Citation: Giacomo Canevari, Arghir Zarnescu. Polydispersity and surface energy strength in nematic colloids[J]. Mathematics in Engineering, 2020, 2(2): 290-312. doi: 10.3934/mine.2020015
[1] | Alama S, Bronsard L, Lamy X (2016) Minimizers of the Landau-de Gennes energy around a spherical colloid particle. Arch Ration Mech An 222: 427-450. doi: 10.1007/s00205-016-1005-z |
[2] | Alama S, Bronsard L, Lamy X (2018) Spherical particle in nematic liquid crystal under an external field: The Saturn ring regime. J Nonlinear Sci 28: 1443-1465. doi: 10.1007/s00332-018-9456-z |
[3] | Alexe-Ionescu AL, Barberi R, Barbero G, et al. (1992) Surface energy for nematic liquid crystals: A new point of view. Z Naturforsch A 47: 1235-1240. doi: 10.1515/zna-1992-1210 |
[4] | Ball JM, Zarnescu A (2011) Orientability and energy minimization in liquid crystal models. Arch Ration Mech An 202: 493-535. doi: 10.1007/s00205-011-0421-3 |
[5] | Bennett TP, D'Alessandro G, Daly KR (2014) Multiscale models of colloidal dispersion of particles in nematic liquid crystals. Phys Rev E 90: 062505. |
[6] | Berlyand L, Cioranescu D, Golovaty D (2005) Homogenization of a Ginzburg-Landau model for a nematic liquid crystal with inclusions. J Math pure Appl 84: 97-136. doi: 10.1016/j.matpur.2004.09.013 |
[7] | Calderer MC, DeSimone A, Golovaty D, et al. (2014) An effective model for nematic liquid crystal composites with ferromagnetic inclusions. SIAM J Appl Math 74: 237-262. doi: 10.1137/130910348 |
[8] | Canevari G, Ramaswamy M, Majumdar A (2016) Radial symmetry on three-dimensional shells in the Landau-de Gennes theory. Physica D 314: 18-34. doi: 10.1016/j.physd.2015.09.013 |
[9] | Canevari G, Segatti A, Veneroni M (2015) Morse's index formula in VMO on compact manifold with boundary. J Funct Anal 269: 3043-3082. doi: 10.1016/j.jfa.2015.09.005 |
[10] | Canevari G, Segatti A (2018) Defects in Nematic Shells: A Γ-convergence discrete-to-continuum approach. Arch Ration Mech An 229: 125-186. doi: 10.1007/s00205-017-1215-z |
[11] | Canevari G, Segatti A (2018) Variational analysis of nematic shells. In: Trends in Applications of Mathematics to Mechanics, Cham: Springer, 81-102. |
[12] | Canevari G, Zarnescu AD (2019) Design of effective bulk potentials for nematic liquid crystals via colloidal homogenisation. Math Mod Meth Appl Sci doi: 10.1142/S0218202520500086 |
[13] | De Gennes PG, Prost J (1993) The Physics of Liquid Crystals, Oxford university press. |
[14] | Gartland Jr EC (2018) Scalings and Limits of Landau-de Gennes Models for Liquid Crystals: A Comment on Some Recent Analytical Papers. Math Model Anal 23: 414-432. doi: 10.3846/mma.2018.025 |
[15] | Goossens JW (1985) Bulk, Interfacial and Anchoring Energies of Liquid Crystals. Mol Cryst Liq Cryst 124: 305-331. doi: 10.1080/00268948508079485 |
[16] | Kurochkin O, Atkuri H, Buchnev O, et al. (2010) Nano-colloids of sn2P2S6 in nematic liquid crystal pentyl-cianobiphenile. Condens Matter Phys 13: 33701. doi: 10.5488/CMP.13.33701 |
[17] | Lavrentovich O, Lev B, Trokhymchuk A (2010) Liquid crystal colloids. Condens Matter Phys 13: 30101. |
[18] | Lax PD (2002) Functional Analysis, Pure and Applied Mathematics: A Wiley Series of Texts, Monographs and Tracts, Wiley. |
[19] | Li F, Buchnev O, Cheon CI, et al. (2006) Orientational coupling amplification in ferroelectric nematic colloids. Phys Rev letter 97: 147801. doi: 10.1103/PhysRevLett.97.147801 |
[20] | Longa L, Montelesan D, Trebin HR (1987) An extension of the Landau-Ginzburg-de Gennes theory for liquid crystals. Liq Cryst 2: 769-796. doi: 10.1080/02678298708086335 |
[21] | Mottram NJ, Newton CJP (2014) Introduction to Q-tensor theory. arXiv:1409.3542. |
[22] | Nguyen L, Zarnescu A (2013) Refined approximation for minimizers of a Landau-de Gennes energy functional. Calc Var Partial Dif 47: 383-432. doi: 10.1007/s00526-012-0522-3 |
[23] | Ravnik M, Žumer S (2009) Landau-de Gennes modelling of nematic liquid crystal colloids. Liq Cryst 36: 1201-1214. doi: 10.1080/02678290903056095 |
[24] | Rey A (2001) Generalized nematostatics. Liq Cryst 28: 549-556. doi: 10.1080/02678290010017980 |
[25] | Reznikov Y, Buchnev O, Tereshchenko O, et al. (2003). Ferroelectric nematic suspension. Appl Phys Lett 82: 1917-1919. doi: 10.1063/1.1560871 |
[26] | Sluckin TJ, Poniewierski A (1984) Fluid and Interfacial Phenomena, Chichester: John Wiley. |
[27] | Smalyukh II (2018) Liquid crystal colloids. Annu Rev Condens Matter Phys 9: 207-226. doi: 10.1146/annurev-conmatphys-033117-054102 |
[28] | Wang Y, Canevari G, Majumdar A (2019) Order reconstruction for nematics on squares with isotropic inclusions: A Landau-de Gennes study. SIAM J Appl Math 79: 1314-1340. doi: 10.1137/17M1179820 |
[29] | Wang Y, Zhang P, Chen JZY (2017) Topological defects in an unconfined nematic fluid induced by single and double spherical colloidal particles. Phys Rev E 96: 042702. |