering, 2020, 2(2): 290-312. doi: 10.3934/mine.2020015 |
[8] | Carmen Cortázar, Fernando Quirós, Noemí Wolanski . Decay/growth rates for inhomogeneous heat equations with memory. The case of large dimensions. Mathematics in Engineering, 2022, 4(3): 1-17. doi: 10.3934/mine.2022022 |
[9] | Christopher Chong, Andre Foehr, Efstathios G. Charalampidis, Panayotis G. Kevrekidis, Chiara Daraio . Breathers and other time-periodic solutions in an array of cantilevers decorated with magnets. Mathematics in Engineering, 2019, 1(3): 489-507. doi: 10.3934/mine.2019.3.489 |
[10] | Dmitrii Rachinskii . Bifurcation of relative periodic solutions in symmetric systems with hysteretic constitutive relations. Mathematics in Engineering, 2025, 7(2): 61-95. doi: 10.3934/mine.2025004 |
We study layered solutions in a one-dimensional version of the scalar Ginzburg-Landau equation that involves a mixture of a second spatial derivative and a fractional half-derivative, together with a periodically modulated nonlinearity. This equation appears as the Euler-Lagrange equation of a suitably renormalized fractional Ginzburg-Landau energy with a double-well potential that is multiplied by a 1-periodically varying nonnegative factor g(x) with ∫101g(x)dx<∞. A priori this energy is not bounded below due to the presence of a nonlocal term in the energy. Nevertheless, through a careful analysis of a minimizing sequence we prove existence of global energy minimizers that connect the two wells at infinity. These minimizers are shown to be the classical solutions of the associated nonlocal Ginzburg-Landau type equation.
In this paper, we consider minimization of the following nonlocal energy functional:
J(u):=α2∫R|u′|2dx+∫Rg(x)W(u)dx+β4π∫R∫R[(u(x)−u(y))2(x−y)2−(η(x)−η(y))2(x−y)2]dydx | (1.1) |
in the set
A={u∈H1loc(R):u−η∈H1(R)}. |
Here α,β are positive constants, g(x) is a 1-periodic (a general period T>0 can be treated similarly) nonnegative function whose reciprocal satisfies the following integrability assumption
∫101g(x)dx<∞. | (1.2) |
The fixed function η∈C∞(R) satisfies |η|≤1, η(x)=1 for x≥1, η(x)=−1 for x≤−1, W(u) is a double well potential satisfying
W(u)>0 if u≠±1,W(±1)=W′(±1)=0andW′′(±1)>0. | (1.3) |
Formally, for u∈C2loc(R)∩L∞(R) the Euler-Lagrange equation associated with (1.1) is
−αu′′+β(−d2dx2)12u+g(x)W′(u)=0x∈R, | (1.4) |
where
(−d2dx2)12u(x):=limε→01π∫|x−y|≥εu(x)−u(y)(x−y)2dy. | (1.5) |
We are mainly interested in solutions of (1.4) that satisfy
limx→±∞u(x)=±1, | (1.6) |
we call such solutions layered solutions.
Equation (1.4) is a special case of the more general equation
−αΔu+β(−Δ)su+g(x)W′(u)=0x∈Rn, | (1.7) |
where 0<s<1. For u∈C2loc(Rn)∩L∞(Rn) the operator (−Δ)s is the fractional Laplacian defined by
(−Δ)su(x):=Cn,sP.V.∫Rnu(x)−u(y)|x−y|n+2sdy=Cn,slimε→0∫|x−y|≥εu(x)−u(y)|x−y|n+2sdy, |
where Cn,s is a normalization constant to guarantee that the Fourier symbol of the resulting operator is |ξ|2s, see e.g., [25], Section 3 for more details.
When g(x)=γ is a constant, (1.7) reduces to
−αΔu+β(−Δ)su+γW′(u)=0x∈Rn. | (1.8) |
This type of equation has attracted a lot of attention over the last twenty years (see e.g., [17,25,26,27,28,47,49,53,64]). In particular, the structure of layered solutions in the case β=0 (Allen-Cahn) or α=0 (fractional Allen-Cahn) is well understood at present. Here a layered solution of (1.8) is a bounded solution which is monotone in one direction. When β=0, De Giorgi conjecture posits that the level sets of such a layered solution are hyperplanes for n≤8. De Giorgi's initial conjecture was for W(u)=14(1−u2)2. This conjecture was proved for any C2 function W(u) satisfying (1.3) by Ghoussoub and Gui [42] when n=2. When n=3, Ambrosio and Cabré [10] proved the conjecture for a large class of W(u) which includes the original De Giorgi's choice. Later, Alberti, Ambrosio and Cabré [2] extended their results to cover all C2 function W(u) with the properties specified in (1.3). Under the additional assumption of anti-symmetry of solutions, Ghoussoub and Gui [43] established the De Giorgi conjecture for n=4,5. Further developments on the conjecture can be found in [12]. De Giorgi conjecture was completely solved by Savin [60,61] for 4≤n≤8 under the additional assumption limxn→±∞u(x)=±1. For dimensions n≥9, a counter-example was constructed by Del Pino, Kowalczyk and Wei [31]. A weaker version of the De Gigorgi conjecture, known as Gibbons conjecture, replaced monotonicity assumption by the stronger condition
limxn→±∞u(x)=±1 uniformly for (x1,⋯,xn−1)∈Rn−1. | (1.9) |
Gibbons conjecture was proved in all dimensions [12,13,40].
De Giorgi's conjecture has also been extended to the fractional Allen-Cahn case. The fractional De Giorgi conjecture was proved in [25,26,27,63] for the case n=2,s∈(0,1), and in [22,23] for n=3 and s≥12. Under additional limit conditions, fractional De Giorgi conjecture was proved for n=3 and s∈(0,12) by Dipierro, Serra and Valdinoci in [37] and by Savin in [62] for 4≤n≤8 and s∈[12,1). The limit condition is removed in [34] for n=3 and s∈(0,12). Recently, Figalli and Serra [41] solved the De Giorgi conjecture for half-Laplacian when n=4 (such a result is not known for the classical case s=1). Based on all these results, when g(x) is a constant, solutions to (1.8) satisfying (1.6) reduces to the unique one-dimensional solution (modulo translation) which is monotone and the problem is essentially one-dimensional.
When g(x) is not constant, but rather periodic, the continuous translational symmetry of layered solutions of (1.7) is broken and the structure of the set of solutions is much more complex. When β=0, the nonautonomous Allen-Cahn equation
−Δu+Wu(x,u)=0x∈Rn | (1.10) |
with
W(x+k,u)=W(x,u)∀k∈Zn |
has been studied extensively over the last three decades. Equation (1.10) is a special case of a model problem initiated by Moser [48] for developing a PDE version of Aubry-Mather theory of monotone twist maps (see [11,14,15,57,58] for related work). A different motivation is to view (1.10) as a model for phase transitions. When n=1 and subject to homogeneous Neumann boundary conditions on the interval of x∈(0,1), the following results have been proved for (1.10) for various choices of the potential term W(x,u). Angenent, Mallet-Paret and Peletier [1] gave a complete classification of all stable equilibrium solutions to (1.10) for Wu(x,u)=−u(1−u)(u−a(x)). Existence and stability of equilibrium solutions with a single transiton layer is proved in [44] for a general class of Wu(x,u)=−f(x,u), with f satisfying f(x,0)=f(x,1)=0 and f(x+k,u)=f(x,u) for some k>0. Nakashima [50] proved existence of stable solutions with multiple transition layers for the case Wu(x,u)=(u−a(x))(u−b(x))(u−c(x)). Existence and stability of multilayered solutions were provided in [51] for Wu(x,u)=h2(x)f(u). Nakashima and Tanaka [52] studied the one-dimensional case with a general potential W(x,u) and obtained existence of solutions with clustering layers. For higher dimensions and the special case of
−Δu+a(x)W′(u)=0x=(x1,⋯,xn)∈Rn, | (1.11) |
Alessio, Jeanjean and Montecchiari [5] proved existence of infinitely many solutions which are distinct up to periodic translations and satisfy limx1→±∞u(x1,x2)=±b uniformly in x2 for the case n=2 when a(x1,x2) is a positive, even, periodic function in x1,x2, and W(u) is a double well potential vanishing at u=±b for some b>0. For the same equation, Alessio and Montecchiari [7] showed existence of brake orbits type solutions, and Alessio, Gui and Montecchiari [3] proved existence and asymptotic behavior of saddle solutions. When a(x1,x2) depends only on one variable, existence of two-dimensional solutions was proved by Alessio and Montecchiari [4], and existence of infinitely many solutions can be found in [6,66]. Alessio and Montecchiari [8] proved existence of infinitely many solutions verifying limx1→±∞u(x1,x2,x3)=±1 uniformly in (x2,x3) for n=3 and a=a(x1). For results on solutions to (1.10) for n=2 with general potentials, see the papers by Rabinowitz and Stredulinsky [55,56]. Existence of various (multi-layer, mountain pass or higher topological complexity) solutions to (1.11) for general n was obtained in a series of papers by Byeon and Rabinowitz [18,19,20,21]. A review on existence results for (1.10) is given in [54] (see book [59] for a more thorough review on extensions of Moser-Bangert theory).
An extensive discussion on moving front solutions for time-dependent inhomogeneous Allen-Cahn equation can also be found in the literature. For example, Xin [65] considered propagating front solutions (which include stationary layered solutions) for
ut=∇x(a(x)∇xu)+b(x)⋅∇xu+f(u) | (1.12) |
when a(x), b(x) are periodic and f(u) is bistable. Keener [46] studied propagation of waves in periodic media for the following model:
ut=uxx+(1+g′(xL))f(u)−au | (1.13) |
where g(x) is a 1-periodic function and obtained a nearly complete picture of propagation in periodic medium. In particular, his results show how wave front shape changes when the medium becomes more and more nonuniform, and how propagation failure occurs when the medium becomes sufficiently nonuniform. Pinning and de-pinning phenomena for front propagation in heterogenous media was discussed in [38]. Existence and qualitative properties of pulsating travelling wave solutions is proved in [33] for equation
ut=(a(xL)ux)x+f(x,u). | (1.14) |
where a(x) and f(x,u) are 1-periodic in x.
Studies of layered solution in the fractional case when g(x) is not constant caught less attention. Existence of layered solutions to
(−d2dx2)su+g(x)W′(u)=0x∈R | (1.15) |
was obtained in [45] for s∈[12,1) when g>0 is an even, periodic function and W′(u) is odd. Another related work is [39], where the authors studied existence of multi-layered solution to the following equation:
ε2s(−d2dx2)su+g(x)u(1−u2)=0x∈R, | (1.16) |
when g(x) is not constant and s∈(12,1). Existence of heteroclinic orbits was proved in [9] for equation
(−Δ)su+g(ϵx)W′(u)=0x∈R,s∈(12,1), | (1.17) |
in each of the three cases of g, namely, g (asymptotically) periodic, g coercive and g satisfying Rabinowitz's condition. For a more general nonlocal operator in the form
Lu(x)=P.V.∫R[u(x)−u(y)]K(x−y)dy | (1.18) |
where
θ0|x|1+2sχ[0,r0](x)≤K(x)≤Θ0|x|1+2s for some Θ0≥θ0>0 and r0>0, | (1.19) |
heteroclinic orbits were constructed for s∈(12,1] in [35] (see also [30]) and for s∈(14,12] in a later work [36] for the nonlocal equation
Lu+g(x)W′(u)=0x∈R | (1.20) |
with an oscillatory g.
The mixed case, with local and nonlocal operators (α≠0 and β≠0), has gained attention in the last years at least in the autonomous case. For example, layered solutions of Allen-Cahn type equations in the form of a sum of fractional Laplacians of different orders was addressed in [24]. Systematic study on regularity and maximum principles for mixed local and nonlocal operators in the form L=−Δ+(−Δ)s has recently been developed in [16]. The work in the current paper is partly motivated by a recent work by the authors [29] where we considered the following renormalized nonlocal Ginzburg-Landau energy
Eε(u)=∫Rε2|u′|2dx+∫RW(u)dx+∫R∫R[(u(x)−u(y))2(x−y)2−(η(x)−η(y))2(x−y)2]dydx. | (1.21) |
We proved existence, regularity, monotonicity and uniqueness (up to translation) of the minimizer of Eε(u) in A. Moreover, as ε→0 we recovered the solution in [53] as the global minimizer (unique up to translations) of
E0(u)=∫RW(u)dx+∫R∫R[(u(x)−u(y))2(x−y)2−(η(x)−η(y))2(x−y)2]dydx. | (1.22) |
The proof of existence and uniqueness of minimizers in [29] relies on an essential observation that a minimizer of Eε among all functions satisfying u−η∈W1,20 (I) on any sufficiently large fixed interval I is monotone. Such conclusion follows from the key assumption that (1.21) is translation invariant. For model (1.1) with only discrete translation invariance, this argument fails and we need to seek a new method. The main difficulty to prove the existence of minimizer of (1.1) lies in two parts. Firstly, since η∉˚H12(R), it is not a priori clear that J(u) is bounded from below on A. Secondly, the energy bound does not necessarily imply the boundedness of u in a suitable Sobolev space in general. Therefore, we cannot a priori apply the direct method of calculus of variations to obtain a minimizer. To show that J is bounded from below on A, we divide the real line into the regions where u is close to ±1 and where u is away from ±1. By carefully matching the contributions from each region, all negative parts of the potential infinite energy are cancelled out.
To prove the existence of a minimizer, our main idea is as follows. Given an arbitrary minimizing sequence {un}, we replace this sequence by another sequence {¯un} constructed via reflecting the negative parts of un outside suitable regions. Taking into account our energy estimates from the lower bound argument, we can carefully choose the region where we apply the reflection to un so that the energy J(¯un) differs only slightly from J(un). The sequence {¯un} satisfies |¯un(x)+sgn(x)|≥c>0 outside a uniformly bounded interval. For such a sequence, boundedness of energy implies boundedness of ¯un−η in H1(R). From this and a lower semicontinuity argument, we obtain a limit function which attains a minimum of J(u) in A.
Our main result is the following existence and regularity theorem.
Theorem 1.1. Let α,β be positive constants. Assume g∈C∞(R) is a nonnegative 1-periodic function which satisfies (1.2), η∈C∞(R) is a given function satisfying |η|≤1, η(x)=1 for x≥1, η(x)=−1 for x≤−1, W(u) is a double well potential satisfying (1.3). Then there exists a minimizer u0 of J(u) over A. Moreover, u0∈C2,12(R)∩L∞(R) and satisfies the Euler-Lagrange equation
−αu′′0+g(x)W′(u0)+β(−d2dx2)12u0=0, | (1.23) |
and the condition at infinity
limx→±∞u0(x)=±1. | (1.24) |
Here the fractional operator (−d2dx2)12 is defined by (1.5).
Remark 1.2. Part of the motivation for our choice of the assumptions on g is to study layer solutions in excitable media. Keener [46] introduced a model for calcium release in cardiac cells where the release sites are discrete, resulting in a production term that may degenerate in space. Here we consider a medium exhibiting bistability locally away from a suitable measure zero set, with one possible choice of g satisfying (1.2) being g(x)=(1+cos(2πx))1/4.
Remark 1.3. When g(x)=1, the authors proved in [29] the monotonicity and uniqueness (up to translation) of minimizers uα of J(u) for each α>0. In addition, when α→0, the unique miminzer with uα(0)=0 converges to a global minimizer of J(u) with α=0. The proof relies crucially on the translational invariance of J(u) when g is constant and does not extend to the periodic case studied here. In contrast, for g periodic it is not at all clear whether a layer solution exhibits monotonicity or uniqueness (up to discrete translation).
Remark 1.4. When α=0, our argument can still be used to establish that the energy J(u) is bounded from below. It is not clear, though, which function space is a suitable choice for carrying out the minimization in this case. Indeed, for α>0 our argument uses the continuous representative of an H1(R) function. If α=0, however, one can no longer conclude a priori that the weak limit of the minimizing sequence remains in H1(R). When α→0, it would be interesting to know whether the layer minimizers uα we constructed for α>0 converge to a function that minimizes J(u) with α=0 in some sense. In contrast to our earlier results in [29], due to the lack of monotonicity we were not able to derive uniform L2(R) bounds on uα−η, and it is not clear how to pass to the limit.
We prove Theorem 1.1 in three steps. We first check that J(u) is bounded from below. Let
F(u):=∫Rg(x)W(u(x))dx+β4π∫R∫R[(u(x)−u(y))2(x−y)2−(η(x)−η(y))2(x−y)2]dydx. | (1.25) |
We show that F is bounded from below in Section 2. In the second step, we construct a global minimizer of J in A in Section 3. Regularity is treated in Section 4 and follows from a bootstrap argument, since u0=v0+η with v0∈H1(R). However, a priori it is not clear whether (−d2dx2)12u0∈L2(R), and we handle this term separately when deriving the Euler-Lagrange equation.
We note that our result and the variational approach are also closely related to those in [36]. There, Dipierro, Patrizi and Valdinoci prove existence of heteroclinic orbits for (1.20) and (1.21) in the case α=0 as follows. Given α,β∈(0,1], they considered a constrained double obstacle minimization of a perturbed renormalized energy with an additional penalization term in the following form
Iα,β(u)=α2∫R|u′(x)|2dx+β2∫R|u(x)−η(x)|2dx+∫Rg(x)W(u(x))dx | (1.26) |
+14∫R∫R[(u(x)−u(y))2−(η(x)−η(y))2]K(x−y)dydx. | (1.27) |
The authors showed that the constrained minimizer becomes an unconstrained minimizer when the obstacles are far apart [36,Proposition 10.1]. The existence of heteoclinic orbits for (1.20) is obtained by first letting α→0 and then sending β to zero. Our renormalized energy in this paper corresponds to β=0 in their setting and requires a much more delicate analysis of the tail behavior of the members of minimizing sequences.
Let J(u), F(u) be defined by (1.1) and (1.25). We shall prove the following lower bound in this section.
Proposition 2.1. There exists a positive constant C independent of u such that F(u)>−C for any u ∈A.
Remark 2.2. The proof of the lower bound of F can be simplified if g(x) is a positive periodic function. In this case, we have g(x)≥a0>0 for all x. Thus for any u∈A,
F(u)≥F0(u)=∫Ra0W(u)dx+∫R∫R[(u(x)−u(y))2(x−y)2−(η(x)−η(y))2(x−y)2]dydx, |
and lower bound on F follows directly from the results in [29] since
F(u)≥F0(u)≥F0(u0)>−C, |
where u0 is the global minimizer of F0 obtained in [29]. The main difference in the argument employed in this paper is, therefore, to allow for a degeneracy in the energy occurring on a set of measure zero.
The lower bound on J(u) follows directly from Proposition 2.1.
First we observe that replacing u by ±1 whenever |u|>1, the energy is only getting smaller. Here for the nonlocal term, a direct calculation shows (u(x)−u(y))2≥(˜u(x)−˜u(y))2 where ˜u(x)=max{min(u(x),1),−1}). Without loss of generality, we shall assume |u(x)| ≤1 on R throughout the paper. Moreover, the following Lemma can be proved by the same argument as in the proof of Lemma 2.2 from [29].
Lemma 2.3. Given u∈A, there exists a sequence un∈A such that un−η∈C∞0(R) and J(un)→J(u) as n→∞.
We introduce the following subset of A:
A0:={u∈A:|u(x)|≤1 on R and u−η is compactly supported in R}. |
Letting
f(x,y):=β4π[(u(x)−u(y))2(x−y)2−(η(x)−η(y))2(x−y)2], |
we can write F(u) as
F(u)=∫∞1g(x)W(u)dx+∫−1−∞g(x)W(u)dx+∫1−1g(x)W(u)dx+∫∞1∫∞1f(x,y)dydx+∫−1−∞∫−1−∞f(x,y)dydx+2∫∞1∫−1−∞f(x,y)dydx+2∫∞1∫1−1f(x,y)dydx+2∫−1−∞∫1−1f(x,y)dydx+∫1−1∫1−1f(x,y)dydx. | (2.1) |
Direct calculation shows that the integrals
∫∞1∫1−1(η(x)−η(y))2(x−y)2dydx, ∫−1−∞∫1−1(η(x)−η(y))2(x−y)2dydx, ∫1−1∫1−1(η(x)−η(y))2(x−y)2dydx |
are all bounded. To show F(u) is bounded from below, the question reduces to showing that
∫∞1∫∞1f(x,y)dydx+∫−1−∞∫−1−∞f(x,y)dydx+2∫∞1∫−1−∞f(x,y)dydx+∫∞1g(x)W(u)dx+∫−1−∞g(x)W(u)dx>−C, | (2.2) |
for some C>0 independent of u∈A0. Since η∉˚H1/2(R), the term ∫∞1∫−1−∞f(x,y)dydx could potentially be negative infinity. In particular, if we choose a sequence un(x) which oscillates between 1 and −1 on intervals which get larger and larger, it is not clear that we can have a uniform lower bound on the left-hand side in (2.2). Our idea is the following: if |u| stays away from 1 on a big portion of R, the term
∫∞1g(x)W(u)dx+∫−1−∞g(x)W(u)dx |
would dominate
∫∞1∫−1−∞f(x,y)dydx. |
On the other hand, if |u|∼1 on R and u oscillates between 1 and −1, the sum
∫∞1∫∞1(u(x)−u(y))2(x−y)2dydx+∫−1−∞∫−1−∞(u(x)−u(y))2(x−y)2dydx+2∫∞1∫−1−∞(u(x)−u(y))2(x−y)2dydx |
would approach infinity at the same order as
∫∞1∫−1−∞(η(x)−η(y))2(x−y)2dydx, |
thus eventually cancelling out the potential negative infinite energy. In both cases, we obtain a finite lower bound on F(u).
