We study layered solutions in a one-dimensional version of the scalar Ginzburg-Landau equation that involves a mixture of a second spatial derivative and a fractional half-derivative, together with a periodically modulated nonlinearity. This equation appears as the Euler-Lagrange equation of a suitably renormalized fractional Ginzburg-Landau energy with a double-well potential that is multiplied by a 1-periodically varying nonnegative factor $ g(x) $ with $ \int_0^1 \frac{1}{g(x)} dx < \infty. $ A priori this energy is not bounded below due to the presence of a nonlocal term in the energy. Nevertheless, through a careful analysis of a minimizing sequence we prove existence of global energy minimizers that connect the two wells at infinity. These minimizers are shown to be the classical solutions of the associated nonlocal Ginzburg-Landau type equation.
Citation: Ko-Shin Chen, Cyrill Muratov, Xiaodong Yan. Layered solutions for a nonlocal Ginzburg-Landau model with periodic modulation[J]. Mathematics in Engineering, 2023, 5(5): 1-52. doi: 10.3934/mine.2023090
We study layered solutions in a one-dimensional version of the scalar Ginzburg-Landau equation that involves a mixture of a second spatial derivative and a fractional half-derivative, together with a periodically modulated nonlinearity. This equation appears as the Euler-Lagrange equation of a suitably renormalized fractional Ginzburg-Landau energy with a double-well potential that is multiplied by a 1-periodically varying nonnegative factor $ g(x) $ with $ \int_0^1 \frac{1}{g(x)} dx < \infty. $ A priori this energy is not bounded below due to the presence of a nonlocal term in the energy. Nevertheless, through a careful analysis of a minimizing sequence we prove existence of global energy minimizers that connect the two wells at infinity. These minimizers are shown to be the classical solutions of the associated nonlocal Ginzburg-Landau type equation.
[1] | S. B. Angenent, J. Mallet-Paret, L. A. Peletie, Stable transition layers in a semilinear boundary value problem, J. Differ. Equations, 67 (1987), 212–242. https://doi.org/10.1016/0022-0396(87)90147-1 doi: 10.1016/0022-0396(87)90147-1 |
[2] | G. Alberti, L. Ambrosio, X. Cabré, On a long-standing conjecture of E. De Giorgi: symmetry in 3D for general nonlinearities and a local minimality property, Acta Appl. Math., 65 (2001), 9–33. https://doi.org/10.1023/A:1010602715526 doi: 10.1023/A:1010602715526 |
[3] | F. Alessio, C. Gui, P. Montecchiari, Saddle solutions to Allen-Cahn equations in doubly periodic media, Indiana U. Math. J., 65 (2016), 199–221. https://doi.org/10.1512/iumj.2016.65.5772 doi: 10.1512/iumj.2016.65.5772 |
[4] | F. Alessio, L. Jeanjean, P. Montecchiari, Stationary layered solutions in $\mathbb{R}^{2}$ for a class of non autonomous Allen-Cahn equations, Calc. Var., 11 (2000), 177–202. https://doi.org/10.1007/s005260000036 doi: 10.1007/s005260000036 |
[5] | F. Alessio, L. Jeanjean, P. Montecchiari, Existence of infinitely many stationary layered solutions in $\mathbb{R}^{2}$ for a class of periodic Allen-Cahn equations, Commun. Part. Diff. Eq., 27 (2002), 1537–1574. https://doi.org/10.1081/PDE-120005848 doi: 10.1081/PDE-120005848 |
