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Abstract: We consider a Landau-de Gennes model for a polydisperse, inhomogeneous suspension
of colloidal inclusions in a nematic host, in the dilute regime. We study the homogenised limit and
compute the effective free energy of the composite material. By suitably choosing the shape of the
inclusions and imposing a quadratic, Rapini-Papoular type surface anchoring energy density, we obtain
an effective free energy functional with an additional linear term, which may be interpreted as an
“effective field” induced by the inclusions. Moreover, we compute the effective free energy in a regime
of “very strong anchoring”, that is, when the surface energy effects dominate over the volume free
energy.
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1. Introduction

We consider a mixture of mesoscale size particles within an ambient fluid that contains locally
aligned microscopic scale rod-like molecules, that is a nematic liquid crystals. This type of mixture,
which is usually referred to as a nematic colloid material, has emerged in the recent years as the
material of choice for testing a number of exciting hypothesis in the design of new materials. An
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overview of the field, and its applications, from the physical point of view is available in the
reviews [17, 27].

The mathematical studies of such systems are still relatively few and focus on two extreme
situations:

• the effect produced by one colloidal particle, particularly related to the so-called ‘defect
patterns’ that is the strong distortions produced at the interface between the particle and the
ambient nematic fluid;
• the collective effects produced by the presence of many particle, fairly uniformly distributed, with

a focus on the homogenised material.

In the first direction one should note that defects appear because of the anchoring conditions at
the boundary of the particles, which generate topological obstructions [1, 2, 8–11, 28]. Indeed, there
have been a number of works, identifying several physically relevant regimes [1] and the influence of
external fields [2].

Our work focuses on the second direction, namely on long-scale effects produced by the effects of
a large number of particles, namely on the homogenisation regime. There have been a couple of works
in this direction, on which our builds, namely [5–7]. The main novelty of our approach, compared to
those in [5–7], is that we allow for a much larger class of surface energy densities. We do not assume
that the surface energy density is bounded from below and we do consider surface energy densities
of quartic growth, which is the maximal growth compatible with the Sobolev embeddings. Surface
energy densities of quartic growth have been proposed in the physical literature [3, 15, 24, 26].

We focus on a regime in which the total volume of the particles is much smaller than that of the
ambient nematic environment, known as the dilute regime. Our aim is to provide a mathematical
understanding of statements from the physical literature e.g., [19,25] showing that in such a regime the
colloidal nematics behave like a homogenised, standard nematic material, but with different (better)
properties than those of the original nematic material.

In our previous work [12], we provided a first approach to these issues and we showed that using
periodically distributed identical particles, one can design a suitable surface energy to obtain an apriori
designed potential, that models the main physical properties of the material (in particular the nematic-
isotropic transition temperature).

The purpose of these notes is two-fold: on the one hand, to extend the main results of [12] to
polydisperse and inhomogenoeus nematic colloids; on the other hand, to explore a regime of parameters
that differs from the one considered in [12].

Realistically, a set of colloidal inclusions will hardly be identical: The particles will differ in their
size, shape, or charge. In order to account for polydispersity, we will consider several populations of
colloidal inclusions, which may differ in their shape and properties. Moreover, we will not require the
centres of mass of the inclusions to be homogeneously distributed in space. In mathematical terms,
let P1, P2, . . . , P J be subsets of R3 (the reference shapes of the inclusions), and let Ω ⊆ R3 be a
bounded, smooth domain (the container). We define

P j
ε :=

N j
ε⋃

i=1

(
xi, j
ε + εαRi, j

ε P j
)

for j ∈ {1, . . . , J}, (1.1)

where α is a positive number, the xi, j
ε ’s are points in Ω and the Ri, j

ε are rotation matrices that satisfy
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suitable assumptions (see Section 2.1). As in [7, 12], we work in the dilute regime, namely we assume
that α > 1 so that the total volume occupied by the inclusions, |Pε| ≈ ε

3α−3, tends to zero as ε → 0.
However, we also assume that α < 3/2 so that the total surface area of the inclusions, σ(∂Pε) ≈ ε2α−3,
diverges as ε→ 0. We define Pε := ∪ jP

j
ε and Ωε := Ω \Pε (the space that is effectively occupied by

the nematic liquid crystal). In accordance with the Landau-de Gennes theory, the nematic liquid crystal
is described by a tensorial order parameter, that is, a symmetric, trace-free (3 × 3)-matrix field Q. We
consider the free energy functional