To explain our ideas more precisely, recall that u−η∈H1(R) and has compact support for every u∈A0. By Sobolev embedding theorem, u−η and, therefore, u are continuous. Given any δ>0, we define the following decomposition of (−∞,−1]∪[1,∞) with respect to u:
I+δ:={x≥1:−1≤u(x)≤−1+δ},II+δ:={x≥1:1−δ≤u(x)≤1},III+δ:={x≥1:−1+δ<u(x)<1−δ}, | (2.3) |
and
I−δ:={x≤−1:−1≤u(x)≤−1+δ},II−δ:={x≤−1:1−δ≤u(x)≤1},III−δ:={x≤−1:−1+δ<u(x)<1−δ}. | (2.4) |
Under these notations, we observe I+δ, II−δ, III+δ and III−δ are all bounded sets. We show that there exists a constant C=C(δ,g,β,W)>0 and independent of u∈A0 such that
∫∞1∫−1−∞f(x,y)dydx+14∫∞1g(x)W(u)dx+14∫−1−∞g(x)W(u)dx≥−∫I+δ∫I−δβπ(x−y)2dydx−∫II+δ∫II−δβπ(x−y)2dydx−C, | (2.5) |
and
∫∞1∫∞1f(x,y)dydx+∫−1−∞∫−1−∞f(x,y)dydx+12∫∞1g(x)W(u)dx+12∫−1−∞g(x)W(u)dx−∫I+δ∫I−δ2βπ(x−y)2dydx−∫II+δ∫II−δ2βπ(x−y)2dydx>−C. | (2.6) |
Throughout the paper, we will use C to represent a generic constant independent of u∈A0, and depending only on δ, g, β and W, which might change from line to line. A lower bound in (2.2) follows from (2.5) and (2.6).
Since
∫∞1∫∞1f(x,y)dydx+∫−1−∞∫−1−∞f(x,y)dydx≥β2π∫I+δ∫II+δ(u(x)−u(y))2(x−y)2dydx+β2π∫I−δ∫II−δ(u(x)−u(y))2(x−y)2dydx, |
the proof of (2.6) reduces to the following main technical inequalities:
J+δ(u):=β4π∫I+δ∫II+δ(u(x)−u(y))2(x−y)2dydx−∫I+δ∫I−δβπ(x−y)2dydx+14∫∞1g(x)W(u)dx>−C, | (2.7) |
J−δ(u):=β4π∫I−δ∫II−δ(u(x)−u(y))2(x−y)2dydx−∫II+δ∫II−δβπ(x−y)2dydx+14∫−1−∞g(x)W(u)dx>−C. | (2.8) |
The proof of (2.7) and (2.8) uses a contradiction argument. We prove one bound, the other one can be proved similarly. Assume J+δ(un)→−∞ for some sequence (un). Representing the decomposition of (−∞,−1]∪[1,∞) with respect to un by adding index n in (2.3) and (2.4), decompose I+δ,n, I−δ,n and II+δ,n into union of disjoint intervals. We can estimate
∫I+δ,n∫II+δ,n(un(x)−un(y))2(x−y)2dydx | (2.9) |
and
∫I+δ,n∫I−δ,n4(x−y)2dydx | (2.10) |
in terms of summation of integral over those intervals. In particular, J+δ(un)→−∞ implies I+δ,n⊂[1,Rn] where Rn→∞ and (2.10) goes to infinity at most logarithmically in Rn. If |un| is bounded away from 1 on a large portion of [1,∞), then the term ∫∞1W(un) dominates (2.10). If un≈−1 on a large portion of [1,∞), then (2.9) would approach infinity at the same logarithmic order as (2.10). In either case, we can always conclude that J+δ(un) is bounded from below, a contradiction.
We prove Proposition 2.1 in several steps.
We first state the following lemma.
Lemma 2.4. Given u∈A0,, the following bounds hold:
∫1−1g(x)W(u)dx≤C,∫1−1∫1−1(η(x)−η(y))2(x−y)2dydx≤4‖η′‖2∞ | (2.11) |
∫∞1∫1−1(η(x)−η(y))2(x−y)2dydx≤2‖η′‖2∞,∫−1−∞∫1−1(η(x)−η(y))2(x−y)2dydx≤2‖η′‖2∞ | (2.12) |
Proof. The bounds in (2.11) are straightforward. By the definition of η, we have
∫∞1∫1−1(η(x)−η(y))2(x−y)2dydx=∫1−1(η(x)−1)21−xdx≤2‖η′‖2∞. |
The second inequality in (2.12) follows from a similar argument.
Lemma 2.4 implies that the terms involving integration on [−1,1] in (2.1) are all bounded from below. The boundedness of F(u) from below would then follow from the following lemma.
Lemma 2.5. There exists a constant C=C(δ,g,β,W)>0 such that for all u∈A0, the following lower bound holds:
∫∞1∫∞1f(x,y)dydx+∫−1−∞∫−1−∞f(x,y)dydx+2∫∞1∫−1−∞f(x,y)dydx+∫∞1g(x)W(u)dx+∫−1−∞g(x)W(u)dx>−C. |
Lemma 2.5 is proved in two steps. Under decompositions (2.3) and (2.4), we can write
∫∞1∫−1−∞f(x,y)dydx=∫I+δ∫I−δf(x,y)dydx+∫I+δ∫II−δf(x,y)dydx+∫I+δ∫III−δf(x,y)dydx+∫II+δ∫I−δf(x,y)dydx+∫II+δ∫II−δf(x,y)dydx+∫II+δ∫III−δf(x,y)dydx+∫III+δ∫I−δf(x,y)dydx+∫III+δ∫II−δf(x,y)dydx+∫III+δ∫III−δf(x,y)dydx. | (2.13) |
The following lower bound will be used in the proof of Lemma 2.5.
Lemma 2.6. Let A⊂[1,∞) and B⊂(−∞,−1]. Assume either A or B is bounded, then there exists a constant C=C(β,g)>0 such that for all u∈A0, the following bounds hold:
∫A∫Bf(x,y)dydx≥−ε∫Ag(1−u)2dx−ε∫Bg(1+u)2dy−Cε, | (2.14) |
and
∫A∫Bf(x,y)dydx≥−ε∫Ag(1+u)2dx−ε∫Bg(1−u)2dy−Cε | (2.15) |
for any ε>0.
Proof. We only show how to obtain (2.14), as the other inequality follows by a similar argument. Since (η(x)−η(y))2=4 for x∈A and y∈B, we have
f(x,y)=β4π[(u(x)−u(y))2−4(x−y)2]=β4π[(u(x)−u(y)−2)2+4(u(x)−u(y)−2)(x−y)2]. |
By (1.2) and periodicity of g(x), we conclude
∫∞11g(x)(x+1)2dx+∫−1−∞1g(x)(1−x)2dx≤2∫101g(x)dx⋅∞∑n=11(n+1)2<∞. | (2.16) |
Hence we deduce
∫A∫Bf(x,y)dydx=β4π[∫A∫B(u(x)−u(y)−2)2(x−y)2dydx−4∫A∫B(1−u(x))(x−y)2dydx−4∫A∫B(1+u(y))(x−y)2dydx]≥β4π[∫A∫B(u(x)−u(y)−2)2(x−y)2dydx−4∫A1−u(x)x+1dx−4∫B1+u(y)1−ydy]≥β4π∫A∫B(u(x)−u(y)−2)2(x−y)2dydx−ε∫Ag(1−u)2dx−ε∫Bg(1+u)2dy−Cε, |
where we applied Hölder's inequality and (2.16) in the last line. Notice that when either A or B is bounded, the integral ∫A∫B(u(x)−u(y)−2)2(x−y)2dydx is finite for any u∈A0, justifying the spliting of the integrals in the calculation above.
The first step to prove Lemma 2.5 is the following Lemma.
Lemma 2.7. For any 0<δ≪1, there exists a constant C=C(δ,g,β,W) such that for all u∈A0
∫∞1∫−1−∞f(x,y)dydx+14∫∞1g(x)W(u)dx+14∫−1−∞g(x)W(u)dx≥−∫I+δ∫I−δβπ(x−y)2dydx−∫II+δ∫II−δβπ(x−y)2dydx−C |
Proof. Recall that I+δ, II−δ, III+δ and III+δ are all bounded sets. By estimate (2.14) in Lemma 2.6, we have
∫II+δ∫I−δf(x,y)dydx≥−ε∫II+δg(1−u)2dx−ε∫I−δg(1+u)2dy−Cε, | (2.17) |
∫II+δ∫III−δf(x,y)dydx≥−ε∫II+δg(1−u)2dx−ε∫III−δg(1+u)2dy−Cε, | (2.18) |
∫III+δ∫I−δf(x,y)dydx≥−ε∫III+δg(1−u)2dx−ε∫I−δg(1+u)2dy−Cε, | (2.19) |
and
∫III+δ∫III−δf(x,y)dydx≥−ε∫III+δg(1−u)2dx−ε∫III−δg(1+u)2dy−Cε. | (2.20) |
Here for (2.17) we used the fact that the integral ∫II+δ∫I−δf(x,y)dydx can be written as a sum of integrals of the form ∫A∫Bf(x,y)dydx, where either A or B is bounded when u∈A0.
By estimate (2.15) from Lemma 2.6, we have
∫I+δ∫II−δf(x,y)dydx≥−ε∫I+δg(1+u)2dx−ε∫II−δg(1−u)2dy−Cε, | (2.21) |
∫I+δ∫III−δf(x,y)dydx≥−ε∫I+δg(1+u)2dx−ε∫III−δg(1−u)2dy−Cε, | (2.22) |
and
∫III+δ∫II−δf(x,y)dydx≥−ε∫III+δg(1+u)2dx−ε∫II−δg(1−u)2dy−Cε. | (2.23) |
Summing up (2.17)−(2.23) yields
∫∞1∫−1−∞f(x,y)dydx+14∫∞1g(x)W(u)dx+14∫−1−∞g(x)W(u)dy≥−∫I+δ∫I−δβπ(x−y)2dydx−∫II+δ∫II−δβπ(x−y)2dydx−Cε−2ε∫I+δ∪I−δ∪III−δg(1+u)2dx−2ε∫II+δ∪II−δ∪III+δg(1−u)2dx−ε∫III−δg(1−u)2dy−ε∫III+δg(1+u)2dx+14∫I+δ∪I−δg(x)W(u)dx+14∫II+δ∪II−δg(x)W(u)dx+14∫III+δ∪III−δg(x)W(u)dx. |
Recall that W(±1)=W′(±1)=0, W(u)>0 for |u|<1 and W′′(±1)>0. Picking δ≪1, we have the following estimates
W(u(x))=12W′′(−(1−θ(x))+θ(x)u(x))(1+u)2≥14W′′(−1)(1+u)2 for x∈I+δ∪I−δ, | (2.24) |
W(u(x))=12W′′((1−θ(x))+θ(x)u(x))(1−u)2≥14W′′(1)(1−u)2 for x∈II+δ∪II−δ, | (2.25) |
Since
W(u(x))≥min|u|≤1−δW(u) for x∈III+δ∪III−δ, |
the conclusion follows by taking ε=min(148min|u|≤1−δW(u),132W′′(−1),132W′′(1)).
The second step to prove Lemma 2.5 is the following Lemma.
Lemma 2.8. There exists a constant C=C(δ,g,β,W)>0 such that for all u∈A0 we have
∫∞1∫∞1+∫−1−∞∫−1−∞f(x,y)dydx+12∫∞1g(x)W(u)dx+12∫−1−∞g(x)W(u)dx−∫I+δ∫I−δ2βπ(x−y)2dydx−∫II+δ∫II−δ2βπ(x−y)2dydx>−C. |
Lemma 2.7 and Lemma 2.8 imply Lemma 2.5.
Decompositions and some basic estimates The proof of Lemma 2.8 is rather long and technical. First we decompose each set into intervals. By our assumption, for any given δ∈(0,1), there exists R1(u)>0 and R2(u)>0 such that
u(x)=1 for all x≥R1(u) | (2.26) |
and
u(x)=−1 for all x≤−R2(u). | (2.27) |
It follows that III+δ and III−δ are open subsets of (1,R1(u)) and (−R2(u),−1) respectively. By the structure theorem of open sets in R and choosing u to be the continuous representative, there exist indices N±, and positive numbers α±i, β±i such that we can write III+δ and III−δ as unions of disjoint open intervals in the following form.
III+δ∩(1,R1(u))=N+⋃i=1(α+i,β+i), III−δ∩(−R2(u),−1)=N−⋃j=1(−β−j,−α−j). | (2.28) |
Without loss of generality, we can assume N± are finite and αi<βi<αi+1<βi+1 for all i. In fact, recall that u−η in H10(R), write R=max(R1(u),R2(u)), we can obtain an approximation u1 in C∞(R) that is equal to η for |x|>R+1 and arbitrarily close to u in H1(R). Taking a linear interpolant u2 of u1 over a sufficiently fine partition X of [−1−R,1+R], we get a function that is arbitrarily close to u1 in W1,∞(R). Finally, shifting the values of the function u2 at the (finitely many) points of X by arbitrarily small amounts if necessary, we get a function u3 that is arbitrarily close to u2 in W1,∞(R) and u′3 is non-zero a.e. in R. Hence on every interval of the partition X there is at most one point at which |u3|=1−δ. From this, we conclude that each interval of the partition X intersects III+δ (or III−δ) at most once. Relabling if necessary, we thus find finitely many disjoint intervals (αk,βk) (merge (αk,βk)∪(αk+1,βk+1) into (αk,βk+1) if βk=αk+1) where
−1+δ<u(x)<1−δ on each (αk,βk). |
Renaming our endpoints we find disjoint intervals [ai,bi] , [cj,dj]⊂[1,R1(u)] and indices K,L such that
I+δ=K⋃i=1[ai,bi] | (2.29) |
and
II+δ=L⋃j=1[cj,dj] | (2.30) |
with
−1≤u(x)≤−1+δ on I+δ, |
1−δ≤u(x)≤1 on II+δ, |
and
−1+δ<u(x)<1−δ on [1,R1(u)]∖(I+δ∪II+δ)=III+δ. |
Here by a slight abuse of notation, we denote [cl,dl]=[cl,∞), and if a1=1 we replace [a1,b1] by (1,b1] in (2.29), or if c1=1, replace [c1,d1] by (1,d1] in (2.30). Similarly we write II−δ and I−δ as unions of disjoint intervals. For the rest of the paper, we write
I+δ(u)=∪Ki=1[ai,bi], II+δ(u)=∪Lj=1[cj,dj]; | (2.31) |
I−δ(u)=∪˜Ki=1[−˜bi,−˜ai], II−δ(u)=∪˜Lj=1[−˜dj,−˜cj]. | (2.32) |
with the understanding that [−˜d˜L,−˜c˜L]=(−∞,−˜c˜L] and [−˜b1,−˜a1]=[−˜b1,−1) if ˜a1=1, or [−˜d1,−˜c1]=[−˜d1,−1) if ˜c1=1. Note that in this form, all ai,bi, cj,dj, ˜ai,˜bi, ˜cj,˜dj are greater or equal to 1.
We first state some basic estimates.
Lemma 2.9. The following estimates hold:
∫I+δ∫I−δ1(x−y)2dydx=ln(K∏i=1˜L∏j=1ai+˜djbi+˜dj⋅bi+˜cjai+˜cj), | (2.33) |
∫I+δ∫II+δ1(x−y)2dydx=ln(K∏i=1L∏j=1bi−djai−dj⋅ai−cjbi−cj) | (2.34) |
∫I−δ∫II−δ1(x−y)2dydx=ln(˜K∏i=1˜L∏j=1˜bi−˜dj˜ai−˜dj⋅˜ai−˜cj˜bi−˜cj) | (2.35) |
∫II+δ∫II−δ1(x−y)2dydx=ln(˜K∏i=1L∏j=1˜ai+dj˜bi+dj⋅˜bi+cj˜ai+cj), | (2.36) |
Proof. By (2.31) and (2.32), we have
∫I+δ∫I−δ1(x−y)2dydx=K∑i=1˜L∑j=1∫biai∫−˜cj−˜dj1(x−y)2dydx=K∑i=1˜L∑j=1∫biai(1x+˜cj−1x+˜dj)dx=K∑i=1˜L∑j=1(lnbi+˜cjai+˜cj−lnbi+˜djai+˜dj)=ln(K∏i=1˜L∏j=1ai+˜djbi+˜dj⋅bi+˜cjai+˜cj). |
(2.3), (2.35) and (2.36) are proved similarly.
An immediate corollary of Lemmas 2.9 is the following.
Corollary 2.10. We have the following bounds.
∫I+δ∫I−δ1(x−y)2dydx<{ln2if˜c1>bKln2bKa1if˜c1<bK, | (2.37) |
∫II+δ∫II−δ1(x−y)2dydx<{ln2ifc1>˜b˜Kln2˜b˜K˜a1ifc1<˜b˜K. | (2.38) |
Proof.
∫I+δ∫I−δ1(x−y)2dydx=K∑i=1˜L∑j=1∫biai∫−˜cj−˜dj1(x−y)2dydx≤∫bKa1∫−˜c1−d˜L1(x−y)2dydx=ln(bK+˜c1a1+˜c1⋅a1+d˜LbK+d˜L)≤ln(bK+˜c1a1+˜c1) |
If ˜c1>bK,
˜c1+bK˜c1+a1<2, |
if ˜c1<bK,
˜c1+bK˜c1+a1<2bKa1, |
so (2.37) follows. The estimate (2.38) follows from a similar argument.
The following estimate on the potential term is important for the lower bound estimate.
Lemma 2.11. Given any ε∈(0,1), there exists a positive constant τ=τ(ε,g) such that
∫∞1g(x)W(u(x))dx≥τ(1−ε)|IIIδ+|min|u|≤1−δW(u)+∫I+δ∪II+δg(x)W(u(x)dx | (2.39) |
∫−1−∞g(x)W(u(x))dx≥τ(1−ε)|IIIδ−|min|u|≤1−δW(u)+∫I−δ∪II−δg(x)W(u(x)dx | (2.40) |
Proof. By (2.16). the zero level set of g E0={x∈[0,1]:g(x)=0} has measure zero. In particular, given any ε>0, we can find an open set Uε of (0,1) which covers E0 and |Uε|<ε. Let Oε=∪∞n=0{Uε+n}, then since g(x) is continuous and positive on [1,∞)∖Oε, there exists τ=τ(g,ε)>0 such that g(x)≥τ on [1,∞)∖Oε, therefore
∫∞1g(x)W(u(x))dx=∫III+δg(x)W(u(x))dx+∫I+δ∪II+δg(x)W(u(x)dx≥τ(1−ε)|IIIδ+|min|u|≤1−δW(u)+∫I+δ∪II+δg(x)W(u(x)dx. |
(2.40) can be proved similarly.
Remark 2.12. Fix an ε=ε0 and write γ=τ(ε0,g)(1−ε0), we can write the lower bounds (2.39)–(2.40) as
∫∞1g(x)W(u(x))dx≥γ|IIIδ+|min|u|≤1−δW(u)+∫I+δ∪II+δg(x)W(u(x)dx | (2.41) |
∫−1−∞g(x)W(u(x))dx≥γ|IIIδ−|min|u|≤1−δW(u)+∫I−δ∪II−δg(x)W(u(x)dx | (2.42) |
Asume I±δ, II±δ are written as unions of intervals in the form (2.31) and (2.32). Let ∪ni=1[ai,bi]⊂I+δ and ∪mj=1[cj,dj]⊂II+δ, ∪˜ni=1[−˜bi,−˜ai]⊂I−δ and ∪˜mj=1[−˜dj,−˜cj]⊂II−δ. If dj=∞, we write [cj,dj]=[cj,∞) and [−˜dj,−˜cj]=(−∞,˜cj] if ˜dj=∞. Assume also
0<a1<b1<a2<⋯<bn−1<an<bn<c1<d1<c2<⋯<dm |
and
0<˜a1<˜b1<˜a2<⋯<˜a˜n<˜b˜n<˜c1<˜d1<˜c2<⋯<˜d˜m. |
We have the following estimates.
Lemma 2.13. Assume |c1−bn|≥1, |˜c1−˜b˜n|≥1 for all i and j. For δ≪1, there exist positive constants C=C(δ,g,β,W) and γ=γ(g) such that the following estimates hold for any u∈A0.