[6] | F. Alessio, P. Montecchiari, Entire solutions in $\mathbb{R }^{2}$ for a class of Allen-Cahn equations, ESIAM: COCV, 11 (2005), 633–672. https://doi.org/10.1051/cocv:2005023 doi: 10.1051/cocv:2005023 |
[7] | F. Alessio, P. Montecchiari, Brake orbits type solutions to some class of semiliear elliptic equations, Calc. Var., 30 (2007), 51–83. https://doi.org/10.1007/s00526-006-0078-1 doi: 10.1007/s00526-006-0078-1 |
[8] | F. Alessio, P. Montecchiari, Layered solutions with multiple asymptotes for non autonomous Allen-Cahn equations in $\mathbb{R} ^{3}$, Calc. Var., 46 (2013), 591–622. https://doi.org/10.1007/s00526-012-0495-2 doi: 10.1007/s00526-012-0495-2 |
[9] | C. O. Alves, V. Ambrosio, C. E. Torres Ledesma, Existence of heteroclinic solutions for a class of problems involving the fractional Laplacian, Anal. Appl., 17 (2019), 425–451. https://doi.org/10.1142/S0219530518500252 doi: 10.1142/S0219530518500252 |
[10] | L. Ambrosio, X. Cabré, Entire solutions of semilinear elliptic equations in three dimensions and a conjecture of De Giorgi, J. Amer. Math. Soc., 13 (2000), 725–739. https://doi.org/10.1090/S0894-0347-00-00345-3 doi: 10.1090/S0894-0347-00-00345-3 |
[11] | V. Bangert, On minimal laminations on the torus, Ann. Inst. H. Poincaré Anal. Non Linéaire, 6 (1989), 95–138. https://doi.org/10.1016/S0294-1449(16)30328-6 doi: 10.1016/S0294-1449(16)30328-6 |
[12] | M. Barlow, R. Bass, C. Gui, The Liouville property and a conjecture of De Giorgi, Commun. Pure Appl. Math., 53 (2000), 1007–1038. https://doi.org/10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L doi: 10.1002/1097-0312(200008)53:8<1007::AID-CPA3>3.3.CO;2-L |
[13] | H. Berestycki, F. Hamel, R. Monneau, One-dimensional symmetry for some bounded entire solution of some elliptic equations, Duke Math. J., 103 (2000), 375–396. https://doi.org/10.1215/S0012-7094-00-10331-6 doi: 10.1215/S0012-7094-00-10331-6 |
[14] | U. Bessi, Many solutions of elliptic problems on $\mathbb{R} ^{n}$ of irrational slope, Commun. Part. Diff. Eq., 30 (2005), 1773–1804. https://doi.org/10.1080/03605300500299992 doi: 10.1080/03605300500299992 |
[15] | U. Bessi, Slope-changing solutions of elliptic problems on $ \mathbb{R}^{n}$, Nonlinear Anal., 68 (2008), 3923–3947. https://doi.org/10.1016/j.na.2007.04.031 doi: 10.1016/j.na.2007.04.031 |
[16] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators, Commun. Part. Diff. Eq., 47 (2022), 585–629. https://doi.org/10.1080/03605302.2021.1998908 doi: 10.1080/03605302.2021.1998908 |
[17] | C. Bucur, E. Valdinoci, Nonlocal diffusion and applications, Cham: Springer, 2016. https://doi.org/10.1007/978-3-319-28739-3 |
[18] | J. Byeon, P. H. Rabinowitz, On a phase transition model, Calc. Var., 47 (2013), 1–23. https://doi.org/10.1007/s00526-012-0507-2 doi: 10.1007/s00526-012-0507-2 |
[19] | J. Byeon, P. H. Rabinowitz, Asymptotic behavior of minima and mountain pass solutions for a class of Allen-Cahn models, Commun. Inf. Syst., 13 (2013), 79–95. https://doi.org/10.4310/CIS.2013.v13.n1.a3 doi: 10.4310/CIS.2013.v13.n1.a3 |
[20] | J. Byeon, P. H. Rabinowitz, Solutions of higer topological type for an Allen-Cahn model equation, J. Fixed Point Theory Appl., 15 (2014), 379–404. https://doi.org/10.1007/s11784-014-0190-3 doi: 10.1007/s11784-014-0190-3 |