Fε[Q] :=
∫

Ωε

( fe(∇Q) + fb(Q)) dx + ε3−2α
J∑

j=1

∫
∂P j

ε

f j
s (Q, ν) dσ. (1.2)

Here, fe, fb are suitable elastic and bulk energy densities (in the Landau-de Gennes theory, fe is
typically a positive definite, quadratic form in ∇Q and fb is a quartic polynomial in Q; see
Section 2.1), f j

s is a surface anchoring energy densities (which may vary for different species of
inclusions), and ν denotes the exterior unit normal to Ω. We prove a convergence result for local
minimisers of Fε to local minimsers of the effective free energy functional:

F0[Q] :=
∫

Ω

( fe(∇Q) + fb(Q) + fhom(Q, x)) dx.

The “homogenised potential” fhom, which keeps memory of the surface integral, is explicitly
computable in terms of the f j

s ’s, the distribution of the centres of mass xi, j
ε and the rotations Ri, j

ε . As an
application of this result, we show that polydisperse inclusions may be used to mimic the effects of an
applied electric field. More precisely, for a pre-assigned parameter W ∈ R and a pre-assigned
symmetric matrix P, we may tune the shape P j

ε of the inclusions and the surface energy densities, so
to have in the limit

fhom(Q) = Wtr(QP).

When P has the form P = E⊗E for some E ∈ R3, this expression may be interpreted as an electrostatic
energy density induced by the “effective field” E, up to terms that do not depend on Q.

Moving beyond the issue of polydispersity we consider another physically restrictive assumption
we made in [12], namely concerning the anchoring strength. In (1.2), the scaling of parameters is
chosen so to have a factor of ε3−2α in front of the surface integral, which compensates exactly the
growth of the surface area, σ(∂Pε) ≈ ε2α−3. However, other choices of the scaling are possible,
corresponding to different choices of the anchoring strength at the boundary of the inclusions. One can
easily check that having a weaker anchoring, say of the type ε2α−3+δ with δ > 0 will lead to a vanishing
of the homogenized term, so the main interest is to understand what happens for stronger anchoring.To
illustrate this possibility, we study the asymptotic behaviour, as ε→ 0, of minimisers of

Fε,γ[Q] :=
∫

Ωε

( fe(∇Q) + fb(Q)) dx + ε3−2α−γ
J∑

j=1

∫
∂P j

ε

f j
s (Q, ν) dσ,

where γ is a positive parameter. This scaling corresponds to a much stronger surface anchoring and we
expect the behaviour of minimisers to be dominated by the surface energy, as ε → 0. Indeed, we will
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show that for γ small enough the functionals Fε, γ Γ-converge to the constrained functional

F̃ (Q) :=


∫

Ω

( fe(∇Q) + fb(Q)) dx if fhom(Q(x), x) = 0 for a.e. x ∈ Ω

+∞ otherwise,

as ε→ 0.
This result leaves a number of interesting of open problems, the most immediate ones being what

is the optimal range of γ for which this holds and, directly related to this, if one gets a different limit
for large values of γ.

The paper is organized as follows: in the following, in Section 2.1 we consider the polydisperse
setting and the general homogenisation result. The main results of this section, namely Theorem 2.1
and Proposition 2.2 are presented after the introduction of the mathematical setting, in Subsection 2.1.
The proof of the results is provided in Subsection 2.3 after a number of preliminary results, need in the
proof, provided in Subsection 2.2.

In Section 3 we provide an application of the results in Section 2.1, namely showing that, in a
polydispersive regime, one can obtain a linear term in the homogenised potential (Proposition 3.2).

Finally, in Section 4 we study the case when the scaling of the anchoring strength is ε3−2α−γ with
γ suitably small, and provide in Theorem 4.3 the Γ-converegence result mentioned above. Its proof is
done at the end of the section after a number of preliminary results.