β4πn∑i=1m∑j=1∫biai∫djcj(u(x)−u(y))2(x−y)2−∫I+δ∫I−δβπ(x−y)2dydx+14∫∞1g(x)W(u)dx≥βπn∑i=1m∑j=1lncj−aicj−bi⋅dj−bidj−ai−βπln2bKa1+γmin|u|≤1−δW(u)4|III+δ|−C. | (2.43) |
β4π˜n∑i=1˜m∑j=1∫−˜ai−˜bi∫−˜cj−˜dj(u(x)−u(y))2(x−y)2−∫II+δ∫II−δβπ(x−y)2dydx+14∫−1−∞g(x)W(u)dx≥βπ˜n∑i=1˜m∑j=1ln˜cj−˜bi˜cj−˜ai⋅˜dj−˜ai˜dj−˜bi−βπln2˜b˜K˜a1+γmin|u|≤1−δW(u)4|III−δ|−C. | (2.44) |
Proof. We prove (2.43), (2.44) follows from a similar argument. By Corollary 2.10, Remark 2.12 and (2.24−2.25),
β4πn∑i=1m∑j=1∫biai∫djcj(u(x)−u(y))2(x−y)2dydx−∫I+δ∫I−δβπ(x−y)2dydx+14∫∞1g(x)W(u)dx=β4πn∑i=1m∑j=1∫biai∫djcj(u(x)+1+1−u(y)−2)2−4(x−y)2dydx+n∑i=1m∑j=1∫biai∫djcjβπ(x−y)2dydx−∫I+δ∫I−δβπ(x−y)2dydx+14∫∞1g(x)W(u)dx≥−βπn∑i=1m∑j=1∫biai∫djcj(u(x)+1)(x−y)2dydx−βπn∑i=1m∑j=1∫biai∫djcj(1−u(y))(x−y)2dydx+βπn∑i=1m∑j=1ln(cj−aicj−bi⋅dj−bidj−ai)−βπln(2bKa1)+γmin|u|≤1−δW(u)4|III+δ|+14∫I+δ∪II+δg(x)W(u)dx≥−βπn∑i=1∫biai(u(x)+1)m∑j=1(1cj−x−1dj−x)dx−βπm∑j=1∫djcj(1−u(y))n∑i=1(1y−ai−1y−bi)dy+βπn∑i=1m∑j=1ln(cj−aicj−bi⋅dj−bidj−ai)−βπln(2bKa1)+γmin|u|≤1−δW(u)4|III+δ|+W′′(−1)16∫I+δg(1+u)2dx+W′′(1)16∫II+δg(1−u)2dx≥−W′′(−1)16n∑i=1∫biaig(x)(u(x)+1)2dx−4β2π2W′′(−1)n∑i=1∫biai1g(x)(c1−x)2dx−W′′(1)16m∑j=1∫djcjg(y)(1−u(y))2dy−4β2π2W′′(1)m∑j=1∫djcj1g(y)(y−a1)2dy+βπn∑i=1m∑j=1ln(cj−aicj−bi⋅dj−bidj−ai)−βπln(2bKa1)+γmin|u|≤1−δW(u)4|III+δ|+W′′(−1)16∫I+δg(1+u)2dx+W′′(1)16∫II+δg(1−u)2dx≥βπn∑i=1m∑j=1ln(cj−aicj−bi⋅dj−bidj−ai)−βπln(2bKa1)+γmin|u|≤1−δW(u)4|III+δ|−C |
The last two steps follow from
n∑i=1∫biai(u(x)+1)m∑j=1(1cj−x−1dj−x)dx≤ϵ2n∑i=1∫biaig(x)(u(x)+1)2dx+12ϵn∑i=1∫biai1g(x)(m∑j=1(1cj−x−1dj−x))2dx≤ϵ2∫I+δg(x)(u(x)+1)2dx+12ϵn∑i=1∫biai1g(x)(c1−x)2dx≤ϵ2∫I+δg(x)(u(x)+1)2dx+12ϵ∫bna11g(x)(c1−x)2dx≤ϵ2∫I+δg(x)(u(x)+1)2dx+12ϵ(∫[bn][a1]1g(x)(c1−x)2dx+∫bn[bn]1g(x)dx)≤ϵ2∫I+δg(x)(u(x)+1)2dx+12ϵ∫101g(x)dx⋅∞∑n=11n2≤ϵ2∫I+δg(x)(u(x)+1)2dx+C2ϵ |
and
m∑j=1∫djcj(1−u(y))n∑i=1(1y−ai−1y−bi)dy≤ϵ2∫II+δg(y)(1−u(y))2dy+C2ϵ. |
Proof of the main technical lemma Observe that
∫∞1∫∞1f(x,y)dydx+∫−1−∞∫−1−∞f(x,y)dydx=β4π∫∞1∫∞1(u(x)−u(y))2(x−y)2dydx+β4π∫−1−∞∫−1−∞(u(x)−u(y))2(x−y)2dydx=β4π∫I+δ∫I+δ(u(x)−u(y))2(x−y)2dydx+β4π∫II+δ∫II+δ(u(x)−u(y))2(x−y)2dydx+β4π∫III+δ∫III+δ(u(x)−u(y))2(x−y)2dydx+β4π∫I−δ∫I−δ(u(x)−u(y))2(x−y)2dydx+β4π∫II−δ∫II−δ(u(x)−u(y))2(x−y)2dydx+β4π∫III−δ∫III−δ(u(x)−u(y))2(x−y)2dydx+β2π∫I+δ∫II+δ(u(x)−u(y))2(x−y)2dydx+β2π∫II+δ∫III+δ(u(x)−u(y))2(x−y)2dydx+β2π∫I+δ∫III+δ(u(x)−u(y))2(x−y)2dydx+β2π∫I−δ∫II−δ(u(x)−u(y))2(x−y)2dydx+β2π∫II−δ∫III−δ(u(x)−u(y))2(x−y)2dydx+β2π∫I−δ∫III−δ(u(x)−u(y))2(x−y)2dydx, | (2.45) |
Lemma 2.8 would follow from (2.45) and the following Lemma.
Lemma 2.14. There exists a constant C=C(δ,γ,β,W)>0 such that
β4π∫I+δ∫II+δ(u(x)−u(y))2(x−y)2dydx+β4π∫I−δ∫II−δ(u(x)−u(y))2(x−y)2dydx+14∫∞1g(x)W(u)dx+14∫−1−∞g(x)W(u)dx−∫I+δ∫I−δβπ(x−y)2dydx−∫II+δ∫II−δβπ(x−y)2dydx>−C |
Lemma 2.14 is a direct corollary of the following Lemma.
Lemma 2.15. There exists a constant C=C(δ,γ,β,W)>0 such that for all u∈A0 the following bounds hold:
β4π∫I+δ∫II+δ(u(x)−u(y))2(x−y)2dydx−∫I+δ∫I−δβπ(x−y)2dydx+14∫∞1g(x)W(u)dx>−C, | (2.46) |
β4π∫I−δ∫II−δ(u(x)−u(y))2(x−y)2dydx−∫II+δ∫II−δβπ(x−y)2dydx+14∫−1−∞g(x)W(u)dx>−C. | (2.47) |
Proof. We prove (2.46), as the proof of (2.47) is similar. We argue by contradiction and let
J+δ(u):=β4π∫I+δ∫II+δ(u(x)−u(y))2(x−y)2dydx−∫I+δ∫I−δβπ(x−y)2dydx+14∫∞1g(x)W(u)dx |
We show that
J+δ(un)→−∞ |
implies
limsupn→∞min1≤l≤Knanlbnl=1 | (2.48) |
On the other hand, (2.48) and a diagonal argument would imply J+δ(un) is bounded from below, a contradiction. We prove (2.48) in a series of steps. We will only explain the first three steps in detail. The remaining steps can be proved similarly.
Assume (2.46) fails. Then there would exist a sequence {un} such that J+δ(un)<−n. We denote the decomposition of I±δ(un) and II±δ(un) as follows.
I+δ,n=∪Kni=1[ani,bni], II+δ,n=∪Lni=1[cnj,dnj],I−δ,n=∪˜Kni=1[−˜bni,−˜ani], II−δ,n=∪˜Lni=1[−˜dnj,−˜cnj] |
Here we have dnLn=∞ and cnLn>bnKn. We assume
(bnKn,cnLn)∩II+δ,n=∪Ln−1k=jn1[cnk,dnk],(bni−1,ani)∩II+δ,n=∪jni−1−1k=jni[cnk,dnk] for i=2,⋯,Kn. |
Step 1: J+δ(un)→−∞ implies there exists in1 satisfying jn1≤in1≤Ln such that
liminfn→∞cnin1bnKn=limsupn→∞anKnbnKn=1. | (2.49) |
First we observe
−n>J+δ(un)=β4π∫I+δ,n∫II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥−∫I+δ,n∫I−δ,nβπ(x−y)2dydx≥−βπln(2bnKnan1). |
Therefore, J+δ(un)→−∞ implies
limsupn→∞bnKn=∞. | (2.50) |
Case Ⅰ: Assume that for a subsequence, cnLn−bnKn<1 (without relabeling for simplicity of notations). Then by Lemma 2.13,
−n>J+δ(un)≥β4π∫bnKnanKn∫∞cnLn+1(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥βπlnanKn−cnLn−1bnKn−cnLn−1−βπln(2bnKnan1)+γmin|u|≤1−δW(u)4|(bnKn,cnLn)∩III+δ,n|−C≥βπlncnLn−anKnbnKn−βπln2+γmin|u|≤1−δW(u)4|(bnKn,cnLn)∩III+δ,n|−C≥βπlncnLn−anKnbnKn−C. |
Taking liminf on both sides, we have
liminfn→∞cnLnbnKn=limsupn→∞anKnbnKn=1 |
For the remaining cases, we shall always assume cnLn−bnKn≥1. Also whenever we need to work on a subsequence, we always use the original sequence for simplicity of notations.
Case Ⅱ: Assume for a subsequence that there exists in1∈{ jn1, jn1+1, ⋯,Ln−1} such that cnin1−bnKn<1. We also assume bnKn−anKn>1 (otherwise (2.49) follows directly). Then by
ga,b(x)=ax−blnx≥b(1−lnba), for x>0, | (2.51) |
and Lemma 2.13, we bound J+δ(un) as follows.
−n>J+δ(un)≥β4π∫bnKnanKn∫∞cnLn(un(x)−un(y))2(x−y)2dydx+β4π∫bnKnanKn∫(bnKn, cnLn)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKn−1anKn∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKnanKn∫dnin1+|(bnKn, cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥βπlncnin1−anKncnin1+1−bnKn−βπln(dnin1−anKndnin1−bnKn⋅dnin1+|(bnKn,cnLn)∩III+δ,n|−bnKndnin1+|(bnKn,cnLn)∩III+δ,n|−anKn)−C−βπln(2bnKnan1)+γmin|u|≤1−δW(u)4|(bnKn,cnLn)∩III+δ,n|≥βπlncnin1−anKnbnKn−βπln(1+|(bnKn,cnLn)∩III+δ,n|)+γmin|u|≤1−δW(u)4|(bnKn,cnLn)∩III+δ,n|−C≥βπlncnin1−anKnbnKn−C. |
Taking liminf on both sides, we must have
liminfcnin1bnKn=limsupanKnbnKn=1. |
Case Ⅲ: Assume no such in1 from case Ⅱ exists, then we must have cnjn1−bnKn≥1. Thus
−n>J+δ(un)≥β4π∫bnKnanKn∫(cnjn1, ∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKnanKn∫∞cnjn1(un(x)−un(y))2(x−y)2dydx−∫bnKnanKn∫dnjn1+|(bnKn, cnLn)∩III+δ,n|dnjn1βπ(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥βπlncnjn1−anKncnjn1−bnKn−βπln(dnjn1−anKndnjn1−bnKn⋅dnjn1+|(bnKn,cnLn)∩III+δ,n|−bnKndnjn1+|(bnKn,cnLn)∩III+δ,n|−anKn)−βπln(2bnKnan1)+γmin|u|≤1−δW(u)4|(bnKn,cnLn)∩III+δ,n|−C≥βπlncnjn1−anKnbnKn−βπln(cnjn1− bnKn)−βπln(1+|(bnKn,cnLn)∩III+δ,n|)+γmin|u|≤1−δW(u)4|(bnKn,cnLn)∩III+δ,n|−C≥βπlncnjn1−anKnbnKn−C. |
The last step used (2.51) and (bnKn,cnjn1)⊂(bnKn,cnLn)∩III+δ,n. Taking liminf on both sides of the equation above, we must have
liminfcnjn1bnKn=limsupanKnbnKn=1. |
Step 2: J+δ(un)→−∞ implies there exists in2 satisfying jn2≤in2≤in1 such that
liminfn→∞cnin2bnKn−1=limsupn→∞anKn−1bnKn−1=1 | (2.52) |
First we observe
−n>J+δ(un)≥−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥−βπln(2bnKn−1an1)−βπlnbnKnanKn. |
Therefore, by Step 1 we have that J+δ(un)→−∞ implies
limsupbnKn−1=∞. |
Case Ⅰ: If liminfn→∞anKn−bnKn−1cnin1−bnKn−1=0, then limsupn→∞cnin1−anKncnin1−bnKn−1=1. In this case, then we can replace (anKn−1,bnKn−1)∪(anKn,bnKn) by (anKn−1,bnKn) and repeat our argument in Step 1 as follows.
−n>J+δ(un)≥β4π∫bnKn−1anKn−1∫(bnKn∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKnanKn∫(bnKn∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKnanKn−1∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKnanKn−1∫dnin1+|(bnKn, cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx−∫anKnbnKn−1∫∞cnin1βπ(x−y)2dydx−βπln2bnKn−1an1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx≥β4π∫bnKnanKn−1∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKnanKn−1∫dnin1+|(bnKn,CnLn)∩III+δ,n|dnin1βπ(x−y)2dydx−βπlncnin1−bnKn−1cnin1−anKn−βπln2bnKn−1an1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx≥βπlncnin1−anKn−1cnin1−bnKn−βπlncnin1−bnKn−1cnin1−anKn−βπln(dnin1−anKn−1dnin1−bnKn⋅dnin1+|(bnKn−1,anKn)∩III+δ,n|−bnKndnin1+|(bnKn−1,anKn)∩III+δ,n|−anKn−1)−βπln2bnKn−1an1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx−C≥βπlncnin1−anKn−1bnKn−1−βπlncnin1−bnKn−1cnin1−anKn−βπln(cnin1−bnKn)−βπln(1+|(bnKn−1,anKn)∩III+δ,n|)−βπlnbnKnanKn+γmin|u|≤1−δW(u)4|III+δ,n|−C≥βπlncnin1−anKn−1bnKn−1−βπlncnin1−bnKn−1cnin1−anKn−βπlnbnKnanKn−C. |
Taking liminf on both sides, we get
liminfcnin1bnKn−1=limsupanKn−1bnKn−1=1. |
Case Ⅱ: If liminfn→∞anKn−bnKn−1cnin1−bnKn−1>0, There are three cases.
Case Ⅱ-ⅰ: If (bnKn−1,anKn)∩II+δ,n=∅, then (bnKn−1,anKn)⊂III+δ,n,
−n>J+δ(un)≥β4π∫bnKn−1anKn−1∫(bnKn, ∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKnanKn∫(bnKn,∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKn−1anKn−1∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKn−1anKn−1∫dnin1+|(bnKn, cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx+β4π∫bnKnanKn∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKnanKn∫dnin1+|(bnKn, cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx−βπln2bnKn−1an1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx≥βπlncnin1−anKn−1cnin1−bnKn−1−βπln(dnin1−anKn−1dnin1−bnKn−1⋅dnin1+|(bnKn,cnLn)∩III+δ,n|−bnKn−1dnin1+|(bnKn,cnLn)∩III+δ,n|−anKn−1)+βπlncnin1−anKncnin1−bnKn−βπln(dnin1−anKndnin1−bnKn⋅dnin1+|(bnKn,cnLn)∩III+δ,n|−bnKndnin1+|(bnKn,cnLn)∩III+δ,n|−anKn)−βπln2bnKn−1an1−βπlnbnKnanKn+γmin|u|≤1−δW(u)4|III+δ,n|−C≥βπlncnin1−anKn−1bnKn−1+βπlncnin1+1−anKncnin1+1−bnKn−1−βπln(cnin1−bnKn)−2βπln(1+|(bnKn,cnLn)∩III+δ,n|)−βπlnbnKnanKn+γmin|u|≤1−δW(u)4|III+δ,n|−C≥βπlncnin1−anKn−1bnKn−1−4ln(1+(anKn−bnKn−1))−βπln(cnin1−bnKn)−2βπln(1+|(bnKn,cnLn)∩III+δ,n|)−βπlnbnKnanKn+γmin|u|≤1−δW(u)4|III+δ,n|−C≥βπlncnin1−anKn−1bnKn−1−βπlnbnKnanKn−C, | (2.53) |
where we used (2.51) and the facts
(anKn−bnKn−1)≤|III+δ,n|, (cnin1−bnKn)≤max(1,|(bnKn,cnLn)∩III+δ,n|). |
Taking liminf on both sides of (2.53), we conclude
liminfn→∞cnin1bnKn−1=limsupn→∞anKn−1bnKn−1=1. |
Case Ⅱ-ⅱ: If (bnKn−1,anKn)∩II+δ,n≠∅, there are two cases. If liminfn→∞cnin1anKn−1=1, then (2.52) follows directly. We therefore assume liminfn→∞cnin1anKn−1>1 for the remaining two cases.
Case Ⅱ-ⅱ-a: There exists in2∈{jn2, jn2+1, ⋯, in1} such that cnin2−bnKn−1<1. We assume bnKn−1−anKn−1>1 without loss of generality. Applying Corollary 2.10, Lemma 2.13 and (2.51), we bound J+δ(un) as follows.
−n>J+δ(un)≥β4π∫bnKn−1anKn−1∫(bnKn−1, anKn)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−1anKn−1∫(bnKn,∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKn−1−1anKn−1∫anKncnin2(un(x)−un(y))2(x−y)2dydx−∫bnKn−1anKn−1∫dnin2+|(bnKn−1, anKn)∩III+δ,n|dnin2βπ(x−y)2dydx+β4π∫bnKn−1anKn−1∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKn−1anKn−1∫dnin1+|(bnKn−1, cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx−βπln2bnKn−1an1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx≥βπln(cnin2−anKn−1cnin2+1−bnKn−1⋅anKn−bnKn−1+1anKn−anKn−1)−βπln(dnin2−anKn−1dnin2−bnKn−1⋅dnin2+|(bnKn−1,anKn)∩III+δ,n|−bnKn−1dnin2+|(bnKn−1,anKn)∩III+δ,n|−anKn−1)+βπlncnin1−anKn−1cnin1−bnKn−1−βπln(dnin1−anKn−1dnin1−bnKn−1⋅dnin1+|(bnKn,cnLn)∩III+δ,n|−bnKn−1dnin1+|(bnKn,cnLn)∩III+δ,n|−anKn−1)−βπln2bnKn−1an1−βπlnbnKnanKn−C+γmin|u|≤1−δW(u)4|III+δ,n|≥βπlncnin2−anKn−1bnKn−1+βπln(cnin1−anKn−1cnin1−bnKn−1⋅anKn−bnKn−1anKn−anKn−1)−βπln(1+|(bnKn−1,anKn)∩III+δ,n|)−βπln(1+|(bnKn,cnLn)∩III+δ,n|)−βπlnbnKnanKn−C−βπln(1+cnin2−bnKn−1)+γmin|u|≤1−δW(u)4|III+δ,n|≥βπlncnin2−anKn−1bnKn−1+βπlnanKn−bnKn−1cnin1−bnKn−1−βπlnbnKnanKn−C. |
Taking liminf on both sides, by Step 1 and liminfn→∞anKn−bnKn−1anKn−anKn−1>0, we must have
liminfcnin2bnKn−1=limsupanKn−1bnKn−1=1. |
Case Ⅱ-ⅰ-b: No such in2 exists, then we must have cnjn2−bnKn≥1. Applying Corollary 2.10, Lemma 2.13 and (2.51), we bound J+δ(un) as follows.
−n>J+δ(un)≥β4π∫bnKn−1anKn−1∫(bnKn−1, anKn)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−1anKn−1∫(bnKn∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKn−1anKn−1∫anKncnjn2(un(x)−un(y))2(x−y)2dydx−∫bnKn−1anKn−1∫dnjn2+|(bnKn−1, anKn)∩III+δ,n|dnjn2βπ(x−y)2dydx+β4π∫bnKn−1anKn−1∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKn−1anKn−1∫dnin1+|(bnKn−1, cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx−βπln2bnKn−1an1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx≥βπln(cnjn2−anKn−1cnjn2−bnKn−1⋅anKn−bnKn−1anKn−anKn−1)−βπln(dnjn2−anKn−1dnjn2−bnKn−1⋅dnjn2+|(bnKn−1,anKn)∩III+δ,n|−bnKn−1dnjn2+|(bnKn−1,anKn)∩III+δ,n|−anKn−1)+βπlncnin1−anKn−1cnin1−bnKn−1−βπln(dnin1−anKn−1dnin1−bnKn−1⋅dnin1+|(bnKn,cnLn)∩III+δ,n|−bnKn−1dnin1+|(bnKn,cnLn)∩III+δ,n|−anKn−1)−βπln2bnKn−1an1−βπlnbnKnanKn−C+γmin|u|≤1−δW(u)4|III+δ,n|≥βπlncnjn2−anKn−1bnKn−1+βπln(cnin1−anKn−1cnin1−bnKn−1⋅anKn−bnKn−1anKn−anKn−1)−βπln(1+|(bnKn−1,anKn)∩III+δ,n|)−βπlnbnKnanKn−C−βπln(cnjn2−bnKn−1)+γmin|u|≤1−δW(u)4|III+δ,n|≥βπlncnjn2−anKn−1bnKn−1+βπlnanKn−bnKn−1cnin1−bnKn−1−βπlnbnKnanKn−C. |
Taking liminf on both sides, we must have
liminfcnjn2bnKn−1=limsupanKn−1bnKn−1=1. |
Step 3: J+δ(un)→−∞ implies there exists in3 satisfying jn3≤in3≤in2 such that
liminfn→∞cnin3bnKn−2=limsupn→∞anKn−2bnKn−2=1 | (2.54) |
First we observe
−n>J+δ(un)=βπ∫I+δ,n∫II+δ,n(u(x)−u(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥−∫I+δ,n∫I−δ,nβπ(x−y)2dydx≥−βπln(2bnKn−2an1)−βπlnbnKnanKn−βπlnbnKn−1anKn−1. |
Therefore
limsupbnKn−2=∞. |
Case Ⅰ: liminfanKn−bnKn−2cnin1−bnKn−2=0. This implies
liminfcnin1−bnKn−2cnin1−anKn=1. | (2.55) |
In this case, we can replace (anKn−2,bnKn−2)∪(anKn−1,bnKn−1)∪(anKn,bnKn) by (anKn−2,bnKn), and repeat our argument in step 1.
We estimate J+δ(un) as follows.
−n>J+δ(un)≥β4π∫bnKn−2anKn−2∫(bnKn,∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−1anKn−1∫(bnKn,∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+βπ∫bnKnanKn∫(bnKn,∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKnanKn−2∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKnanKn−2∫dnin1+|(bnKn,∞)∩III+δ,n|dnin1βπ(x−y)2dydx−∫anKnbnKn−2∫∞cnin1βπ(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥βπlncnin1−anKn−2cnin1−bnKn−βπln[dnin1−anKn−2dnin1−bnKn⋅dnin1+|(bnKn,∞)∩III+δ,n|−bnKndnin1+|(bnKn,∞)∩III+δ,n|−anKn−2]−βπlncnin1−bnKn−2cnin1−anKn−βπln2bnKnan1+γmin|u|≤1−δ4|III+δ,n|. |
By (2.55), we are back to the situation in Step 1 with (anKn,bnKn) replaced by (anKn−2,bnKn) and we conclude
liminfcnin1bnKn=limsupanKn−2bnKn=limsupanKn−2bnKn−2=1. |
Case Ⅱ: liminfanKn−bnKn−2cnin1−bnKn−2>0 and liminfanKn−1−bnKn−2cnin2−bnKn−2=0. This implies
limsupcnin2−anKn−1cnin2−bnKn−2=1. | (2.56) |
In this case, we replace (anKn−2,bnKn−2)∪(anKn−1,bnKn−1) by (anKn−2,bnKn−1) and repeat our argument in step 2.