[21] | J. Byeon, P. H. Rabinowitz, Unbounded solutions for a periodic phase transition model, J. Differ. Equations, 260 (2016), 1126–1153. https://doi.org/10.1016/j.jde.2015.09.024 doi: 10.1016/j.jde.2015.09.024 |
[22] | X. Cabré, E. Cinti, Energy estimates and 1-D symmetry for nonlinear equations involving the half-Laplacian, Discrete Contin. Dyn. Syst., 28 (2010), 1179–1206. https://doi.org/10.3934/dcds.2010.28.1179 doi: 10.3934/dcds.2010.28.1179 |
[23] | X. Cabré, E. Cinti, Sharp energy estimates for nonlinear fractional diffusion equations, Calc. Var., 49 (2014), 233–269. https://doi.org/10.1007/s00526-012-0580-6 doi: 10.1007/s00526-012-0580-6 |
[24] | X. Cabré, J. Serra, An extension problem for sums of fractional Laplacians and 1-D symmetry of phase transitions, Nonlinear Anal., 137 (2016), 246–265. https://doi.org/10.1016/j.na.2015.12.014 doi: 10.1016/j.na.2015.12.014 |
[25] | X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians Ⅰ: regularity, maximum principles, and Hamiltonian estimates, Ann. Inst. H. Poincaré Anal. Non Linéaire, 31 (2014), 23–53. https://doi.org/10.1016/j.anihpc.2013.02.001 doi: 10.1016/j.anihpc.2013.02.001 |
[26] | X. Cabré, Y. Sire, Nonlinear equations for fractional Laplacians Ⅱ; existence, uniqueness, and qualitative properties of solutions, Trans. Amer. Math. Soc., 367 (2015), 911–941. https://doi.org/10.1090/S0002-9947-2014-05906-0 doi: 10.1090/S0002-9947-2014-05906-0 |
[27] | X. Cabré, J. Solà-Morales, Layer solutions in a half-space for boundary reactions, Commun. Pure Appl. Math., 58 (2005), 1678–1732. https://doi.org/10.1002/cpa.20093 doi: 10.1002/cpa.20093 |
[28] | L. Caffarelli, L. Silvestre, An extension problem related to the fractional Laplacian, Commun. Part. Diff. Eq., 32 (2007), 1245–1260. https://doi.org/10.1080/03605300600987306 doi: 10.1080/03605300600987306 |
[29] | K.-S. Chen, C. Muratov, X. Yan, Layer solutions of a one-dimensional nonlocal model of Ginzburg-Landau type, Math. Model. Nat. Phenom., 12 (2017), 68–90. https://doi.org/10.1051/mmnp/2017068 doi: 10.1051/mmnp/2017068 |
[30] | M. Cozzi, S. Dipierro, E. Valdinoci, Nonlocal phase transitions in homogeneous and periodic media, J. Fixed Point Theory Appl., 19 (2017), 387–405. https://doi.org/10.1007/s11784-016-0359-z doi: 10.1007/s11784-016-0359-z |
[31] | M. del Pino, M. Kowalczyk, J. Wei, On De Giorgi's conjecture in dimension $N\geq 9$, Ann. Math., 174 (2011), 1485–1569. https://doi.org/10.4007/annals.2011.174.3.3 doi: 10.4007/annals.2011.174.3.3 |
[32] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. https://doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[33] | W. Ding, F. Hamel, X. Zhao, Bistable pulsating fronts for reaction-diffusion equations in a periodic habitat, Indiana Univ. Math. J., 66 (2017), 1189–1265. https://doi.org/10.1512/iumj.2017.66.6070 doi: 10.1512/iumj.2017.66.6070 |
[34] | S. Dipierro, A. Farina, E. Valdinoci, A three-dimensional symmetry result for a phase transition equation in the genuinely nonlocal regime, Calc. Var., 57 (2018), 15. https://doi.org/10.1007/s00526-017-1295-5 doi: 10.1007/s00526-017-1295-5 |
[35] | S. Dipierro, S. Patrizi, E. Valdinoci, Chaotic orbits for systems of nonlocal equations, Commun. Math. Phys., 349 (2017), 583–626. https://doi.org/10.1007/s00220-016-2713-9 doi: 10.1007/s00220-016-2713-9 |