2. An homogenisation result for polydisperse, inhomogeneous nematic colloids in the dilute
regime

2.1. Statement of the homogenisation result

The Landau-de Gennes Q-tensor. In the Landau-de Gennes theory, the local configuration of a
nematic liquid crystal is represented by a symmetric, symmetric, trace-free, real (3× 3)-matrix, known
as the Q-tensor, which describes the anisotropic optical properties of the medium [13, 21]. We denote
by S0 the set of matrix as above. For Q, P ∈ S0, we denote Q · P := tr(QP). This defines a scalar
product on S0, and the corresponding norm will be denoted by |Q| := (tr(Q2))1/2 = (

∑
i, j Qi j)1/2.

The domain. let P1, P2, . . . , P J be subsets of R3 (the reference shapes of the inclusions), and
let Ω ⊆ R3 be a bounded, smooth domain (the container). We define P j

ε as in (1.1), where α, xi, j
ε , Ri, j

ε

satisfy the following assumptions:

H1. 1 < α < 3/2.
H2. There exists a constant λΩ > 0 such that

dist(xi, j
ε , ∂Ω) +

1
2

inf
(h, k),(i, j)

|xh,k
ε − xi, j

ε | ≥ λΩε

for any ε > 0, any j ∈ {1, . . . , J} and any i ∈ {1, . . . , N j
ε}.

H3. For any j ∈ {1, . . . , J}, there exists a non-negative function ξ j ∈ L∞(Ω), such that

µ j
ε := ε3

N j
ε∑

i=1

δxi, j
ε
⇀∗ ξ j dx as measures in R3, as ε→ 0.
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H4. For any j ∈ {1, . . . , J}, there exists a Lipschitz-continuous map R j
∗ : Ω → SO(3) such that Ri, j

ε =

R j
∗(xi, j

ε ) for any ε > 0 and any i ∈ {1, . . . , N j
ε}.

H5. For any j ∈ {1, . . . , J}, P j ⊆ R3 is a compact, convex set whose interior contains the origin.

The assumption (H2) is a separation condition on the inclusions. As a consequence of (H2), the
number of the inclusions, for each population j, is N j

ε . ε−3. Therefore, the total volume of the
inclusions in each population is bounded by N j

εε
3 . ε3α−3 → 0, because of (H1). Thus, we are in the

diluted regime, as in [7, 12]. We define

Pε :=
J⋃

j=1

P j
ε , Ωε := Ω \Pε.

The assumption (H5) guarantees that Ωε is a Lipschitz domain.

The free energy functional. For Q ∈ H1(Ωε, S0), we consider the free energy functional

Fε[Q] :=
∫

Ωε

( fe(∇Q) + fb(Q)) dx + ε3−2α
J∑

j=1

∫
∂P j

ε

f j
s (Q, ν) dσ. (2.1)

The surface anchoring energy densities depend on j, as colloids that belong to different populations
may have different surface properties. For the rest, our assumptions for the elastic energy density fe,
bulk energy density fb, and surface energy densities f j

s are the same as in [12]. We say that a function
f : S0 ⊗ R

3 → R is strongly convex if there exists θ > 0 such that the function S0 ⊗ R
3 3 D 7→

f (D) − θ|D|2 is convex.

H6. fe : S0 ⊗ R
3 → [0, +∞) is differentiable and strongly convex. Moreover, there exists a

constant λe > 0 such that

λ−1
e |D|

2 ≤ fe(D) ≤ λe|D|2, |(∇ fe)(D)| ≤ λe (|D| + 1)

for any D ∈ S0 ⊗ R
3.

H7. fb : S0 → R is continuous, non-negative and there exists λb > 0 such that 0 ≤ fb(Q) ≤ λb(|Q|6 +1)
for any Q ∈ S0.

H8. For any j ∈ {1, . . . , J}, the function f j
s : S0 × S

2 → R is locally Lipschitz-continuous. Moreover,
there exists a constant λs > 0 such that

| f j
s (Q1, ν1) − f j

s (Q2, ν2)| ≤ λs

(
|Q1|

3 + |Q2|
3 + 1

)
(|Q1 − Q2| + |ν1 − ν2|)

for any j ∈ {1, . . . , J} and any (Q1, ν1), (Q2, ν2) in S0 × S
2.