We bound J+δ(un) as follows.
−n>J+δ(un)≥β4π∫bnKn−2anKn−2∫II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−1anKn−1∫II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKnanKn∫II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKn−1anKn−2∫II+δ,n∩(cnin2,∞)(un(x)−un(y))2(x−y)2dydx−∫anKn−1bnKn−2∫II+δ,n∩(cnin2,∞)βπ(x−y)2dydx+βπ∫bnKnanKn∫II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥βπ∫bnKn−1anKn−2∫II+δ,n∩(cnin2,∞)(un(x)−un(y))2(x−y)2dydx+β4π∫bnKnanKn∫II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx−βπlncnin2−bnKn−2cnin2−anKn−1. |
By (2.56), we are back to the case of step 2 with (anKn−1,bnKn−1) replaced by (anKn−2,bnKn−1) and we can conclude
liminfcnin2bnKn−1=limsupanKn−2bnKn−1=limsupanKn−2bnKn−2=1. |
Case Ⅲ: liminfanKn−bnKn−2cnin1−bnKn−2>0 and liminfanKn−1−bnKn−2cnin2−bnKn−2>0. We discuss several cases.
Case Ⅲ-ⅰ: (bnKn−2,anKn−1)∩II+δ,n=∅. Then (bnKn−2,anKn−1)⊂III+δ,n. We also assume liminfn→∞anKn−bnKn−1+1cnin1−bnKn−1>0.
We have
−n>J+δ(un)≥β4π∫bnKn−2anKn−2∫(bnKn−1,anKn)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−2anKn−2∫(bnKn∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−1anKn−1∫(bnKn−1, anKn)∩II+δ,n(un(x)−un(y))2(x−y)2dydx+β4π∫bnKn−1anKn−1∫(bnKn∞)∩II+δ,n(un(x)−un(y))2(x−y)2dydx−∫I+δ,n∫I−δ,nβπ(x−y)2dydx+14∫∞1g(x)W(un)dx≥β4π∫bnKn−2anKn−2∫anKncnin2(un(x)−un(y))2(x−y)2dydx−∫bnKn−2anKn−2∫dnin2+|(bnKn−1,anKn)∩III+δ,n|dnin2βπ(x−y)2dydx+β4π∫bnKn−2anKn−2∫∞cnin1(un(x)−un(y))2(x−y)2dydx−∫bnKn−2anKn−2∫dnin1+|(bnKn,cnLn)∩III+δ,n|dnin1βπ(x−y)2dydx+β4π∫bnKn−1−1anKn−1∫anKncnin2(un(x)−un(y))2(x−y)2dydx−∫bnKn−1anKn−1∫dnin2+|(bnKn−1, anKn)∩III+δ,n|dnin2βπ(x−y)2dydx−βπln2bnKn−2an1−βπlnbnKn−1anKn−1−βπlnbnKnanKn+14∫∞1g(x)W(un)dx≥βπln(cnin2−anKn−2cnin2−bnKn−2⋅anKn−bnKn−2anKn−anKn−2)−βπln(dnin2−anKn−2dnin2−bnKn−2⋅dnin2+|(bnKn−1,anKn)∩III+δ,n|−bnKn−2dnin2+|(bnKn−1,anKn)∩III+δ,n|−anKn−2)+βπln(cnin2−anKn−1cnin2+1−bnKn−1⋅anKn−bnKn−1+1anKn−anKn−1)−βπln(dnin2−anKn−1dnin2−bnKn−1⋅dnin2+|(bnKn−1,anKn)∩III+δ,n|−bnKn−1dnin2+|(bnKn−1,anKn)∩III+δ,n|−anKn−1)+βπlncnin1−anKn−2cnin1−bnKn−2+βπlncnin1−anKn−1cnin1−bnKn−1−βπln(dnin1−anKn−2dnin1−bnKn−2⋅dnin1+|(bnKn,cnLn)∩III+δ,n|−bnKn−2dnin1+|(bnKn,cnLn)∩III+δ,n|−anKn−2)−βπln2bnKn−2an1−βπlnbnKn−1anKn−1−βπlnbnKnanKn−C+γmin|u|≤1−δW(u)4|III+δ,n|≥βπlncnin2−anKn−2bnKn−2+βπln(cnin2−anKn−1cnin2−bnKn−2⋅anKn−bnKn−2anKn−anKn−2)+βπln(cnin1−anKn−2cnin1−bnKn−2⋅anKn−bnKn−1+1anKn−anKn−1)+βπlncnin1−anKn−1cnin1−bnKn−1−βπln(cnin2−bnKn−1+1)−2βπln(1+|(bnKn−1,anKn)∩III+δ,n|)−βπln(1+|(bnKn,cnLn)∩III+δ,n|)−βπlnbnKn−1anKn−1−βπlnbnKnanKn−C+γmin|u|≤1−δW(u)4|III+δ,n|≥βπlncnin2−anKn−2bnKn−2+βπln(cnin2−anKn−1cnin2−bnKn−2)+βπln(anKn−bnKn−2cnin1−bnKn−2)+βπln(anKn−bnKn−1+1cnin1−bnKn−1)−βπlnbnKnanKn−βπlnbnKn−1anKn−1−C. |
Taking liminf on both sides, we get
\begin{equation*} \lim \inf \frac{c_{i_{2}^{n}}^{n}}{b_{K_{n}-1}^{n}} = \lim \sup \frac{ a_{K_{n}-2}^{n}}{b_{K_{n}-2}^{n}} = 1. \end{equation*} |
If \lim \inf_{n\rightarrow \infty }\frac{a_{K_{n}}^{n}-b_{K_{n}-1}^{n}+1}{ c_{i_{1}^{n}}^{n}-b_{K_{n}-1}^{n}} = 0, then \lim \sup_{n\rightarrow \infty } \frac{c_{i_{1}^{n}}^{n}-a_{K_{n}}^{n}}{c_{i_{1}^{n}}^{n}-b_{K_{n}-1}^{n}} = 1. We can modify the argument above by replacing \left(a_{K_{n}-1, }^{n}b_{K_{n}-1}^{n}\right) \cup \left(a_{K_{n}}^{n}, b_{K_{n}}^{n}\right) by \left(a_{K_{n}-1, }^{n}b_{K_{n}}^{n}\right) and same conclusion follows.
Case Ⅲ-ⅱ: \left(b_{K_{n}-2}^{n}, a_{K_{n}-1}^{n}\right) \cap II_{\delta, n}^{+}\neq \emptyset. There are two cases.
Case Ⅲ-ⅱ-a: There exists i_{3}^{n}\in \left\{ j_{3}^{n}, \text{ } j_{3}^{n}+1, \text{ }\cdots, j_{2}^{n}-1\right\} such that
\begin{equation} c_{i_{3}^{n}}^{n}-b_{K_{n}-2}^{n} < 1. \end{equation} | (2.57) |
We bound J_{\delta }^{+}\left(u_{n}\right) as follows.
\begin{eqnarray} -n & > &J_{\delta }^{+}\left( u_{n}\right) \\ &\geq &{\frac{\beta}{4\pi}}\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}}\int_{ \left( b_{K_{n}-2}^{n},a_{K_{n}-1}^{n}\right) \cap II_{\delta ,n}^{+}}\frac{ \left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx+{\frac{\beta}{4\pi}} \int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}}\int_{\left( b_{K_{n}-1}^{n},a_{K_{n}}^{n}\right) \cap II_{\delta ,n}^{+}}\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&+{\frac{\beta}{4\pi}}\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}}\int_{\left( b_{K_{n}}^{n}\infty \right) \cap II_{\delta ,n}^{+}}\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} dydx-\int_{I_{\delta ,n}^{+}}\int_{I_{\delta ,n}^{-}}\frac{\beta}{{\pi} \left( x-y\right) ^{2}}dydx+\frac{1}{4}\int_{1}^{\infty }g(x)W\left(u_{n}\right)dx \\ &\geq &{\frac{\beta}{4\pi}}\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}-1} \int_{c_{i_{3}^{n}}^{n}}^{a_{K_{n}-1}^{n}}\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} dydx-\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}} \int_{d_{i_{3}^{n}}^{n}}^{d_{i_{3}^{n}}^{n}+\left\vert \left( b_{K_{n}-2}^{n},a_{K_{n}-1}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert } \frac{\beta}{{\pi}\left( x-y\right) ^{2}}dydx \\ &&+{\frac{\beta}{4\pi}}\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}} \int_{c_{i_{2}^{n}}^{n}}^{a_{K_{n}}^{n}}\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} dydx-\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}} \int_{d_{i_{2}^{n}}^{n}}^{d_{i_{2}^{n}}^{n}+\left\vert \left( b_{K_{n}-1}^{n},a_{K_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert } \frac{\beta}{{\pi}\left( x-y\right) ^{2}}dydx \\ &&+{\frac{\beta}{4\pi}}\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}} \int_{c_{i_{1}^{n}}^{n}}^{\infty }\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} dydx-\int_{a_{K_{n}-2}^{n}}^{b_{K_{n}-2}^{n}} \int_{d_{i_{1}^{n}}^{n}}^{d_{i_{1}^{n}}^{n}+\left\vert \left( b_{K_{n}}^{n},c_{L_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert } \frac{\beta}{{\pi}\left( x-y\right) ^{2}}dydx \\ &&-{\frac{\beta}{\pi}}\ln 2\frac{b_{K_{n}-2}^{n}}{a_{1}^{n}}-{\frac{\beta}{ \pi}}\ln \frac{b_{K_{n}-1}^{n}}{a_{K_{n}-1}^{n}}-{\frac{\beta}{\pi}}\ln \frac{b_{K_{n}}^{n}}{a_{K_{n}}^{n}}+\frac{1}{4}\int_{1}^{\infty }g(x)W\left(u_{n}\right)dx \\ &\geq &{\frac{\beta}{\pi}}\ln \left( \frac{c_{i_{3}^{n}}^{n}-a_{K_{n}-2}^{n} }{c_{i_{3}^{n}}^{n}-b_{K_{n}-2}^{n}+1}\cdot \frac{ a_{K_{n}-1}^{n}-b_{K_{n}-2}^{n}}{a_{K_{n}-1}^{n}-a_{K_{n}-2}^{n}}\right) -{ \frac{\beta}{\pi}}\ln \left( \frac{d_{i_{3}^{n}}^{n}-a_{K_{n}-2}^{n}}{ d_{i_{3}^{n}}^{n}-b_{K_{n}-2}^{n}}\cdot \frac{d_{i_{3}^{n}}^{n}+\left\vert \left( b_{K_{n}-2}^{n},a_{K_{n}-1}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert -b_{K_{n}-2}^{n}}{d_{i_{3}^{n}}^{n}+\left\vert \left( b_{K_{n}-2}^{n},a_{K_{n}-1}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert -a_{K_{n}-2}^{n}}\right) \\ &&+{\frac{\beta}{\pi}}\ln \left( \frac{c_{i_{2}^{n}}^{n}-a_{K_{n}-2}^{n}}{ c_{i_{2}^{n}}^{n}-b_{K_{n}-2}^{n}}\cdot \frac{a_{K_{n}}^{n}-b_{K_{n}-2}^{n}}{ a_{K_{n}}^{n}-a_{K_{n}-2}^{n}}\right) -{\frac{\beta}{\pi}}\ln \left( \frac{ d_{i_{2}^{n}}^{n}-a_{K_{n}-2}^{n}}{d_{i_{2}^{n}}^{n}-b_{K_{n}-2}^{n}}\cdot \frac{d_{i_{2}^{n}}^{n}+\left\vert \left( b_{K_{n}-1}^{n},a_{K_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert -b_{K_{n}-2}^{n}}{d_{i_{2}^{n}}^{n}+\left\vert \left( b_{K_{n}-1}^{n},a_{K_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert -a_{K_{n}-2}^{n}}\right) \\ &&+{\frac{\beta}{\pi}}\ln \frac{c_{i_{1}^{n}}^{n}-a_{K_{n}-2}^{n}}{ c_{i_{1}^{n}}^{n}-b_{K_{n}-2}^{n}}-{\frac{\beta}{\pi}}\ln \left( \frac{ d_{i_{1}^{n}}^{n}-a_{K_{n}-2}^{n}}{d_{i_{1}^{n}}^{n}-b_{K_{n}-2}^{n}}\cdot \frac{d_{i_{1}^{n}}^{n}+\left\vert \left( b_{K_{n}}^{n},c_{L_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert -b_{K_{n}-2}^{n}}{d_{i_{1}^{n}}^{n}+ \left\vert \left( b_{K_{n}}^{n},c_{L_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert -a_{K_{n}-2}^{n}}\right) \\ &&-{\frac{\beta}{\pi}}\ln 2\frac{b_{K_{n}-2}^{n}}{a_{1}^{n}}-{\frac{\beta}{ \pi}}\ln \frac{b_{K_{n}-1}^{n}}{a_{K_{n}-1}^{n}}-{\frac{\beta}{\pi}}\ln \frac{b_{K_{n}}^{n}}{a_{K_{n}}^{n}}-C+\frac{\gamma \min_{\left\vert u\right\vert \leq 1-\delta }W\left( u\right) }{4}\left\vert III_{\delta ,n}^{+}\right\vert \\ &\geq &{\frac{\beta}{\pi}}\ln \frac{c_{i_{3}^{n}}^{n}-a_{K_{n}-2}^{n}}{ b_{K_{n}-2}^{n}}+{\frac{\beta}{\pi}}\ln \left( \frac{ a_{K_{n}-1}^{n}-b_{K_{n}-2}^{n}}{a_{K_{n}-1}^{n}-a_{K_{n}-2}^{n}}\cdot \frac{ c_{i_{2}^{n}}^{n}-a_{K_{n}-2}^{n}}{c_{i_{2}^{n}}^{n}-b_{K_{n}-2}^{n}}\right) +{\frac{\beta}{\pi}}\ln \left( \frac{c_{i_{1}^{n}}^{n}-a_{K_{n}-2}^{n}}{ c_{i_{1}^{n}}^{n}-b_{K_{n}-2}^{n}}\cdot \frac{a_{K_{n}}^{n}-b_{K_{n}-2}^{n}}{ a_{K_{n}}^{n}-a_{K_{n}-2}^{n}}\right) \\ &&-{\frac{\beta}{\pi}}\ln \left( c_{i_{3}^{n}}^{n}-b_{K_{n}-2}^{n}+1\right) - {\frac{\beta}{\pi}}\ln \left( 1+\left\vert \left( b_{K_{n}-2}^{n},a_{K_{n}-1}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert \right) -{\frac{\beta}{\pi}}\ln \left( 1+\left\vert \left( b_{K_{n}-1}^{n},a_{K_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert \right) \\ &&-{\frac{\beta}{\pi}}\ln \left( 1+\left\vert \left( b_{K_{n}}^{n},c_{L_{n}}^{n}\right) \cap III_{\delta ,n}^{+}\right\vert \right) -{\frac{\beta}{\pi}}\ln \frac{b_{K_{n}-1}^{n}}{a_{K_{n}-1}^{n}}-{ \frac{\beta}{\pi}}\ln \frac{b_{K_{n}}^{n}}{a_{K_{n}}^{n}}-C+\frac{\gamma \min_{\left\vert u\right\vert \leq 1-\delta }W\left( u\right) }{4}\left\vert III_{\delta ,n}^{+}\right\vert \\ &\geq &{\frac{\beta}{\pi}}\ln \frac{c_{i_{3}^{n}}^{n}-a_{K_{n}-2}^{n}}{ b_{K_{n}-2}^{n}}+{\frac{\beta}{\pi}}\ln \left( \frac{ a_{K_{n}}^{n}-b_{K_{n}-2}^{n}}{c_{i_{1}^{n}}^{n}-b_{K_{n}-2}^{n}}\cdot \frac{ a_{K_{n}-1}^{n}-b_{K_{n}-2}^{n}}{c_{i_{2}^{n}}^{n}-b_{K_{n}-2}^{n}}\right) -{ \frac{\beta}{\pi}}\ln \frac{b_{K_{n}}^{n}}{a_{K_{n}}^{n}}-{\frac{\beta}{\pi}} \ln \frac{b_{K_{n}-1}^{n}}{a_{K_{n}-1}^{n}}-C. \end{eqnarray} | (2.58) |
Taking liminf on both sides, we conclude
\begin{equation*} \lim \inf \frac{c_{i_{3}^{n}}^{n}}{b_{K_{n}-2}^{n}} = \lim \sup \frac{ a_{K_{n}-2}^{n}}{b_{K_{n}-2}^{n}} = 1. \end{equation*} |
Case Ⅲ-ⅱ-b: no such i_{3}^{n} satisfying (2.57) exists. Then we must have
\begin{equation} c_{j_{3}^{n}}^{n}-b_{K_{n}-2}^{n}\geq 1 \end{equation} | (2.59) |
In this case, we can estimate J_{\delta }^{+}\left(u_{n}\right) in the same way as case Ⅲ-ⅰ with c_{i_{3}^{n}}^{n} replaced by c_{j_{3}^{n}}^{n} and conclude
\begin{equation*} \lim \inf \frac{c_{j_{3}^{n}}^{n}}{b_{K_{n}-2}^{n}} = \lim \sup \frac{ a_{K_{n}-2}^{n}}{b_{K_{n}-2}^{n}} = 1. \end{equation*} |
Continuing this way, we conclude that J_{\delta }^{+}\left(u_{n}\right) \rightarrow -\infty implies
\begin{equation*} \lim \sup \frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} = \lim \sup \frac{ a_{K_{n}-1}^{n} }{b_{K_{n}-1}^{n}} = \cdots = \lim \sup \frac{a_{1}^{n}}{ b_{1}^{n}} = 1. \end{equation*} |
We now pick our subsequence as follows. Pick our first subsequence \left\{ u_{n}\right\} such that for its decomposition
\begin{equation*} \ln \frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} < \frac{1}{2}\text{ for all }n. \end{equation*} |
Next we pick a subsequence of the chosen subsequence such that
\begin{equation*} \ln \frac{a_{K_{n}-1}^{n}}{b_{K_{n}-1}^{n}} < \frac{1}{4}\text{ for all }n. \end{equation*} |
Continuing this way, we pick our final subsequence using a diagonal argument. For simplicity of notations, we use the original sequence. For the final subsequence, we have for all n,
\begin{equation*} \ln \frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} < \frac{1}{2},\ln \text{ }\frac{ a_{K_{n}-1}^{n}}{b_{K_{n}-1}^{n}} < \frac{1}{4},\cdots ,\text{ ln}\frac{ a_{K_{n}-l}^{n}}{b_{K_{n}-l}^{n}} < \frac{1}{2^{l}},\cdots \end{equation*} |
it then follows that
\begin{eqnarray*} \int_{I_{\delta ,n}^{+}}\int_{I_{\delta ,n}^{-}}\frac{4}{\left( x-y\right) ^{2}}dydx &\leq &4\ln \prod\limits_{i = 1}^{K_{n}}\frac{a_{i}^{n}+\widetilde{d} _{\widetilde{L}}}{b_{i}^{n}+\widetilde{d}_{\widetilde{L}}}\cdot \frac{ b_{i}^{n}+\widetilde{c}_{1}}{a_{i}^{n}+\widetilde{c}_{1}} \\ &\leq &4\sum\limits_{i = 1}^{K_{n}}\ln \frac{b_{i}^{n}}{a_{i}^{n}} < 4, \end{eqnarray*} |
a contradiction to the assumption that J_{\delta}^+\left(u_{n}\right) \rightarrow -\infty.
In this section, we prove the existence of a minimizer of J\left(u\right). Observe that in general the boundedness of J\left(u_{n}\right) does not imply the boundedness of v_{n} = u_{n}-\eta in H^{1}\left(\mathbb{R} \right). A priori it is not clear whether we can obtain a suitable limit function from a minimizing sequence, using the direct method of calculus of variations. On the other hand, for a sequence \left\{ u_{n}\right\} satisfying \left\vert u_{n}\left(x\right) +sgn(x)\right\vert \geq c_{0} > 0 outside a uniformly bounded interval, the boundedness of J\left(u_{n}\right) implies the boundedness of \left\{ u_{n}-\eta \right\} in H^{1}\left(\mathbb{R}\right). Our main idea, therefore, is to show that we can replace a minimizing sequence \left\{ u_{n}\right\} by another one \{\overline{u}_{n}\} which satisfies \left\vert \overline{u}_{n}\left(x\right) +sgn(x)\right\vert \geq c_{0} > 0 for some constant c_{0} outside a uniformly bounded interval. The new sequence \left\{ \overline{u} _{n}\right\} has uniformly bounded energy J\left(\overline{u}_{n}\right) , and \left\{ \overline{u} _{n}-\eta \right\} is bounded in H^{1}\left(\mathbb{R}\right). From this, we obtain a subsequence which weakly converges to a limit function \overline{v}\in \mathcal{A} that achieves the minimum energy in \mathcal{A} . To construct the replacement sequence \left\{ \overline{u}_{n}\right\} , we use the interval decompositions of u_{n} from the previous section. We first construct \widetilde{u}_{n} by reflecting u_{n} over suitable regions. Keeping track of the energy contributions from each interval in the decomposition, we show that we can choose our regions of reflection so that the energy difference between J\left(\widetilde{u}_{n}\right) and J\left(u_{n}\right) is approaching zero as n\rightarrow \infty. Lastly, we define \overline{u} _{n} by a suitable translation of \widetilde{u}_{n} \ so that \left\vert \overline{u}_{n}\left(x\right) +sgn(x)\right\vert \geq c_{0} > 0 for some constant c_{0} outside a uniformly bounded interval. By periodic translation invariance of J and the above property of J\left(\widetilde{u}_{n}\right), we conclude that \left\{ \overline{u} _{n}\right\} is another minimizing sequence.