[36] | S. Dipierro, S. Patrizi, E. Valdinoci, Heteroclinic connections for nonlocal equations, Math. Mod. Meth. Appl. Sci., 29 (2019), 2585–2636. https://doi.org/10.1142/S0218202519500556 doi: 10.1142/S0218202519500556 |
[37] | S. Dipierro, J. Serra, E. Valdinoci, Improvement of flatness for nonlocal phase transitions, Amer. J. Math., 142 (2020), 1083–1160. https://doi.org/10.1353/ajm.2020.0032 doi: 10.1353/ajm.2020.0032 |
[38] | N. Dirr, N. K. Yip, Pinning and de-pinning phenomena in front propagation in heterogeneous media, Interfaces Free Bound., 8 (2006), 79–109. https://doi.org/10.4171/IFB/136 doi: 10.4171/IFB/136 |
[39] | Z. Du, C. Gui, Y. Sire, J. Wei, Layered solutions for a fractional inhomogeneous Allen-Cahn equation, Nonlinear Differ. Equ. Appl., 23 (2016), 29. https://doi.org/10.1007/s00030-016-0384-z doi: 10.1007/s00030-016-0384-z |
[40] | A. Farina, Symmetry for solutions of semilinear elliptic equations in $\mathbb{R}^{N}$ and related conjecturs, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei Matem. Appl., 10 (1999), 255–265. |
[41] | A. Figalli, J. Serra, On stable solution for boundary reactions: a De Giorgi type result in dimension 4+1, Invent. Math., 219 (2020), 153–177. https://doi.org/10.1007/s00222-019-00904-2 doi: 10.1007/s00222-019-00904-2 |
[42] | N. Ghoussoub, C. Gui, On a conjecture of De Giorgi and some related problems, Math. Ann., 311 (1998), 481–491. https://doi.org/10.1007/s002080050196 doi: 10.1007/s002080050196 |
[43] | N. Ghoussoub, C. Gui, On De Giorgi's conjecture in dimensions 4 and 5, Ann. Math., 157 (2003), 313–334. https://doi.org/10.4007/annals.2003.157.313 doi: 10.4007/annals.2003.157.313 |
[44] | J. K. Hale, K. Sakamoto, Existence and stability of transition layers, Japan J. Appl. Math., 5 (1988), 367–405. https://doi.org/10.1007/BF03167908 doi: 10.1007/BF03167908 |
[45] | Y. Hu, Layer solutions for a class of semilinear elliptic equations involving fractional Laplacians, Bound. Value Probl., 2014 (2014), 41. https://doi.org/10.1186/1687-2770-2014-41 doi: 10.1186/1687-2770-2014-41 |
[46] | J. P. Keener, Propagation of waves in an excitable medium with discrete release sites, SIAM. J. Appl. Math., 61 (2000), 317–334. https://doi.org/10.1137/S0036139999350810 doi: 10.1137/S0036139999350810 |
[47] | J. Lu, V. Moroz, C. B. Muratov, Orbital-free density functional theory of out-of-plane charge screening in graphene, J. Nonlinear Sci., 25 (2015), 1391–1430. https://doi.org/10.1007/s00332-015-9259-4 doi: 10.1007/s00332-015-9259-4 |
[48] | J. Moser, Minimal solutions of variational problems on a torus, Ann. Inst. H. Poincaré C Anal. Non Linéaire, 3 (1986), 229–272. https://doi.org/10.1016/S0294-1449(16)30387-0 doi: 10.1016/S0294-1449(16)30387-0 |
[49] | C. B. Muratov, X. Yan, Uniqueness of one-dimensional Néel wall profiles, Proc. R. Soc. A, 472 (2016), 20150762. https://doi.org/10.1098/rspa.2015.0762 doi: 10.1098/rspa.2015.0762 |
[50] | K. Nakashima, Stable transition layers in a balanced bistable equation, Differential Integral Equations, 13 (2000), 1025–1038. https://doi.org/10.57262/die/1356061208 doi: 10.57262/die/1356061208 |