We first state a translation invariant lemma.
Lemma 3.1. Given any c\in \mathbb{Z}, let u_{c}\left(x\right) = u\left(x+c\right), then J\left(u_{c}\left(x\right) \right) = J\left(u\left(x\right) \right).
Proof. Since the first two terms are translation invariant for c\in \mathbb{Z} , J(u_{c}) = J(u)+D(\eta _{c}, \eta) , where
\begin{equation*} D\left( \eta _{c},\eta \right) = \int_{\mathbb{R}}\int_{\mathbb{R}}\left( \frac{\left( \eta _{c}\left( x\right) -\eta _{c}\left( y\right) \right) ^{2} }{\left( x-y\right) ^{2}}-\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}\right) dydx. \end{equation*} |
By Lemma 2.1 in [29], we have D\left(\eta _{c}, \eta \right) = 0 for any constant c. The conclusion of the Lemma then follows.
Let \left\{ u_{n}\right\} be a minimizing sequence. By Lemma 2.3, we may assume that u_n-\eta is compactly supported in \mathbb{R} . By Lemma 3.1 and our assumption on the behavior of \left\{ u_{n}\right\} at infinity, after a suitable translation by an integer there exists c_{n}\in [ 0, 1) such that u_{n}\left(1+c_{n}\right) = 0 and
\begin{equation*} u_{n}\left( x\right) \leq 0\text{ for }x\leq 1+c_{n}. \end{equation*} |
Throughout this section, we assume that on \left[ 1+c_{n}, \infty \right), u_{n} has a decomposition
\begin{equation} I_{\delta ,n}^{+} = \bigcup\limits_{i = 1}^{K_{n}}\left[ a_{i,}^{n}\text{ } b_{i}^{n}\right] \end{equation} | (3.1) |
and
\begin{equation} II_{\delta ,n}^{+} = \bigcup\limits_{j = 1}^{L_{n}}\left[ c_{j}^{n},d_{j}^{n} \right] . \end{equation} | (3.2) |
Here we understand d_{L_{n}}^{n} = \infty. Throughout this section, we fix \delta \ll 1 such that W^{\prime \prime }\left(u\right) \geq \frac{1}{4} W^{\prime \prime }\left(1\right) when \left(1-u\right) \leq \delta and W^{\prime \prime }\left(u\right) \geq \frac{1}{4}W^{\prime \prime }\left(-1\right) when 1+u\geq \delta. Since W\left(u\right) > 0 for u\in \left(-1, 1\right), there exists C_{\delta } > 0 such that
\begin{equation} W\left( u\right) \geq C_{\delta }\left( 1-u\right) ^{2} \ \text{when } 1+u\geq \delta \end{equation} | (3.3) |
and
\begin{equation} W\left( u\right) \geq C_{\delta }\left( 1+u\right) ^{2} \ \text{when } 1-u\geq \delta .\text{ } \end{equation} | (3.4) |
In this case, we prove the following proposition.
Proposition 3.2. Let \delta > 0 be such that W\left(u\right) satisfies (3.3) and (3.4). Let u_n be a minimizing sequence for J(u) in \mathcal{A}_0 with decompositions (3.1) and (3.2). If there exists a constant M > 1 such that b_{K_{n}}^{n} < M for all n , then a subsequence of \left\{ u_{n}\right\} converges weakly to a minimizer u_{0} of J\left(u\right) in \mathcal{A} .
Proof. Without loss of generality, we can assume \left\vert u_{n}\right\vert \leq 1. Consider v_{n}: = u_{n}-\eta. Decomposition (3.1) and our assumption imply
\begin{equation} u_{n}+1\geq \delta \text{ for }x\geq M \end{equation} | (3.5) |
and
\begin{equation} u_{n}-1\leq -1\text{ for }x\leq 1+c_{n},\text{ }c_{n}\in [ 0,1) \end{equation} | (3.6) |
We write J\left(u_{n}\right) in terms of v_{n} as follows:
\begin{eqnarray} J\left( u_{n}\right) & = &\int_{\mathbb{R}}\left[ {\frac{\alpha }{2}} \left\vert u_{n}^{\prime }\right\vert ^{2}+g\left( x\right) W\left( u_{n}\right) \right] dx+{\frac{\beta }{4 \pi}} \int_{ \mathbb{R}}\int_{ \mathbb{R}}\left( \frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}\right) dydx \\ & = &\int_{\mathbb{R}}\left[ {{\frac{\alpha }{2}}} \left\vert u_{n}^{\prime }\right\vert ^{2}+g\left( x\right) W\left( u_{n}\right) \right] dx+{{\frac{ \beta }{4 \pi}}}\int_{\mathbb{R}}\int_{ \mathbb{R}}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&-{{\frac{\beta }{2 \pi}}}\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx. \end{eqnarray} | (3.7) |
We have
\begin{eqnarray} &&-\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx \\ & = &-2\int_{1}^{\infty }\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx-2\int_{1}^{\infty }\int_{-\infty }^{-1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx \\ &&-2\int_{-\infty }^{-1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx-\int_{-1}^{1}\int_{-1}^{1} \frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-4\int_{1}^{\infty }\frac{v_{n}\left( x\right) }{x+1} dx+4\int_{-\infty }^{-1}\frac{v_{n}\left( y\right) }{1-y}dy-\frac{1}{4} \int_{1}^{\infty }\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&-4\int_{1}^{\infty }\int_{-1}^{1}\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx-\frac{1}{4} \int_{-\infty }^{-1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&-4\int_{-\infty }^{-1}\int_{-1}^{1}\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx-\frac{1}{4} \int_{-1}^{1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-\int_{-1}^{1}\int_{-1}^{1} \frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} \\ &\geq &-\varepsilon \int_{1}^{\infty }g(x)v_{n}^{2}\left( x\right) dx-\varepsilon \int_{-\infty }^{-1} g(y) v_{n}^{2}\left( y\right) dy-\frac{C}{ \varepsilon }-C\left( \left\Vert \eta ^{\prime }\right\Vert _{L^{\infty }}\right) -\frac{1}{4}\int_{1}^{\infty }\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&-\frac{1}{4}\int_{-\infty }^{-1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx- \frac{1}{4}\int_{-1}^{1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx. \end{eqnarray} | (3.8) |
The last inequality in (3.8) follows from Hö lder inequality, (1.2) and bounds on
\begin{equation*} \int_{-\infty }^{-1}\int_{-1}^{1}\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx, \qquad \int_{1}^{\infty }\int_{-1}^{1}\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx. \end{equation*} |
By (3.3), (3.4), (3.7) and (3.8), we have
\begin{eqnarray*} C &\geq &J\left( u_{n}\right) \geq \int_{\mathbb{R}}{{\frac{\alpha }{2}}} \left\vert u_{n}^{\prime }\right\vert ^{2}dx+\int_{1}^{\infty } g W\left( u_{n}\right) dx+\int_{-\infty }^{-1} g W\left( u_{n}\right) dx \\ &&-{{\frac{\beta }{2 \pi}}}\varepsilon \int_{1}^{\infty }g(x)v_{n}^{2}\left( x\right) dx-{{\frac{\beta }{2 \pi}}}\varepsilon \int_{-\infty }^{-1} g(y)v_{n}^{2}\left( y\right) dy-{\frac{C\beta}{2\pi\varepsilon }}-C\left( \left\Vert \eta ^{\prime }\right\Vert _{L^{\infty }}\right) \\ &&+{\frac{3\beta}{8\pi}}\int_{-\infty }^{-1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx+{{\frac{\beta }{4 \pi}}}\int_{-\infty }^{-1}\int_{-\infty }^{-1} \frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&+{{\frac{\beta }{4 \pi}}}\int_{1}^{\infty }\int_{1}^{\infty }\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx+{\frac{\beta}{8\pi}}\int_{-1}^{1}\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&+{\frac{3\beta}{8\pi}}\int_{1}^{\infty }\int_{-1}^{1}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx+{{\frac{\beta}{2\pi}}}\int_{-\infty }^{-1}\int_{1}^{\infty }\frac{ \left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &\geq &{{\frac{\alpha }{2}}}\int_{\mathbb{R}}\left\vert u_{n}^{\prime }\right\vert ^{2}dx+C_{\delta}\int_{\mathbb{R}} gv_{n}^{2}dx+{\frac{ \beta}{8\pi}}\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} dydx-C\left( M,\left\Vert \eta ^{\prime }\right\Vert _{L^{\infty }}\right) . \end{eqnarray*} |
From this, we conclude that v_{n} is bounded in H^{1}\left(\mathbb{R} \right) , and, hence, there exists a subsequence v_{n_{k}}\rightharpoonup v\in H^{1}\left(\mathbb{R}\right) and
\begin{equation*} \int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{n_k}\left( x\right) -v_{n_k}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx\rightarrow \int_{\mathbb{R} }\int_{\mathbb{R}}\frac{\left( v\left( x\right) -v\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx. \end{equation*} |
Here the convergence above follows from the identity
\begin{equation*} \int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{n_k}\left( x\right) -v_{n_k}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx = 2\int_{\mathbb{R} }v_{n_k}(x)\lim\limits_{\varepsilon\rightarrow 0}\int_{|x-y|\geq \varepsilon}\frac{ \eta(x)-\eta(y)}{|x-y|^2}dydx, \end{equation*} |
the fact that
\begin{equation*} \lim\limits_{\varepsilon \rightarrow 0}\int_{|x-y|\geq \varepsilon}\frac{ \eta(x)-\eta(y)}{|x-y|^2}dy \end{equation*} |
lies in L^2(\mathbb{R}) (see the discussion around (4.5) in Section 4) and the weak convergence of v_{n_k} in L^2(\mathbb{R}) .
Let u_{0} = v+\eta, then u_{0}\in \mathcal{A} and
\begin{eqnarray*} &&\lim \inf J\left( u_{n}\right) \\ & = &\lim \inf \left\{ \int_{\mathbb{R}}\left[ {{\frac{\alpha }{2}}}\left\vert u_{n}^{\prime }\right\vert ^{2}+g\left( x\right) W\left( u_{n}\right) \right] dx\right. \\ &&\left. +{{\frac{\beta }{4 \pi}}}\int_{\mathbb{R}}\int_{\mathbb{R}}\left[ \frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-2\frac{\left( v_{n}\left( x\right) -v_{n}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}\right] dydx\right\} \\ &\geq &\int_{\mathbb{R}}\left[ {{\frac{\alpha }{2}}}\left\vert u_{0}^{\prime }\right\vert ^{2}+g\left( x\right) W\left( u_{0}\right) \right] dx+{{\frac{ \beta }{4 \pi}}}\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v\left( x\right) -v\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&-{{\frac{\beta }{2 \pi}}}\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v\left( x\right) -v\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx \\ & = &J\left( u_{0}\right) . \end{eqnarray*} |
We prove the following proposition.
Proposition 3.3. If \lim \sup b_{K_{n}}^{n} = \infty, we can find a new minimizing sequence \left\{ \overline{u}_{n}\right\} and \ \overline{c} _{n}\in \left[ 0, 1\right) such that
\begin{equation*} \overline{u}_{n}\leq 0 \ \ \ \mathit{{for}} \ \ \ \ x\leq 1+\overline{c}_{n} \end{equation*} |
and
\begin{equation*} \left[ 1+\overline{c}_{n},\mathit{{}}\infty \right) \cap I_{\delta ,n}^{+} = \cup _{i = 1}^{\overline{K}_{n}}\left[ a_{i}^{n},b_{i}^{n}\right] \end{equation*} |
with \lim \sup \overline{b}_{\overline{K}_{n}}^{n} < \infty .
Proof. Let \rho _{i}^{n} < a_{i}^{n} be the biggest zero point of u_{n} that lies to the left of a_{i}^{n} and \sigma _{i}^{n} > b_{i}^{n} be the smallest zero of u_{n} lying to the right of b_{i}^{n}. Set
\begin{equation*} A_{n}^{+} = \left\{ x\geq 1+c_{n},\text{ }u_{n}\left( x\right) \geq 0\right\} , \end{equation*} |
and
\begin{equation*} A_{n}^{-} = \left\{ x\geq 1+c_{n},\text{ }u_{n}\left( x\right) \leq 0\right\} , \end{equation*} |
We construct our replacement minimizing sequence \left\{ \widetilde{u} _{n}\right\} in two cases.
Case Ⅰ: There exists 0\leq l\leq K_{n}, such that \lim \sup_{n}\frac{a_{K_{n}-l}^{n}}{b_{K_{n}-l}^{n}} = \nu _{l} < 1 and \lim \sup_{n}\frac{a_{K_{n}-i}^{n}}{b_{K_{n}-i}^{n}} = 1 for all i = 0, 1, \cdots, l-1.
The main idea to construct a replacement minimizing sequence in this case is to show that we must have \lim \sup_{n}\left(a_{K_{n}-l}^{n}-b_{1}^{n}\right) < \infty and \lim \sup_{n}\frac{a_{1}^{n} }{b_{K_{n}-l}^{n}} = 0. We then reflect the positive part of u_{n} defined on \left[ 1+c_{n}, \rho _{K_{n}-l}^{n}\right] to -u_{n} . It can be shown that the energy of the resulting function differs from initial minimizing sequence by a small amount, a suitable translation of this reflected minimizing sequence satisfies the assumption in Proposition 3.2 and we can obtain a limit function from this replacement minimizing sequence. To illustrate our main idea, we first assume l = 0.
Case Ⅰ-ⅰ: \lim \sup_{n}\frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} = 0. By definition of \rho _{i}^{n}, \sigma _{i}^{n}, we have \lim \sup_{n} \frac{\rho _{K_{n}}^{n}}{\sigma _{K_{n}}^{n}} = 0. In this case, we consider the sequence \left\{ \widetilde{u}_{n}\right\} defined by
\begin{equation} \widetilde{u}_{n}\left( x\right) = \left\{ \begin{array}{cc} -u_{n}\left( x\right) & x\in \left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+} \\ u_{n}\left( x\right) & \text{ otherwise} \end{array} .\right. \end{equation} | (3.9) |
Then
\begin{eqnarray} {{\frac{4\pi}{\beta}}}\left[J\left( u_{n}\right) -J\left( \widetilde{u} _{n}\right)\right] & = &\int_{\mathbb{R}}\int_{\mathbb{R}}\left[ \frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-\frac{\left( \widetilde{u}_{n}\left( x\right) -\widetilde{u}_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}\right] dydx \\ & = &-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{ \mathbb{R}\backslash \left( \left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}\right) }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\int_{1+c_{n}}^{\rho _{K_{n}}^{n}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{1}{\left( x-y\right) ^{2}}dydx \\ & = &-8\ln \frac{\sigma _{K_{n}}^{n}-1-c_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}. \end{eqnarray} | (3.10) |
Since
\begin{equation*} \lim \sup\limits_{n}\frac{\rho _{K_{n}}^{n}}{\sigma _{K_{n}}^{n}} = 0, \end{equation*} |
(3.10) implies the subsequence of \left\{ \widetilde{u}_{n}\right\} is also a minimizing sequence. Let s_{n} = \left[ \sigma _{K_{n}}^{n}\right] be the largest integer smaller than \sigma _{K_{n}}^{n}. By periodic translation invariance of the energy, we define \overline{u}_{n}\left(x\right) = \widetilde{u}_{n}\left(x+s_{n}-1\right) . Then J\left(\overline{u}_{n}\right) = J\left(\widetilde{u}_{n}\right) and \overline{u}_{n} satisfies
\begin{equation*} \overline{u}_{n}\left( x\right) \leq 0\text{ for }x\leq 1+\sigma _{K_{n}}^{n}-s_{n}, \end{equation*} |
and
\begin{equation*} \overline{u}_{n}\left( x\right) \geq -1+\delta \text{ for }x\geq 1+\sigma _{K_{n}}^{n}-s_{n}. \end{equation*} |
We conclude from Proposition 3.2 that \overline{u}_{n} is bounded in H^{1}\left(\mathbb{R}\right), and \overline{u}_{n} converges weakly to a minimizer in \mathcal{A} .
Case Ⅰ-ⅱ: \lim \sup_{n}\frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} = \nu < 1. Then we must have \lim \sup_{n}\left(a_{K_{n}}^{n}-b_{1}^{n}\right) < \infty and \lim \sup_{n}\frac{ a_{1}^{n}}{b_{K_{n}}^{n}} = 0. In this case, we prove that we essentially get back to the same situation as case Ⅰ-ⅰ, with a_{K_{n}}^{n} replaced by a_{1}^{n}. By estimates in Section 2 (we use the same notations in this section)
\begin{eqnarray} J_{\delta }^{+}\left( u_{n}\right) & = &{\frac{\beta}{4\pi}}\int_{I_{\delta ,n}^{+}}\int_{II_{\delta ,n}^{+}}\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}} dydx-\int_{I_{\delta ,n}^{+}}\int_{I_{\delta ,n}^{-}}\frac{\beta}{{\pi} \left( x-y\right) ^{2}}dydx+\frac{1}{4}\int_{1}^{\infty }g(x)W\left( u_{n}\right) dx \\ &\geq &{\frac{\beta}{4\pi}}\int_{a_{K_{n}}^{n}}^{b_{K_{n}}^{n}} \int_{c_{i_{1}^{n}}^{n}}^{\infty }\frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx-{\frac{\beta }{4\pi}}\int_{a_{K_{n}}^{n}}^{b_{K_{n}}^{n}} \int_{d_{i_{1}^{n}}^{n}}^{d_{i_{1}^{n}}^{n}+\left\vert \left( b_{K_{n}}^{n},\infty \right) \cap III_{\delta ,n}^{+}\right\vert }\frac{ \left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&-\int_{I_{\delta ,n}^{+}}\int_{I_{\delta ,n}^{-}}\frac{\beta}{{\pi}\left( x-y\right) ^{2}}dydx+\frac{1}{4}\int_{1}^{\infty }g(x)W\left( u_{n}\right) dx \\ &\geq &{\frac{\beta}{\pi}}\ln \frac{c_{i_{1}^{n}}^{n}-a_{K_{n}}^{n}}{ c_{i_{1}^{n}}^{n}-b_{K_{n}}^{n}}-{\frac{\beta}{\pi}}\ln \left( 2\frac{ b_{K_{n}}^{n}}{a_{1}^{n}}\right) +\frac{\gamma \min_{\left\vert u\right\vert \leq 1-\delta }W\left( u\right) }{4}\left\vert III_{\delta ,n}^{+}\right\vert -{\frac{\beta}{\pi}}\ln \left( 1+\left\vert \left( b_{K_{n}}^{n},\infty \right) \cap III_{\delta ,n}^{+}\right\vert \right) -C \\ &\geq &{\frac{\beta}{\pi}}\ln \frac{c_{i_{1}^{n}}^{n}-a_{K_{n}}^{n}}{ b_{K_{n}}^{n}}-C+\frac{\gamma \min_{\left\vert u\right\vert \leq 1-\delta }W\left( u\right) }{4}\left\vert III_{\delta ,n}^{+}\right\vert -{\frac{\beta }{\pi}}\ln \left( c_{i_{1}^{n}}^{n}-b_{K_{n}}^{n}\right) \\ &&-{\frac{\beta}{\pi}}\ln \left( 1+\left\vert \left( b_{K_{n}}^{n},\infty \right) \cap III_{\delta ,n}^{+}\right\vert \right) . \end{eqnarray} | (3.11) |
Assuming \lim \sup_{n}\frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} = \nu, (3.11) and the boundedness of J_{\delta }^{+}\left(u_{n}\right) imply \left\vert III_{\delta, n}^{+}\right\vert \leq C. We construct \widetilde{u}_{n} as follows.
\begin{equation} \widetilde{u}_{n} = \left\{ \begin{array}{c} -u_{n}\left( x\right) \ \ \ x\in \left[ 1+c_{n},\rho _{K_{n}}^{n} \right] \cap A_{n}^{+} \\ u_{n}\left( x\right) \ \ \ \ \ \ \ \text{elsewhere}\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array} .\right. \end{equation} | (3.12) |
We first show that there does not exist an s such that \lim \sup_{n}\left(a_{K_{n}}^{n}-a_{s+1}^{n}\right) = A_{s} < \infty, \lim \sup_{n}\left(a_{K_{n}}^{n}-b_{s}\right) = \infty .
Otherwise, letting t_{n} = \left\vert \left[ 1+c_{n}, \rho _{K_{n}}^{n}\right] \cap A_{n}^{+}\right\vert, t_{s}^{n} = \left\vert \left[ b_{s}^{n}, a_{s+1}^{n}\right] \cap II_{\delta, n}^{+}\right\vert, we can write
\begin{eqnarray} &&{{\frac{4\pi }{\beta}}}\left[J\left( u_{n}\right) -J\left( \widetilde{u} _{n}\right)\right] \\ & = &\int_{\mathbb{R}}\int_{\mathbb{R}}\left[ \frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-\frac{ \left( \widetilde{u}_{n}\left( x\right) -\widetilde{u}_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}\right] dydx \\ & = &-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\mathbb{R}\backslash \left( \left[ 1+c_{n},\rho _{K_{n}}^{n} \right] \cap A_{n}^{+}\right) }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ & = &-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n}, \text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{-\infty }^{1+c_{n}} \frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{-}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\rho _{K_{n}}^{n}}^{\sigma _{K_{n}}^{n}}\frac{ u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\int_{\rho _{K_{n}}^{n}-t_{n}}^{\rho _{K_{n}}^{n}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{1}{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\rho _{K_{n}}^{n}}^{\sigma _{K_{n}}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\int_{\rho _{K_{n}}^{n}-t_{n}}^{\rho _{K_{n}}^{n}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{1}{\left( x-y\right) ^{2}}dydx-8\int_{\left[ b_{s}^{n},a_{s+1}^{n}\right] \cap II_{\delta ,n}^{+}}\int_{a_{K_{n}}^{n}}^{b_{K_{n}}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\ln \frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+t_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}+8\int_{b_{s}^{n}}^{b_{s}^{n}+t_{s}^{n}} \int_{a_{K_{n}}^{n}}^{b_{K_{n}}^{n}}\frac{\left( 1-\delta \right) ^{2}}{ \left( x-y\right) ^{2}}dydx \\ & = &-8\ln \frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+t_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}} \\ &&+8\left( 1-\delta \right) ^{2}\ln \left( \frac{ b_{K_{n}}^{n}-b_{s}^{n}-t_{s}^{n}}{b_{K_{n}}^{n}-b_{s}^{n}}\cdot \frac{ a_{K_{n}}^{n}-b_{s}^{n}}{a_{K_{n}}^{n}-b_{s}^{n}-t_{s}}\right) . \end{eqnarray} | (3.13) |
Recall that
\begin{equation} \frac{t_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}\leq \frac{\rho _{K_{n}}^{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}, \end{equation} | (3.14) |
\begin{equation} \frac{b_{K_{n}}^{n}-b_{s}^{n}-t_{s}^{n}}{b_{K_{n}}^{n}-b_{s}^{n}}\geq \frac{ b_{K_{n}}^{n}-\rho _{K_{n}}^{n}}{b_{K_{n}}^{n}-b_{s}^{n}}\geq 1-\frac{\rho _{K_{n}}^{n}}{b_{K_{n}}^{n}}, \end{equation} | (3.15) |
and
\begin{eqnarray} \lim \sup\limits_{n}\left( a_{K_{n}}^{n}-b_{s}^{n}-t_{s}^{n}\right) & = &\lim \sup\limits_{n}\left( a_{K_{n}}^{n}-a_{s+1}^{n}+a_{s+1}^{n}-b_{s}^{n}-t_{s}^{n}\right) \\ &\leq &A_{s}+\left\vert \left[ b_{s}^{n},a_{s+1}^{n}\right] \cap III_{\delta ,n}^{+}\right\vert \leq C. \end{eqnarray} | (3.16) |
Taking liminf on both sides of (3.13), we have
\begin{equation*} \lim \inf\limits_{n}\left[ J\left( u_{n}\right) -J\left( \widetilde{u}_{n}\right) \right] = \infty , \end{equation*} |
contradicting the assumption that \left\{ u_{n}\right\} is a minimizing sequence and the fact that J is bounded from below. Therefore we must have \lim \sup_{n}\left(a_{K_{n}}^{n}-b_{1}^{n}\right) = a_{0} < \infty .
Next we show that \lim \sup_{n}\frac{a_{1}^{n}}{b_{K_{n}}^{n}} = 0. If \lim \sup_{n}\frac{a_{1}^{n}}{b_{K_{n}}^{n}} > 0 and \kappa _{n} : = \left\vert \left[ 1+c_{n}, \rho _{K_{n}}^{n}\right] \cap II_{\delta, n}^{+}\right\vert , then
\begin{equation*} t_{n}-\kappa _{n}\leq \left\vert III_{\delta ,n}^{+}\right\vert \leq C, \end{equation*} |
and
\begin{eqnarray*} \kappa _{n} & = &\rho _{K_{n}}^{n}-\left( 1+c_{n}\right) -\left\vert \left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap I_{\delta ,n}^{+}\right\vert \\ &&-\left\vert \left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap III_{\delta ,n}^{+}\right\vert \\ &\leq &a_{K_{n}}^{n}-\left( 1+c_{n}\right) -\left( b_{1}^{n}-a_{1}^{n}\right) . \end{eqnarray*} |
Therefore, we have
\begin{eqnarray} &&{{\frac{4\pi }{\beta}}}\left[J\left( u_{n}\right) -J\left( \widetilde{u} _{n}\right)\right] \\ & = &\int_{\mathbb{R}}\int_{\mathbb{R}}\left[ \frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-\frac{ \left( \widetilde{u}_{n}\left( x\right) -\widetilde{u}_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}\right] dydx \\ & = &-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\mathbb{R}\backslash \left( \left[ 1,\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}\right) }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ & = &-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n}, \text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{-\infty }^{1+c_{n}} \frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{-}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n},\text{ }\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\rho _{K_{n}}^{n}}^{\sigma _{K_{n}}^{n}}\frac{ u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\int_{\rho _{K_{n}}^{n}-t_{n}}^{\rho _{K_{n}}^{n}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{1}{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap II_{\delta ,n}^{+}}\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap I_{\delta ,n}^{+}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap II_{\delta ,n}^{+}}\int_{a_{K_{n}}^{n}}^{b_{K_{n}}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}} \\ &\geq &-8\ln \frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+t_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}+8\left( 1-\delta \right) ^{2}\int_{1+c_{n}}^{1+c_{n}+\kappa _{n}}\int_{a_{K_{n}}^{n}-b_{1}^{n}+a_{1}^{n}}^{b_{K_{n}}^{n}}\frac{1}{\left( x-y\right) ^{2}} \\ & = &-8\ln \frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+t_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}} \\ &&+8\left( 1-\delta \right) ^{2}\ln \frac{b_{K_{n}}^{n}-1-c_{n}-\kappa _{n}}{ b_{K_{n}}^{n}-1-c_{n}}\cdot \frac{a_{K_{n}}^{n}-b_{1}^{n}+a_{1}^{n}-1-c_{n}}{ a_{K_{n}}^{n}-b_{1}^{n}+a_{1}^{n}-1-c_{n}-\kappa _{n}}. \end{eqnarray} | (3.17) |
Since
\begin{equation} \lim \sup\limits_{n}\frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+t_{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}\leq \lim \sup\limits_{n}\frac{\sigma _{K_{n}}^{n}}{ \sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}} < \infty , \end{equation} | (3.18) |
\begin{equation} \lim \inf\limits_{n}\frac{b_{K_{n}}^{n}-1-c_{n}-\kappa _{n}}{b_{K_{n}}^{n}-1-c_{n}} \geq 1-\lim \sup\limits_{n}\frac{a_{1}^{n}-1-c_{n}+a_{K_{n}}^{n}-b_{1}^{n}}{ b_{K_{n}}^{n}-1} > 1-\nu > 0, \end{equation} | (3.19) |
and
\begin{equation} a_{K_{n}}^{n}-b_{1}^{n}+a_{1}^{n}-1-c_{n}-\kappa _{n}\leq a_{0}+\left\vert III_{\delta ,n}^{+}\right\vert \leq C, \end{equation} | (3.20) |
taking liminf on both sides of (3.17), it follows from (3.18), (3.19) and (3.20) that
\begin{equation*} \lim \inf\limits_{n}\left( J\left( u_{n}\right) -J\left( \widetilde{u}_{n}\right) \right) = \infty , \end{equation*} |
a contradiction.
Lastly we estimate the energy difference between u_{n} and \widetilde{u} _{n}. We have
\begin{eqnarray} &&{\frac{4\pi}{\beta}}\left[J\left( u_{n}\right) -J\left( \widetilde{u} _{n}\right) \right] \\ & = &\int_{\mathbb{R}}\int_{\mathbb{R}}\left[ \frac{\left( u_{n}\left( x\right) -u_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}-\frac{ \left( \widetilde{u}_{n}\left( x\right) -\widetilde{u}_{n}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}\right] dydx \\ & = &-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{ \mathbb{R}\backslash \left( \left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}\right) }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ & = &-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{-\infty }^{1+c_{n}} \frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{-}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx-8\int_{\left[ 1+c_{n},\rho _{K_{n}}^{n}\right] \cap A_{n}^{+}}\int_{\rho _{K_{n}}^{n}}^{\sigma _{K_{n}}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\int_{1+c_{n}}^{\rho _{1}^{n}}\int_{\sigma _{K_{n}}^{n}}^{\infty } \frac{1}{\left( x-y\right) ^{2}}dydx-8\int_{\sigma _{1}^{n}}^{\rho _{K_{n}}^{n}}\int_{\sigma _{K_{n}}^{n}}^{\infty }\frac{1}{\left( x-y\right) ^{2}}dydx \\ &\geq &-8\ln \frac{\sigma _{K_{n}}^{n}-1-c_{n}}{\sigma _{K_{n}}^{n}-\rho _{1}^{n}}-8\ln \frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+\rho _{K_{n}}^{n}-\sigma _{1}^{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}}. \end{eqnarray} | (3.21) |
Recalling that
\begin{eqnarray*} \lim \sup \frac{\rho _{K_{n}}^{n}}{\sigma _{K_{n}}^{n}} &\leq &\lim \sup \frac{a_{K_{n}}^{n}}{b_{K_{n}}^{n}} = \nu < 1,\text{ }\lim \sup \frac{\rho _{1}^{n}}{\sigma _{K_{n}}^{n}}\leq \lim \sup \frac{a_{1}^{n}}{b_{K_{n}}^{n}} = 0,\text{ } \\ && \end{eqnarray*} |
and
\begin{equation*} \lim \sup \left( \rho _{K_{n}}^{n}-\sigma _{1}^{n}\right) \leq \lim \sup \left( a_{K_{n}}^{n}-b_{1}^{n}\right) = a_{0} < \infty , \end{equation*} |
we conclude that
\begin{eqnarray*} \lim \sup\limits_{n}\frac{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}+\rho _{K_{n}}^{n}-\sigma _{1}^{n}}{\sigma _{K_{n}}^{n}-\rho _{K_{n}}^{n}} & = &1, \\ \lim \inf\limits_{n}\frac{\sigma _{K_{n}}^{n}-1-c_{n}}{\sigma _{K_{n}}^{n}-\rho _{1}^{n}} & = &1. \end{eqnarray*} |
Thus by (3.21) we have that \left\{ \widetilde{u }_{n}\right\} is also a minimizing sequence. Defining
\begin{equation*} \overline{u}_{n} = \widetilde{u}_{n}\left( x+s_{n}-1\right) , \end{equation*} |
where s_{n} = \left[ \sigma _{K_{n}}^{n}\right] is the largest integer smaller than \sigma _{K_{n}}^{n}, then \left\{ \overline{u}_{n}\right\} is a minimizing sequence satisfying
\begin{equation*} \overline{u}_{n}\left( x\right) \leq 0 \ \text{for }x\leq 1+\sigma _{K_{n}}^{n}-s_{n}\text{ and }\overline{u}_{n}\left( x\right) \geq -1+\delta \ \text{for }x > 1+\sigma _{K_{n}}^{n}-s_{n}. \end{equation*} |
Proposition 3.2 applies to \overline{u}_{n} , from which we can extract a converging subsequence to a minimizer u_0 \in \mathcal{A}_0 .
Case Ⅰ-ⅲ: There exists l > 1 such that \lim \sup_{n} \frac{a_{K_{n}-j}^{n}}{b_{K_{n}-j}^{n}} = 1 for j = 0, 1, \cdots, l-1 and \lim \sup_{n}\frac{a_{K_{n}-l}^{n}}{b_{K_{n}-l}^{n}} < 1. Then we must have \lim \sup_{n}\left(a_{K_{n}-l}^{n}-b_{1}^{n}\right) < \infty and \lim \sup_{n}\frac{a_{1}^{n}}{b_{K_{n}-l}^{n}} = 0. We construct \widetilde{u}_{n} as follows.
\begin{equation} \widetilde{u}_{n} = \left\{ \begin{array}{c} -u_{n}\left( x\right) \ \ \ x\in \left[ 1+c_{n},\rho _{l}^{n}\right] \cap A_{n}^{+} \\ u_{n}\left( x\right) \ \ \ \ \ \ \ \text{elsewhere} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \end{array} .\right. \end{equation} | (3.22) |
We also need
\begin{equation*} \int_{I_{\delta ,n}^{+}}\int_{I_{\delta ,n}^{-}}\frac{4}{\left( x-y\right) ^{2}}dydx\leq 4\ln \left( \prod\limits_{j = 0}^{l-1}\frac{b_{K_{n}-j}^{n}}{ a_{K_{n}-j}^{n}}\right) +4\ln \left( 2\frac{b_{K_{n}-l}^{n}}{a_{1}^{n}} \right) . \end{equation*} |
We can follow a similar argument in Case Ⅰ-ⅰ and Case Ⅰ-ⅱ by replacing any estimates on \left[ a_{K_{n}}^{n}, b_{K_{n}}^{n}\right] in (3.13), (3.21) and (3.17) by estimates on \left[ a_{K_{n}-l}^{n}, b_{K_{n}-l}^{n}\right] , using \overline{u}_{n} = \widetilde{u}_{n}\left(x+s_{n, l}-1\right), where s_{n, l} = \left[ \sigma _{l}^{n}\right] is the largest integer less than or equal to \sigma _{l}^{n}.
Case Ⅱ: No such l exists, i.e., \lim \sup_{n} \frac{a_{j}^{n}}{b_{j}^{n}} = 1 for all j where \lim \sup_{n}b_{j}^{n} = \infty. Let l be such that \lim \sup_{n}b_{K_{n}-j}^{n} = \infty for all j < l and \lim \sup_{n}b_{K_{n}-l}^{n} < \infty. In this case, we will reflect the negative part of u_{n} to -u_{n} outside a big portion of \left(b_{K_{n}-l}^{n}, a_{K_{n}-l+1}^{n}\right) \cap II_{\delta, n}^{+}. Following notations in section 2, we write
\begin{equation*} \left( b_{K_{n}-l}^{n},a_{K_{n}-l+1}^{n}\right) \cap II_{\delta ,n}^{+} = \cup _{j = j_{l+1}^{n}}^{j_{l}^{n}-1}\left[ c_{j}^{n},\text{ }d_{j}^{n}\right] . \end{equation*} |
First by
\begin{eqnarray} C & > &J_{\delta }^{+}\left( u_{n}\right) \geq -\int_{I_{\delta ,n}^{+}}\int_{I_{\delta ,n}^{-}}\frac{\beta}{{\pi}\left( x-y\right) ^{2}} dydx+\frac{1}{4}\int_{1}^{\infty }g(x)W\left( u_{n}\right) dx \\ &\geq &-{\frac{\beta}{\pi}}\ln \left( 2\frac{b_{K_{n}-l}^{n}}{a_{1}^{n}} \right) -\sum\limits_{i = K_{n}-l+1}^{K_{n}}{\frac{\beta}{\pi}}\ln \frac{b_{i}^{n}}{ a_{i}^{n}}+\frac{\gamma \min_{\left\vert u\right\vert \leq 1-\delta }}{4} \left\vert III_{\delta ,n}^{+}\right\vert \end{eqnarray} | (3.23) |
we conclude that
\begin{equation*} \left\vert III_{\delta ,n}^{+}\right\vert \leq C. \end{equation*} |
Case Ⅱ-ⅰ: There exists j\left(l\right) \in \left\{ j_{l+1}^{n}, \cdots, j_{l}^{n}-1\right\} such that
\begin{equation} \lim \sup\limits_{n}\left( d_{j(l)}^{n}-c_{j(l)}^{n}\right) = \infty . \end{equation} | (3.24) |
Let T_{n, l} = \left[ d_{j\left(l\right) }^{n}, c_{L_{n}}^{n}\right] \cap A_{n}^{-}, M_{n, l} = \left\vert T_{n, l}\cap III_{\delta, n}^{+}\right\vert. We define
\begin{equation*} \overline{u}_{n}\left( x\right) = \left\{ \begin{array}{c} -u_{n}\left( x\right) \ x\in \left[ d_{j\left( l\right) }^{n},c_{L_{n}}^{n}\right] \cap A_{n}^{-} \\ u_{n}\left( x\right) \ \ \ \ \ \ \text{otherwise} \end{array} \right. . \end{equation*} |
Since
\begin{equation*} \frac{u_{n}\left( y_{1}\right) }{\left( x-y_{1}\right) ^{2}}\geq -\frac{ u_{n}\left( y_{2}\right) }{\left( x-y_{2}\right) ^{2}}\text{ } \end{equation*} |
for x\in T_{n, l}, y_{1}\in \left[ c_{j\left(l\right) }^{n}, d_{j\left(l\right) }^{n}\right] and y_{2}\in \left[ b_{K_{n}-l}^{n}, \text{ } c_{j\left(l\right) }^{n}\right] \cap A_{n}^{-}, together with (3.24) and the fact that
\begin{equation*} \left\vert \left[ b_{K_{n}-l}^{n},\text{ }c_{j\left( l\right) }^{n}\right] \cap A_{n}^{-}\right\vert \leq \left\vert III_{\delta ,n}^{+}\right\vert \leq C, \end{equation*} |
we conclude that
\begin{equation*} \int_{T_{n,l}}\int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{j\left( l\right) }^{n} \right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+\int_{T_{n,l}}\int_{c_{j\left( l\right) }^{n}}^{d_{j\left( l\right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx\leq 0. \end{equation*} |
It then follows that
\begin{eqnarray*} &&{\frac{4\pi}{\beta}}\left[J\left( \overline{u}_{n}\right) -J\left( u_{n}\right)\right] \\ & = &8\int_{T_{n,l}}\int_{\mathbb{R}\backslash T_{n,l}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\int_{T_{n,l}}\int_{-\infty }^{c_{j\left( l\right) }^{n}}\frac{ u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}} dydx+8\int_{T_{n,l}}\int_{\left[ d_{j\left( l\right) }^{n},\text{ } c_{L_{n}}^{n}\right] \cap A_{n}^{+}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l}}\int_{c_{j\left( l\right) }^{n}}^{d_{j\left( l\right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\int_{T_{n,l}}\int_{c_{L_{n}}^{n}}^{\infty }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\int_{T_{n,l}}\int_{-\infty }^{b_{K_{n}-l}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\int_{T_{n,l}} \int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{j\left( l\right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n.,l}}\int_{c_{j\left( l\right) }^{n}}^{d_{j\left( l\right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &\int_{-\infty }^{c_{j\left( l\right) }^{n}}\int_{d_{j\left( l\right) }^{n}}^{M_{n,l}+d_{j\left( l\right) }^{n}}\frac{8}{\left( x-y\right) ^{2}} dydx+\sum\limits_{i = 0}^{l-1}\int_{-\infty }^{b_{K_{n}-l}^{n}}\int_{\rho _{K_{n}-i}^{n}}^{\sigma _{K_{n}-i}^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l}}\int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{j\left( l\right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\int_{T_{n,l}}\int_{c_{j\left( l\right) }^{n}}^{d_{j\left( l\right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\ln \frac{M_{n,l}^{{}}+d_{j\left( l\right) }^{n}-c_{j\left( l\right) }^{n}}{d_{j\left( l\right) }^{n}-c_{j\left( l\right) }^{n}} +\sum\limits_{i = 0}^{l-1}\ln \frac{\sigma _{K_{n}-i}^{n}-b_{K_{n}-l}^{n}}{\rho _{K_{n}-i}^{n}-b_{K_{n}-l}^{n}}\rightarrow 0, \end{eqnarray*} |
i.e., \left\{ \overline{u}_{n}\right\} is also a minimizing sequence with \overline{b}_{\overline{K}_{n}}^{n} = b_{K_{n}-l}^{n} satisfying \lim \sup \overline{b}_{\overline{K}_{n}}^{n} < \infty.
Case Ⅱ-ⅱ:
\begin{equation*} \lim \sup\limits_{n}\left[ \max\limits_{j_{l+1}^{n}\leq j\leq j_{l}^{n}-1}\left( d_{j}^{n}-c_{j}^{n}\right) \right] \bf{ < \infty .} \end{equation*} |
Let S_{0} = \left\{ \text{ }j_{l+1}^{n}+1, \text{ }\cdots, \text{ } j_{l}^{n}-1\right\}. We define S_{0}^{+} as follows.
\begin{equation*} S_{0}^{+} = \left\{ j\in S_{0}:d_{j}^{n}-c_{j}^{n} > c_{j}^{n}-d_{j-1}^{n}\right\} \end{equation*} |
There exists k = k\left(n\right) and indices p\left(1\right), \cdots, p\left(k\right) \in S_{0} , q\left(1\right), \cdots, q\left(k\right) \in S_{0} such that i\in S_{0}^{+} if p\left(s\right) \leq i\leq q\left(s\right) and i\notin S_{0}^{+} if q\left(s\right) \leq i\leq p\left(s+1\right) for s = 1, \cdots, k. We write S_{1} = \left\{ 1, \cdots, k\right\}.