[51] | K. Nakashima, Multi-layered solutions for a spatially inhomogeneous Allen-Cahn equations, J. Differ. Equations, 191 (2003), 234–276. https://doi.org/10.1016/S0022-0396(02)00181-X doi: 10.1016/S0022-0396(02)00181-X |
[52] | K. Nakashima, K. Tanaka, Clustering layers and boundary layers in spatially inhomogeneous phase transition problems, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 20 (2003), 107–143. https://doi.org/10.1016/S0294-1449(02)00008-2 doi: 10.1016/S0294-1449(02)00008-2 |
[53] | G. Palatucci, O. Savin, E. Valdinoci, Local and global minimizers for a variational energy involving a fractional norm, Annali di Matematica, 192 (2013), 673–718. https://doi.org/10.1007/s10231-011-0243-9 doi: 10.1007/s10231-011-0243-9 |
[54] | P. H. Rabinowitz, Single and multitransition solutions for a family of semilinear elliptic PDE's, Milan J. Math., 79 (2011), 113–127. https://doi.org/10.1007/s00032-011-0139-6 doi: 10.1007/s00032-011-0139-6 |
[55] | P. H. Rabinowitz, E. Stredulinsky, Mixed states for an Allen-Cahn type equation, Commun. Pure Appl. Math., 56 (2003), 1078–1134. https://doi.org/10.1002/cpa.10087 doi: 10.1002/cpa.10087 |
[56] | P. H. Rabinowitz, E. Stredulinsky, Mixed states for an Allen-Cahn type equation Ⅱ, Calc. Var., 21 (2004), 157–207. https://doi.org/10.1007/s00526-003-0251-8 doi: 10.1007/s00526-003-0251-8 |
[57] | P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and Bangert, Ann. Inst. H. Poincaré Anal. Nonlinéaire, 21 (2004), 673–688. https://doi.org/10.1016/j.anihpc.2003.10.002 doi: 10.1016/j.anihpc.2003.10.002 |
[58] | P. H. Rabinowitz, E. Stredulinsky, On some results of Moser and Bangert Ⅱ, Adv. Nonlinear Stud., 4 (2004), 377–396. https://doi.org/10.1515/ans-2004-0402 doi: 10.1515/ans-2004-0402 |
[59] | P. H. Rabinowitz, E. Stredulinsky, Extensions of Moser-Bangert theory: locally minimal solutions, Boston, MA: Birkhäuser, 2011. https://doi.org/10.1007/978-0-8176-8117-3 |
[60] | O. Savin, Regularity of flat level sets in phase transitions, Ann. Math., 169 (2009), 41–78. https://doi.org/10.4007/annals.2009.169.41 doi: 10.4007/annals.2009.169.41 |
[61] | O. Savin, Some remarks on the classification of global solutions with asymptotically flat level sets, Calc. Var., 56 (2017), 141. https://doi.org/10.1007/s00526-017-1228-3 doi: 10.1007/s00526-017-1228-3 |
[62] | O. Savin, Rigidity of minimizers in nonlocal phase transitions, Anal. PDE, 11 (2018), 1881–1900. https://doi.org/10.2140/apde.2018.11.1881 doi: 10.2140/apde.2018.11.1881 |
[63] | Y. Sire, E. Valdinoci, Fractional Laplacian phase transitions and boundary reactions: a geometric inequality and a symmetry result, J. Funct. Anal., 256 (2009), 1842–1864. https://doi.org/10.1016/j.jfa.2009.01.020 doi: 10.1016/j.jfa.2009.01.020 |
[64] | P. R. Stinga, Fractional powers of second order partial differential operators: extension problem and regularity theory, Ph. D. Thesis, Universidad Autónoma de Madrid. |
[65] | J. X. Xin, Existence and nonexistence of travelling waves and reaction-diffusion front propagation in periodic media, J. Stat. Phys., 73 (1993), 893–926. https://doi.org/10.1007/BF01052815 doi: 10.1007/BF01052815 |
[66] | Z. Zhou, Existence of infinitely many solutions for a class of Allen-Cahn Equations in $\mathbb{R}^{2}$, Osaka J. Math., 48 (2011), 51–67. |