Case Ⅱ-ⅱ-1: There exists s\leq k such that
\begin{equation*} \lim \sup\limits_{n}\sum\limits_{i = p\left( s\right) }^{q\left( s\right) }\left( d_{i}^{n}-c_{i}^{n}\right) \rightarrow \infty . \end{equation*} |
Let
\begin{eqnarray*} T_{n,l,s} & = &\left[ d_{q\left( s\right) }^{n},c_{L_{n}}^{n}\right] \cap A_{n}^{-} \\ M_{n,l,s}^{{}} & = &\left\vert III_{\delta ,n}^{+}\cap T_{n,l,s}\right\vert . \end{eqnarray*} |
We define
\begin{equation*} \overline{u}_{n}\left( x\right) = \left\{ \begin{array}{c} -u_{n}\left( x\right) \ x\in \left[ d_{q\left( s\right) }^{n},c_{L_{n}}^{n}\right] \cap A_{n}^{-} \\ u_{n}\left( x\right) \ \ \ \ \ \ \text{otherwise} \end{array} \right. . \end{equation*} |
Since
\begin{equation*} \left\vert \left( c_{j}^{n},d_{j}^{n}\right) \right\vert > \left\vert \left( d_{j-1}^{n},c_{j}^{n}\right) \right\vert \text{ for }p\left( s\right) \leq j\leq q\left( s\right) ,\text{ }\cup _{j = p(s)}^{q\left( s\right) }\left( d_{j-1}^{n},c_{j}^{n}\right) \subset III_{\delta ,n}^{+} \end{equation*} |
and
\begin{equation*} \lim \sup\limits_{n}\sum\limits_{i = p\left( s\right) }^{q\left( s\right) }\left( d_{i}^{n}-c_{i}^{n}\right) \rightarrow \infty ,\text{ }\left\vert III_{\delta ,n}^{+}\right\vert \leq C, \end{equation*} |
together with the observation that
\begin{equation*} \frac{u_{n}\left( y_{1}\right) }{\left( x-y_{1}\right) ^{2}} > - \frac{ u_{n}\left( y_{2}\right) }{\left( x-y_{2}\right) ^{2}}\text{ } \end{equation*} |
for x\in T_{n, l, s}, y_{1}\in \left(c_{j}^{n}, d_{j}^{n}\right), y_{2}\in \left(d_{j-1}^{n}, c_{j}^{n}\right), p\left(s\right) \leq j\leq q\left(s\right) , and
\begin{equation*} \frac{u_{n}\left( y_{1}\right) }{\left( x-y_{1}\right) ^{2}} > - \frac{ u_{n}\left( y_{2}\right) }{\left( x-y_{2}\right) ^{2}}\text{ } \end{equation*} |
for x\in T_{n, l, s}, y_{1}\in \cup _{j = p\left(s\right) }^{q\left(s\right) }\left(c_{j}^{n}, d_{j}^{n}\right), y_{2}\in III_{\delta, n}^{+}\cap \left(b_{K_{n}-l}^{n}, c_{p\left(s\right) }^{n}\right), we conclude that
\begin{eqnarray*} &&\int_{T_{n,l,s}}\int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{p\left( s\right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+\sum\limits_{j = p\left( s\right) }^{q\left( s\right) }\int_{T_{n,l,s}}\int_{c_{j}^{n}}^{d_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+\sum\limits_{j = p\left( s\right) }^{q\left( s\right) }\int_{T_{n,l,s}}\int_{d_{j-1}^{n}}^{c_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &0. \end{eqnarray*} |
Therefore
\begin{eqnarray*} &&{\frac{4\pi}{\beta}}\left[J\left( \overline{u}_{n}\right) -J\left( u_{n}\right)\right] \\ & = &8\int_{T_{n,l,s}}\int_{\mathbb{R\diagdown }T_{n,l,s}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ & = &8\int_{T_{n,l,s}}\int_{-\infty }^{d_{q\left( s\right) }^{n}}\frac{ u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}} dydx+8\int_{T_{n,l,s}}\int_{\left[ d_{q\left( s\right) }^{n},\text{ } c_{L_{n}}^{n}\right] \cap A_{n}^{+}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l,s}}\int_{c_{L_{n}}^{n}}^{\infty }\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\int_{T_{n,l,s}}\int_{-\infty }^{c_{p\left( s\right) }^{n}}\frac{ u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}} dydx+8\int_{T_{n,l,s}}\int_{c_{p\left( s\right) }^{n}}^{d_{q\left( s\right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\int_{T_{n,l,s}}\int_{-\infty }^{b_{K_{n}-l}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8 \int_{T_{n,l,s}}\int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{p\left( s\right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l,s}}\int_{c_{p\left( s\right) }^{n}}^{d_{q\left( s\right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &\int_{-\infty }^{c_{p\left( s\right) }^{n}}\int_{d_{q\left( s\right) }^{n}}^{M_{n,l,s}^{{}}+d_{q\left( s\right) }^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx+\sum\limits_{i = 0}^{l-1}\int_{-\infty }^{b_{K_{n}-l}^{n}}\int_{\rho _{K_{n}-i}^{n}}^{\sigma _{K_{n}-i}^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l,s}}\int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{p\left( s\right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\sum\limits_{j = p\left( s\right) }^{q\left( s\right) }\int_{T_{n,l,s}}\int_{c_{j}^{n}}^{d_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+8\sum\limits_{j = p\left( s\right) }^{q\left( s\right) }\int_{T_{n,l,s}}\int_{d_{j-1}^{n}}^{c_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &\int_{-\infty }^{c_{p\left( s\right) }^{n}}\int_{d_{q\left( s\right) }^{n}}^{M_{n,l,s}^{{}}+d_{q\left( s\right) }^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx+\sum\limits_{i = 0}^{l-1}\int_{-\infty }^{b_{K_{n}-l}^{n}}\int_{\rho _{K_{n}-i}^{n}}^{\sigma _{K_{n}-i}^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx \\ &\leq &8\ln \frac{M_{n,l,s}^{{}}+d_{q\left( s\right) }^{n}-c_{p\left( s\right) }^{n}}{d_{q\left( s\right) }^{n}-c_{p\left( s\right) }^{n}} +8\sum\limits_{i = 0}^{l-1}\ln \frac{\sigma _{K_{n}-i}^{n}-b_{K_{n}-l}^{n}}{\rho _{K_{n}-i}^{n}-b_{K_{n}-l}^{n}} \\ &\rightarrow &0 \end{eqnarray*} |
Case Ⅱ-ⅱ-2:
\begin{equation*} \sup\limits_{s}\left( \lim \sup\limits_{n}\sum\limits_{i = p(s)}^{q(s)}\left( d_{i}^{n}-c_{i}^{n}\right) \right) < \infty. \end{equation*} |
We consider
\begin{equation*} S_{1}^{+} = \left\{ \alpha \in S_{1}:\sum\limits_{i = p\left( \alpha \right) }^{q\left( \alpha \right) }\left( d_{i}^{n}-c_{i}^{n}\right) > \sum\limits_{i = 1+q\left( \alpha -1\right) }^{q\left( \alpha \right) }\left( c_{i}^{n}-d_{i-1}^{n}\right) \right\} . \end{equation*} |
There exists m = m\left(n\right) \leq k and p_{1}\left(\tau \right), q_{1}\left(\tau \right) \in S_{1} for each \tau \leq m and \tau \in \mathbb{N} such that \gamma \in S_{1}^{+} if p_{1}\left(\tau \right) \leq \gamma \leq q_{1}\left(\tau \right) and \gamma \notin S_{1}^{+} if q_{1}\left(\tau \right) \leq \gamma \leq p_{1}\left(\tau +1\right). Let S_{2} = \left\{ 1, \cdots, m\right\}
Case Ⅱ-ⅱ-2-a: There exists \tau = \tau \left(n\right) such that
\begin{equation} \lim \sup\limits_{n}\sum\limits_{\gamma = p_{1}\left( \tau \right) }^{q_{1}\left( \tau \right) }\sum\limits_{i = p\left( \gamma \right) }^{q\left( \gamma \right) }\left( d_{i}^{n}-c_{i}^{n}\right) \rightarrow \infty. \end{equation} | (3.25) |
Then we consider
\begin{equation*} \overline{u}_{n}\left( x\right) = \left\{ \begin{array}{c} -u_{n}\left( x\right) \ x\in \left[ d_{q\left( q_{1}\left( \tau \right) \right) }^{n},c_{L_{n}}^{n}\right] \cap A^{-} \\ u_{n}\left( x\right) \ \ \ \ \ \ \text{otherwise} \end{array} \right. \end{equation*} |
Let T_{n, l, q_{1}\left(\tau \right) } = \left[ d_{q\left(q_{1}\left(\tau \right) \right) }^{n}, \sigma _{K_{n}}^{n}\right] \cap A^{-}. M_{n, l, q_{1}\left(\tau \right) }^{{}} = \left\vert \left[ d_{q\left(q_{1}\left(\tau \right) \right) }^{n}, \sigma _{K_{n}}^{n}\right] \cap A^{-}\cap III_{\delta, n}^{+}\right\vert. Observe
\begin{equation*} \frac{u_{n}\left( y_{1}\right) }{\left( x-y_{1}\right) ^{2}}\geq -\frac{ u_{n}\left( y_{2}\right) }{\left( x-y_{2}\right) ^{2}} \end{equation*} |
for x\in T_{n, l, q_{1}\left(\tau \right) }, y_{1}\in \left(c_{j}^{n}, d_{j}^{n}\right), y_{2}\in \left(d_{j-1}^{n}, c_{j}^{n}\right) when p\left(p_{1}\left(\tau \right) \right) \leq j\leq q\left(q_{1}\left(\tau \right) \right). The same inequality also holds for x\in T_{n, l, q_{1}\left(\tau \right) }, y_{1}\in \cup _{j = p\left(p_{1}\left(\tau \right) \right) }^{q\left(q_{1}\left(\tau \right) \right) }\left(c_{j}^{n}, d_{j}^{n}\right), y_{2}\in \left[ b_{K_{n}-l}^{n}, \text{ } c_{p\left(p_{1}\left(\tau \right) \right) }^{n}\right] \cap A_{n}^{-}. Moreover, by (3.25),
\begin{equation*} \left\vert \left[ b_{K_{n}-l}^{n},\text{ }c_{p\left( p_{1}\left( \tau \right) \right) }^{n}\right] \cap A_{n}^{-}\right\vert \leq \left\vert III_{\delta ,n}^{+}\right\vert \leq C, \end{equation*} |
and
\begin{equation*} \cup _{j = p\left( p_{1}\left( \tau \right) \right) }^{q\left( q_{1}\left( \tau \right) \right) }\left( d_{j-1}^{n},c_{j}^{n}\right) \subset III_{\delta ,n}^{+}, \end{equation*} |
we conclude that
\begin{eqnarray*} &&\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{\left[ b_{K_{n}-l}^{n},\text{ }c_{p\left( p_{1}\left( \tau \right) \right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+\sum\limits_{j = p\left( p_{1}\left( \tau \right) \right) }^{q\left( q_{1}\left( \tau \right) \right) }\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{c_{j}^{n}}^{d_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+\sum\limits_{j = p\left( p_{1}\left( \tau \right) \right) }^{q\left( q_{1}\left( \tau \right) \right) }\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{d_{j-1}^{n}}^{c_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx\leq 0. \end{eqnarray*} |
Therefore
\begin{eqnarray*} &&{\frac{4\pi}{\beta}}\left[J\left( \overline{u}_{n}\right) -J\left( u_{n}\right)\right] \\ & = &8\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{\mathbb{R\diagdown } T_{n,l,q_{1}\left( \tau \right) }}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ & = &8\int_{A_{2}^{-}}\int_{-\infty }^{d_{q\left( q_{1}\left( \tau \right) \right) }^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{\left[ d_{q\left( q_{1}\left( \tau \right) \right) }^{n},\text{ }c_{L_{n}}^{n} \right] \cap A_{n}^{+}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{ \left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{c_{L_{n}}^{n}}^{\infty } \frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{-\infty }^{b_{K_{n}-l}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{b_{K_{n}-l}^{n}}^{d_{q\left( q_{1}\left( \tau \right) \right) }^{n}} \frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &\int_{-\infty }^{c_{p\left( p_{1}\left( \tau \right) \right) }^{n}}\int_{d_{q\left( q_{1}\left( \tau \right) \right) }^{n}}^{M_{n,l,q_{1}\left( \tau \right) }^{{}}+d_{q\left( q_{1}\left( \tau \right) \right) }^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx+\sum\limits_{i = 0}^{l-1} \int_{-\infty }^{b_{K_{n}-l}^{n}}\int_{\rho _{K_{n}-i}^{n}}^{\sigma _{K_{n}-i}^{n}}\frac{8}{\left( x-y\right) ^{2}}dydx \\ &&+8\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{\left[ b_{K_{n}-l}^{n}, \text{ }c_{p\left( p_{1}\left( \tau \right) \right) }^{n}\right] \cap A_{n}^{-}}^{{}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx+8\sum\limits_{j = p\left( p_{1}\left( \tau \right) \right) }^{q\left( q_{1}\left( \tau \right) \right) }\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{c_{j}^{n}}^{d_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &&+8\sum\limits_{j = p\left( p_{1}\left( \tau \right) \right) }^{q\left( q_{1}\left( \tau \right) \right) }\int_{T_{n,l,q_{1}\left( \tau \right) }}\int_{d_{j-1}^{n}}^{c_{j}^{n}}\frac{u_{n}\left( x\right) u_{n}\left( y\right) }{\left( x-y\right) ^{2}}dydx \\ &\leq &8\ln \frac{M_{n,l,q_{1}\left( \tau \right) }^{{}}+d_{q\left( q_{1}\left( \tau \right) \right) }^{n}-c_{p\left( p_{1}\left( \tau \right) \right) }^{n}}{d_{q\left( q_{1}\left( \tau \right) \right) }^{n}-c_{p\left( p_{1}\left( \tau \right) \right) }^{n}}+8\sum\limits_{i = 0}^{l-1}\ln \frac{\sigma _{K_{n}-i}^{n}-b_{K_{n}-l}^{n}}{\rho _{K_{n}-i}^{n}-b_{K_{n}-l}^{n}} \\ &\rightarrow &0. \end{eqnarray*} |
Continuing this way if necessary, we can define the set S_{i} inductively by each m\in S_{i}, p_{i}\left(m\right), q_{i}\left(m\right) \in S_{i-1} such that any p_{i}\left(m\right) \leq p\leq q_{i}\left(m\right), p\in S_{i-1}^{+}, if q_{i}\left(m\right) \leq p\leq p_{i}\left(m+1\right), p\in S_{i-1}\backslash S_{i-1}^{+}. Here
\begin{eqnarray*} &&S_{i}^{+} : = \\ &&\left\{ m\in S_{i}:\sum\limits_{l_{i} = p_{i}\left( m\right) }^{q_{i}\left( m\right) }\sum\limits_{l_{i-1} = p_{i-1}\left( l_{i}\right) }^{q_{i-1}\left( l_{i}\right) }\cdots \sum\limits_{l_{1} = p\left( l_{2}\right) }^{q\left( l_{2}\right) }\left( d_{l_{1}}^{n}-c_{l_{1}}^{n}\right) > \sum\limits_{l_{i} = p_{i}\left( m\right) }^{q_{i}\left( m\right) }\sum\limits_{l_{i-1} = p_{i-1}\left( l_{i}\right) }^{q_{i-1}\left( l_{i}\right) }\cdots \sum\limits_{l_{1} = p\left( l_{2}\right) }^{q\left( l_{2}\right) }\left( c_{l_{1}}^{n}-d_{l_{1}-1}^{n}\right) \right\} . \end{eqnarray*} |
By the definition of S_{i}, we have \left\vert S_{i}\right\vert \leq \left\vert S_{i-1}\right\vert \leq \cdots \leq \left\vert S_{0}\right\vert. Since \left\vert III_{\delta, n}^{+}\right\vert is uniformly bounded and \lim \sup \left(a_{K_{n}-l+1}^{n}-b_{K_{n}-l}^{n}\right) = \infty, we would be able to find r_{n} such that S_{r_{n}} = S_{r_{n}}^{+}. Let \mu = \left\vert S_{r_{n}}\right\vert and define
\begin{equation*} \overline{u}_{n}\left( x\right) = \left\{ \begin{array}{c} -u_{n}\left( x\right) \ x\in \left[ d_{q\left( q_{1}\left( \cdots q_{r_{n}}(\mu \right) \right) }^{n},c_{L_{n}}^{n}\right] \cap A_{n}^{-} \\ u_{n}\left( x\right) \ \ \ \ \ \ \text{otherwise} \end{array} \right. . \end{equation*} |
By a similar argument, we can show that \{\overline{u}_{n}\} is a minimizing sequence which is close to \pm 1 away from a uniformly bounded interval.
Proof of the first half of Theorem 1.1.Given a minimizing sequence \left\{ u_{n}\right\}, if \lim \sup_{n}b_{K_{n}}^{n} < \infty we obtain a minimizer by Proposition 3.2. If \lim \sup b_{K_{n}}^{n} = \infty, we obtain a new minimizing sequence \left\{ \overline{u}_{n}\right\} which satisfies \lim \sup \overline{b}_{\overline{K}_{n}}^{n} < \infty by Proposition 3.3, existence then follows from Proposition 3.2.
Proof of the second half of Theorem 1.1.
Proposition 4.1. Any minimizer u_{0} of J over \mathcal{A} is a C^{2, \frac{1}{2} }\left(\mathbb{R}\right) solution of
\begin{equation*} -\alpha u_{0}^{\prime \prime }+g\left( x\right) W^{\prime }\left( u_{0}\right) +\beta \left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2} }u_{0} = 0, \end{equation*} |
where we understand the fractional operator in the sense of (1.5).
Proof. Let v_{0} = u_{0}-\eta . We write J\left(u_{0}\right) in terms of v_{0} as
\begin{eqnarray*} J\left( v_{0}+ \eta \right) & = &\frac{\alpha }{2}\int_{\mathbb{R}}\left\vert v_{0}^{\prime }+\eta ^{\prime }\right\vert ^{2}dx+\int_{\mathbb{R}} g\left( x\right) W\left( v_{0}+\eta \right) dx+\frac{\beta }{4\pi }\int_{\mathbb{R} }\int_{\mathbb{R}} \frac{\left( v_{0}\left( x\right) -v_{0}\left( y\right) \right) ^{2}}{\left( x-y\right) ^{2}}dydx \\ &&+\frac{\beta }{2\pi }\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{0}\left( x\right) -v_{0}\left( y\right) \right) \left( \eta \left( x\right) -\eta \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx. \end{eqnarray*} |
Consider now variations v_{\varepsilon } = v_{0}+\varepsilon \varphi , where \varphi is any smooth compactly supported function. Since u_{0} is a minimizer, we must have
\begin{eqnarray} 0 & = &\left. \frac{d}{d\varepsilon }J\left( v_{\varepsilon } + \eta \right) \right\vert _{\varepsilon = 0} = \int_{\mathbb{R}}\left( \alpha u_{0}^{\prime }\varphi ^{\prime }+g\left( x\right) W^{\prime }\left( v_{0}+\eta \right) \varphi \right) dx \\ && + \frac{\beta }{2\pi }\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{0}\left( x\right) -v_{0}\left( y\right) \right) \left( \varphi \left( x\right) -\varphi \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx \\ &&+\frac{\beta }{2\pi }\int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) \left( \varphi \left( x\right) -\varphi \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx. \end{eqnarray} | (4.1) |
Since v_{0}\in H^{1}\left(\mathbb{R}\right), we can define \left(- \frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}v_{0} via Fourier transform as (see e.g., [32] Proposition 3.3)
\begin{equation*} \widehat{\left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}v_{0}}\left( \xi \right) = \left\vert \xi \right\vert \widehat{v_{0}}\left( \xi \right), \end{equation*} |
and write the second term in (4.1) (see [32] Remark 3.7) as
\begin{equation*} {\frac{\beta }{2 \pi}} \int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( v_{0}\left( x\right) -v_{0}\left( y\right) \right) \left( \varphi \left( x\right) -\varphi \left( y\right) \right) }{\left( x-y\right) ^{2}} dydx = \beta \int_{\mathbb{R}} \varphi \left( x\right) \left( -\frac{d^{2}}{ dx^{2}}\right) ^{\frac{1}{2} }v_{0}\left( x\right) . \end{equation*} |
Since \eta \in C^{\infty }\left(\mathbb{R}\right), for x > 1 take \varepsilon \ll 1 such that
\begin{equation} \int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy = \int_{-\infty }^{1}\frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy\leq \frac{2}{x-1}, \end{equation} | (4.2) |
and for x < -1 take \varepsilon \ll 1 such that
\begin{equation} \int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}} dy = \int_{-1}^{\infty }\frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy\leq \frac{2}{x+1}. \end{equation} | (4.3) |
For -1\leq x\leq 1, we can write
\begin{eqnarray*} \lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon } \frac{\eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy & = &\frac{1}{2}\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert y\right\vert \geq \varepsilon }\frac{\eta \left( x+y\right) +\eta \left( x-y\right) -2\eta \left( x\right) }{y^{2}}dy \\ & = &\frac{1}{2}\int_{\mathbb{R}}\frac{\eta \left( x+y\right) +\eta \left( x-y\right) -2\eta \left( x\right) }{y^{2}}dy, \end{eqnarray*} |
where the last step follows from the fact that \eta \in C^{\infty }\left(\mathbb{\ R}\right).
For each x\in \mathbb{R} we have
\begin{eqnarray} \left\vert \int_{\mathbb{R}}\frac{\eta \left( x+y\right) +\eta \left( x-y\right) -2\eta \left( x\right) }{y^{2}}dy\right\vert &\leq &\int_{1}^{\infty }\frac{4}{y^{2}}+\int_{-\infty }^{-1}\frac{4}{y^{2}} +\left\vert \int_{-1}^{1}\frac{\eta \left( x+y\right) +\eta \left( x-y\right) -2\eta \left( x\right) }{y^{2}}dy\right\vert \\ &\leq &8+2\left\Vert D^{2}\eta \right\Vert _{L^{\infty }}. \end{eqnarray} | (4.4) |
Combining (4.2), (4.3) and (4.4), we conclude that the function
\begin{equation} \lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon } \frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy \end{equation} | (4.5) |
belongs to L^2(\mathbb{R}) . Thus the third term in (4.1) can be written as
\begin{eqnarray*} \int_{\mathbb{R}}\int_{\mathbb{R}}\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) \left( \varphi \left( x\right) -\varphi \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx & = &\lim\limits_{\varepsilon \rightarrow 0}\int_{\mathbb{R}}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\left( \eta \left( x\right) -\eta \left( y\right) \right) \left( \varphi \left( x\right) -\varphi \left( y\right) \right) }{\left( x-y\right) ^{2}}dydx \\ & = &2\int_{\mathbb{R}}\varphi \left( x\right) \lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dydx. \end{eqnarray*} |
We now introduce the notation
\begin{equation*} \left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}u_{0} : = \left( -\frac{ d^{2}}{ dx^{2}}\right) ^{\frac{1}{2}}v_{0}+\lim\limits_{\varepsilon \rightarrow 0} \frac{1}{\pi }\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy, \end{equation*} |
where the fractional operator in the right-hand side is understood via Fourier transform. Since \varphi is arbritrary, we conclude from (4.1) that u_{0} satisfies the following equation in the distributional sense:
\begin{equation} -\alpha u_{0}^{\prime \prime }+g\left( x\right) W^{\prime }\left( u_{0}\right) +\beta \left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2} }u_{0} = 0. \end{equation} | (4.6) |
Since \left\vert u_{0}\right\vert \leq 1 and v_{0} = u_{0}-\eta \in H^{1}\left(\mathbb{R}\right), we have W^{\prime }\left(u_{0}\right) \in L^{2}\left(\mathbb{R}\right) and \left(-\frac{d^{2}}{dx^{2}}\right) ^{ \frac{1}{2}}v_{0} \in L^{2}\left(\mathbb{R}\right). Thus (4.5) implies that \left(-\frac{d^{2}}{dx^{2}}\right) ^{\frac{1 }{2}}u_{0}\in L^{2}\left(\mathbb{R}\right). By elliptic estimates, we then conclude that u_{0}\in W^{2, 2}\left(\mathbb{R}\right).
Weakly differentiating (4.6) yields
\begin{equation*} -\alpha u_{0x}^{\prime \prime }+g^{\prime}\left( x\right) W^{\prime }(u_{0})+g\left( x\right) W^{^{\prime \prime }}\left( u_{0}\right) u_{0x}+\beta \left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}u_{0x} = 0 \end{equation*} |
in the sense of distributions. Here we used the facts that
\begin{equation} \frac{d}{dx}\left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}v_{0} = \left( - \frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}v_{0x} \end{equation} | (4.7) |
and
\begin{equation} \frac{d}{dx}\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy = \lim\limits_{\varepsilon \rightarrow 0} \int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\eta ^{\prime }\left( x\right) -\eta ^{\prime }\left( y\right) }{\left( x-y\right) ^{2}}dy, \end{equation} | (4.8) |
which follow from the properties of Fourier transform of Sobolev functions and the following calculation:
\begin{eqnarray*} &&\frac{d}{dx}\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta \left( x\right) -\eta \left( y\right) }{\left( x-y\right) ^{2}}dy \\ & = &\lim\limits_{h\rightarrow 0}\frac{1}{h}\left[ \lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x+h-y\right\vert \geq \varepsilon }\frac{\eta \left( x+h\right) -\eta \left( y\right) }{\left( x+h-y\right) ^{2}} dy-\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta \left( x\right) -\eta \left( y\right) }{ \left( x-y\right) ^{2}}dy\right] \\ & = &\lim\limits_{h\rightarrow 0}\frac{1}{h}\left[ \lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-z\right\vert \geq \varepsilon }\frac{\eta \left( x+h\right) -\eta \left( z+h\right) }{\left( x-z\right) ^{2}} dz-\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta \left( x\right) -\eta \left( y\right) }{ \left( x-y\right) ^{2}}dy\right] \\ & = &\lim\limits_{h\rightarrow 0}\frac{1}{h}\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\eta \left( x+h\right) -\eta \left( x\right) -\eta \left( y+h\right) +\eta \left( y\right) }{\left( x-y\right) ^{2}}dy \\ & = &\lim\limits_{\varepsilon \rightarrow 0}\int_{\left\vert x-y\right\vert \geq \varepsilon }\lim\limits_{h\rightarrow 0}\frac{1}{h}\left[ \frac{\eta \left( x+h\right) -\eta \left( x\right) -\eta \left( y+h\right) +\eta \left( y\right) }{\left( x-y\right) ^{2}} \right] dy \\ & = &\lim\limits_{\varepsilon \rightarrow 0}\frac{1}{\pi }\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\eta ^{\prime }\left( x\right) -\eta ^{\prime }\left( y\right) }{\left( x-y\right) ^{2}}dy. \end{eqnarray*} |
The same arguments as in the case of (4.5) can be used to prove that the function
\begin{equation*} \lim\limits_{\varepsilon \rightarrow 0}\frac{1}{\pi }\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{\left( \eta ^{\prime }\left( x\right) -\eta ^{\prime }\left( y\right) \right) }{\left( x-y\right) ^{2}}dy \end{equation*} |
belongs to L^2(\mathbb{R}) as well. Define
\begin{equation*} \left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}u_{0x} = \left( -\frac{d^{2} }{dx^{2}}\right) ^{\frac{1}{2}}v_{0x}+\frac{d}{dx}\lim\limits_{\varepsilon \rightarrow 0}\frac{1}{\pi }\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ \eta^{\prime }\left( x\right) -\eta^{\prime }\left( y\right) }{ \left( x-y\right) ^{2}}dy. \end{equation*} |
Since W\in C^{2, 1}\left(\mathbb{R}\right), we have g^{\prime } W^{\prime }(u_{0})+gW^{^{\prime \prime }}\left(u_{0}\right) u_{0x}\in L^{2}\left(\mathbb{R}\right), \left(-\frac{d^{2}}{dx^{2}}\right) ^{ \frac{1}{2}}v_{0x}\in L^{2}\left(\mathbb{R}\right), we have \left(- \frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}u_{0x}\in L^{2}\left(\mathbb{R} \right). Thus elliptic estimates imply u_{0x}\in W^{2, 2}\left(\mathbb{R} \right), i.e., u_{0}\in W^{3, 2}\left(\mathbb{R}\right) \subset C^{2, \frac{1}{2}}\left(\mathbb{R}\right). Thus u_{0} is a classical solution of (4.6). Moreover, since u_{0}\in C^{2, \frac{1 }{2} }\left(\mathbb{R}\right), we can write
\begin{equation*} \left( -\frac{d^{2}}{dx^{2}}\right) ^{\frac{1}{2}}u_{0}\left( x\right) = \lim\limits_{\varepsilon \rightarrow 0}\frac{1}{\pi }\int_{\left\vert x-y\right\vert \geq \varepsilon }\frac{ u_{0}\left( x\right) -u_{0}\left( y\right) }{\left( x-y\right) ^{2}}dy. \end{equation*} |
The second half of Theorem 1.1 follows.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
We thank the referee for careful reading of our manuscript and many helpful suggestions for improving this paper. In particular, the referee pointed out Remark 2.2 when g(x) is nondegenerate. The work of CM was supported, in part, by NSF via grants DMS-1614948 and DMS-1908709. XY's research was sponsored by a Research Excellence Grant from University of Connecticut, CLAS Dean's summer research grant and Simons Collaboration Grant #947054.
The authors declare no conflict of interest.
[1] |
S. B. Angenent, J. Mallet-Paret, L. A. Peletie, Stable transition layers in a semilinear boundary value problem, J. Differ. Equations, 67 (1987), 212–242. https://doi.org/10.1016/0022-0396(87)90147-1 doi: 10.1016/0022-0396(87)90147-1
![]() |
[2] |
G. Alberti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9–33. https://doi.org/10.1023/A:1010602715526 doi: 10.1023/A:1010602715526
![]() |
[3] |
F. Alessio, C. Gui, P. Montecchiari, Saddle solutions to Allen-Cahn equations in doubly periodic media, Indiana U. Math. J., 65 (2016), 199–221. https://doi.org/10.1512/iumj.2016.65.5772 doi: 10.1512/iumj.2016.65.5772
![]() |
[4] |
F. Alessio, L. Jeanjean, P. Montecchiari, Stationary layered solutions in \mathbb{R}^{2} for a class of non autonomous Allen-Cahn equations, Calc. Var., 11 (2000), 177–202. https://doi.org/10.1007/s005260000036 doi: 10.1007/s005260000036
![]() |
[5] |
F. Alessio, L. Jeanjean, P. Montecchiari, Existence of infinitely many stationary layered solutions in \mathbb{R}^{2} for a class of periodic Allen-Cahn equations, Commun. Part. Diff. Eq., 27 (2002), 1537–1574. https://doi.org/10.1081/PDE-120005848 doi: 10.1081/PDE-120005848
![]() |
[6] |
F. Alessio, P. Montecchiari, Entire solutions in \mathbb{R }^{2} for a class of Allen-Cahn equations, ESIAM: COCV, 11 (2005), 633–672. https://doi.org/10.1051/cocv:2005023 doi: 10.1051/cocv:2005023
![]() |
[7] |
F. Alessio, P. Montecchiari, Brake orbits type solutions to some class of semiliear elliptic equations, Calc. Var., 30 (2007), 51–83. https://doi.org/10.1007/s00526-006-0078-1 doi: 10.1007/s00526-006-0078-1
![]() |
[8] |
F. Alessio, P. Montecchiari, Layered solutions with multiple asymptotes for non autonomous Allen-Cahn equations in \mathbb{R} ^{3}, Calc. Var., 46 (2013), 591–622. https://doi.org/10.1007/s00526-012-0495-2 doi: 10.1007/s00526-012-0495-2
![]() |
[9] |
C. O. Alves, V. Ambrosio, C. E. Torres Ledesma, Existence of heteroclinic solutions for a class of problems involving the fractional Laplacian, Anal. Appl., 17 (2019), 425–451. https://doi.org/10.1142/S0219530518500252 doi: 10.1142/S0219530518500252
![]() |
[10] |
L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in three dimensions and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725–739. https://doi.org/10.1090/S0894-0347-00-00345-3 doi: 10.1090/S0894-0347-00-00345-3
![]() |
[11] |
V. Bangert, On minimal laminations on the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95–138. https://doi.org/10.1016/S0294-1449(16)30328-6 doi: 10.1016/S0294-1449(16)30328-6
![]() |
[12] |
M. Barlow, R. Bass, C. Gui, The Liouville property and a conjecture of De Giorgi, Commun. Pure Appl. Math., 53 (2000), 1007–1038. https://doi.org/10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L doi: 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L
![]() |
[13] |
H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry for some bounded entire solution of some elliptic equations, Duke Math. J., 103 (2000), 375–396. https://doi.org/10.1215/S0012-7094-00-10331-6 doi: 10.1215/S0012-7094-00-10331-6
![]() |
[14] |
U. Bessi, Many solutions of elliptic problems on \mathbb{R} ^{n} of irrational slope, Commun. Part. Diff. Eq., 30 (2005), 1773–1804. https://doi.org/10.1080/03605300500299992 doi: 10.1080/03605300500299992
![]() |
[15] |
U. Bessi, Slope-changing solutions of elliptic problems on \mathbb{R}^{n}, Nonlinear Anal., 68 (2008), 3923–3947. https://doi.org/10.1016/j.na.2007.04.031 doi: 10.1016/j.na.2007.04.031
![]() |
[16] |
S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators, Commun. Part. Diff. Eq., 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908
![]() |
[17] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-28739-3 |
[18] |
J. Byeon, P. H. Rabinowitz, On a phase transition model, Calc. Var., 47 (2013), 1–23. https://doi.org/10.1007/s00526-012-0507-2 doi: 10.1007/s00526-012-0507-2
![]() |
[19] |
J. Byeon, P. H. Rabinowitz, Asymptotic behavior of minima and mountain pass solutions for a class of Allen-Cahn models, Commun. Inf. Syst., 13 (2013), 79–95. https://doi.org/10.4310/CIS.2013.v13.n1.a3 doi: 10.4310/CIS.2013.v13.n1.a3
![]() |
[20] |
J. Byeon, P. H. Rabinowitz, Solutions of higer topological type for an Allen-Cahn model equation, J. Fixed Point Theory Appl., 15 (2014), 379–404. https://doi.org/10.1007/s11784-014-0190-3 doi: 10.1007/s11784-014-0190-3
![]() |
[21] |
J. Byeon, P. H. Rabinowitz, Unbounded solutions for a periodic phase transition model, J. Differ. Equations, 260 (2016), 1126–1153. https://doi.org/10.1016/j.jde.2015.09.024 doi: 10.1016/j.jde.2015.09.024
![]() |
[22] |
X. Cabré, E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian, Discrete Contin. Dyn. Syst., 28 (2010), 1179–1206. https://doi.org/10.3934/dcds.2010.28.1179 doi: 10.3934/dcds.2010.28.1179
![]() |
[23] |
X. Cabré, E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var., 49 (2014), 233–269. https://doi.org/10.1007/s00526-012-0580-6 doi: 10.1007/s00526-012-0580-6
![]() |
[24] |
X. Cabré, J. Serra, An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions, Nonlinear Anal., 137 (2016), 246–265. https://doi.org/10.1016/j.na.2015.12.014 doi: 10.1016/j.na.2015.12.014
![]() |
[25] |
X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23–53. https://doi.org/10.1016/j.anihpc.2013.02.001 doi: 10.1016/j.anihpc.2013.02.001
![]() |
[26] |
X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ; existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911–941. https://doi.org/10.1090/S0002-9947-2014-05906-0 doi: 10.1090/S0002-9947-2014-05906-0
![]() |
[27] |
X. Cabré, J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Commun. Pure Appl. Math., 58 (2005), 1678–1732. https://doi.org/10.1002/cpa.20093 doi: 10.1002/cpa.20093
![]() |
[28] |
L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306
![]() |
[29] |
K.-S. Chen, C. Muratov, X. Yan, Layer solutions of a one-dimensional nonlocal model of Ginzburg-Landau type, Math. Model. Nat. Phenom., 12 (2017), 68–90. https://doi.org/10.1051/mmnp/2017068 doi: 10.1051/mmnp/2017068
![]() |
[30] |
M. Cozzi, S. Dipierro, E. Valdinoci, Nonlocal phase transitions in homogeneous and periodic media, J. Fixed Point Theory Appl., 19 (2017), 387–405. https://doi.org/10.1007/s11784-016-0359-z doi: 10.1007/s11784-016-0359-z
![]() |
[31] |
M. del Pino, M. Kowalczyk, J. Wei, On De Giorgi's conjecture in dimension N\geq 9, Ann. Math., 174 (2011), 1485–1569. https://doi.org/10.4007/annals.2011.174.3.3 doi: 10.4007/annals.2011.174.3.3
![]() |
[32] |
E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004
![]() |
[33] |
W. Ding, F. Hamel, X. Zhao, Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat, Indiana Univ. Math. J., 66 (2017), 1189–1265. https://doi.org/10.1512/iumj.2017.66.6070 doi: 10.1512/iumj.2017.66.6070
![]() |
[34] |
S. Dipierro, A. Farina, E. Valdinoci, A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime, Calc. Var., 57 (2018), 15. https://doi.org/10.1007/s00526-017-1295-5 doi: 10.1007/s00526-017-1295-5
![]() |
[35] |
S. Dipierro, S. Patrizi, E. Valdinoci, Chaotic orbits for systems of nonlocal equations, Commun. Math. Phys., 349 (2017), 583–626. https://doi.org/10.1007/s00220-016-2713-9 doi: 10.1007/s00220-016-2713-9
![]() |
[36] |
S. Dipierro, S. Patrizi, E. Valdinoci, Heteroclinic connections for nonlocal equations, Math. Mod. Meth. Appl. Sci., 29 (2019), 2585–2636. https://doi.org/10.1142/S0218202519500556 doi: 10.1142/S0218202519500556
![]() |
[37] |
S. Dipierro, J. Serra, E. Valdinoci, Improvement of flatness for nonlocal phase transitions, Amer. J. Math., 142 (2020), 1083–1160. https://doi.org/10.1353/ajm.2020.0032 doi: 10.1353/ajm.2020.0032
![]() |
[38] |
N. Dirr, N. K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces Free Bound., 8 (2006), 79–109. https://doi.org/10.4171/IFB/136 doi: 10.4171/IFB/136
![]() |
[39] |
Z. Du, C. Gui, Y. Sire, J. Wei, Layered solutions for a fractional inhomogeneous Allen-Cahn equation, Nonlinear Differ. Equ. Appl., 23 (2016), 29. https://doi.org/10.1007/s00030-016-0384-z doi: 10.1007/s00030-016-0384-z
![]() |
[40] | A. Farina, Symmetry for solutions of semilinear elliptic equations in \mathbb{R}^{N} and related conjecturs, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Matem. Appl., 10 (1999), 255–265. |
[41] |
A. Figalli, J. Serra, On stable solution for boundary reactions: a De Giorgi type result in dimension 4+1, Invent. Math., 219 (2020), 153–177. https://doi.org/10.1007/s00222-019-00904-2 doi: 10.1007/s00222-019-00904-2
![]() |
[42] |
N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481–491. https://doi.org/10.1007/s002080050196 doi: 10.1007/s002080050196
![]() |
[43] |
N. Ghoussoub, C. Gui, On De Giorgi's conjecture in dimensions 4 and 5, Ann. Math., 157 (2003), 313–334. https://doi.org/10.4007/annals.2003.157.313 doi: 10.4007/annals.2003.157.313
![]() |
[44] |
J. K. Hale, K. Sakamoto, Existence and stability of transition layers, Japan J. Appl. Math., 5 (1988), 367–405. https://doi.org/10.1007/BF03167908 doi: 10.1007/BF03167908
![]() |
[45] |
Y. Hu, Layer solutions for a class of semilinear elliptic equations involving fractional Laplacians, Bound. Value Probl., 2014 (2014), 41. https://doi.org/10.1186/1687-2770-2014-41 doi: 10.1186/1687-2770-2014-41
![]() |
[46] |
J. P. Keener, Propagation of waves in an excitable medium with discrete release sites, SIAM. J. Appl. Math., 61 (2000), 317–334. https://doi.org/10.1137/S0036139999350810 doi: 10.1137/S0036139999350810
![]() |
[47] |
J. Lu, V. Moroz, C. B. Muratov, Orbital-free density functional theory of out-of-plane charge screening in graphene, J. Nonlinear Sci., 25 (2015), 1391–1430. https://doi.org/10.1007/s00332-015-9259-4 doi: 10.1007/s00332-015-9259-4
![]() |
[48] |
J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 3 (1986), 229–272. https://doi.org/10.1016/S0294-1449(16)30387-0 doi: 10.1016/S0294-1449(16)30387-0
![]() |
[49] |
C. B. Muratov, X. Yan, Uniqueness of one-dimensional Néel wall profiles, Proc. R. Soc. A, 472 (2016), 20150762. https://doi.org/10.1098/rspa.2015.0762 doi: 10.1098/rspa.2015.0762
![]() |
[50] |
K. Nakashima, Stable transition layers in a balanced bistable equation, Differential Integral Equations, 13 (2000), 1025–1038. https://doi.org/10.57262/die/1356061208 doi: 10.57262/die/1356061208
![]() |
[51] |
K. Nakashima, Multi-layered solutions for a spatially inhomogeneous Allen-Cahn equations, J. Differ. Equations, 191 (2003), 234–276. https://doi.org/10.1016/S0022-0396(02)00181-X doi: 10.1016/S0022-0396(02)00181-X
![]() |
[52] |
K. Nakashima, K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 20 (2003), 107–143. https://doi.org/10.1016/S0294-1449(02)00008-2 doi: 10.1016/S0294-1449(02)00008-2
![]() |
[53] |
G. Palatucci, O. Savin, E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Annali di Matematica, 192 (2013), 673–718. https://doi.org/10.1007/s10231-011-0243-9 doi: 10.1007/s10231-011-0243-9
![]() |
[54] |
P. H. Rabinowitz, Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113–127. https://doi.org/10.1007/s00032-011-0139-6 doi: 10.1007/s00032-011-0139-6
![]() |
[55] |
P. H. Rabinowitz, E. Stredulinsky, Mixed states for an Allen-Cahn type equation, Commun. Pure Appl. Math., 56 (2003), 1078–1134. https://doi.org/10.1002/cpa.10087 doi: 10.1002/cpa.10087
![]() |
[56] |
P. H. Rabinowitz, E. Stredulinsky, Mixed states for an Allen-Cahn type equation Ⅱ, Calc. Var., 21 (2004), 157–207. https://doi.org/10.1007/s00526-003-0251-8 doi: 10.1007/s00526-003-0251-8
![]() |
[57] |
P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and Bangert, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 21 (2004), 673–688. https://doi.org/10.1016/j.anihpc.2003.10.002 doi: 10.1016/j.anihpc.2003.10.002
![]() |
[58] |
P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and Bangert Ⅱ, Adv. Nonlinear Stud., 4 (2004), 377–396. https://doi.org/10.1515/ans-2004-0402 doi: 10.1515/ans-2004-0402
![]() |
[59] | P. H. Rabinowitz, E. Stredulinsky, Extensions of Moser-Bangert theory: locally minimal solutions, Boston, MA: Birkhäuser, 2011. https://doi.org/10.1007/978-0-8176-8117-3 |
[60] |
O. Savin, Regularity of flat level sets in phase transitions, Ann. Math., 169 (2009), 41–78. https://doi.org/10.4007/annals.2009.169.41 doi: 10.4007/annals.2009.169.41
![]() |
[61] |
O. Savin, Some remarks on the classification of global solutions with asymptotically flat level sets, Calc. Var., 56 (2017), 141. https://doi.org/10.1007/s00526-017-1228-3 doi: 10.1007/s00526-017-1228-3
![]() |
[62] |
O. Savin, Rigidity of minimizers in nonlocal phase transitions, Anal. PDE, 11 (2018), 1881–1900. https://doi.org/10.2140/apde.2018.11.1881 doi: 10.2140/apde.2018.11.1881
![]() |
[63] |
Y. Sire, E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842–1864. https://doi.org/10.1016/j.jfa.2009.01.020 doi: 10.1016/j.jfa.2009.01.020
![]() |
[64] | P. R. Stinga, Fractional powers of second order partial differential operators: extension problem and regularity theory, Ph. D. Thesis, Universidad Autónoma de Madrid. |
[65] |
J. X. Xin, Existence and nonexistence of travelling waves and reaction-diffusion front propagation in periodic media, J. Stat. Phys., 73 (1993), 893–926. https://doi.org/10.1007/BF01052815 doi: 10.1007/BF01052815
![]() |
[66] | Z. Zhou, Existence of infinitely many solutions for a class of Allen-Cahn Equations in \mathbb{R}^{2}, Osaka J. Math., 48 (2011), 51–67. |