A physically relevant example of elastic energy density fe that satisfies (H6) is given by

f LdG
e (∇Q) := L1 ∂kQi j ∂kQi j + L2 ∂ jQi j ∂kQik + L3 ∂ jQik ∂kQi j (2.2)

(Einstein’s summation convention is assumed), so long as the coefficients L1, L2, L3 satisfy

L1 > 0, −L1 < L3 < 2L1, −
3
5

L1 −
1

10
L3 < L2 (2.3)
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(see e.g., [13, 20]). The assumption (H7) is satisfied by the quartic Landau-de Gennes bulk potential,
given by

f LdG
b (Q) := a tr(Q2) − b tr(Q3) + c

(
tr(Q2)

)2
+ κ(a, b, c)

where a ∈ R, b > 0, c > 0 are coefficients depending on the material and the temperature
and κ(a, b, c) ∈ R is a constant, chosen in such a way that inf f LdG

b = 0. An example of surface energy
density that satisfies (H8) is the Rapini-Papoular type energy density:

fs(Q, ν) := W tr(Q − Qν)2 with Qν := ν ⊗ ν −
Id
3

and W a (typically positive) parameter. However, (H8) allows for much more general surface energy
densities, which may not be positive and may have up to quartic growth in Q (for examples, see
e.g., [3, 15, 24, 26] and the references therein). In addition to (H8), physically relevant surface energy
densities must satisfy symmetry properties (frame-indifference, invariance with respect to the sign of ν)
but these will play no rôle in our analysis.

The homogenised potential. For any j ∈ {1, . . . , J}, let us define f j
hom : S0 ×Ω→ R as

f j
hom(Q, x) :=

∫
∂P j

f j
s (Q, R j

∗(x)νP j) dσ for (Q, x) ∈ S0 ×Ω, (2.4)

where νP j denotes the inward-pointing unit normal to ∂P j, and R j
∗ : Ω → SO(3) is the map given

by (H4). Finally, let

fhom(Q, x) :=
J∑

j=1

ξ j(x) f j
hom(Q, x) for (Q, x) ∈ S0 ×Ω, (2.5)

where ξ j ∈ L∞(Ω) is the function given by (H3). Our candidate homogenised functional is defined for
any Q ∈ H1(Ω,S0) as

F0[Q] :=
∫

Ω

( fe(∇Q) + fb(Q) + fhom(Q, x)) dx. (2.6)

The convergence result. The assumptions (H1)–(H8) are not enough to guarantee that global
minimisers of Fε exist and actually, it may happen that Fε is unbounded from
below [12, Lemma 3.6]. Instead, our main result focus on the asymptotic behaviour of local
minimisers. Given g ∈ H1/2(∂Ω, S0), we let H1

g(Ωε,S0) — respectively, H1
g(Ω, S0) — be the set of

maps Q ∈ H1(Ωε,S0) — respectively, Q ∈ H1(Ω,S0) — that satisfy Q = g on ∂Ω, in the sense of
traces. For each Q ∈ H1

g(Ωε,S0), we define the map EεQ ∈ H1
g(Ω, S0) by EεQ := Q on Ωε and

EεQ := Qi, j
ε on P i, j

ε , where Qi, j
ε is the unique solution of Laplace’s problem−∆Qi, j

ε = 0 in P i, j
ε

Qi, j
ε = Q on ∂P i

ε.
(2.7)
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Theorem 2.1. Suppose that the assumptions (H1)–(H8) are satisfied. Suppose, moreover, that Q0 ∈

H1
g(Ω,S0) is an isolated H1-local minimiser for F0 — that is, there exists δ0 > 0 such that

F0[Q0] < F0[Q]

for any Q ∈ H1
g(Ω,S0) such that Q , Q0 and ‖Q − Q0‖H1(Ω) ≤ δ0. Then, for any ε small enough, there

exists an H1-local minimiser Qε for Fε such that EεQε → Q0 strongly in H1(Ω) as ε→ 0.

The proof of Theorem 2.1 follows a variational approach, and is based on the following fact:

Proposition 2.2. Let Qε ∈ H1
g(Ωε, S0) be such that EεQε ⇀ Q weakly in H1(Ω) as ε→ 0. Then, there

holds ∫
Ω

( fe(∇Q) + fb(Q)) dx ≤ lim inf
ε→0

∫
Ωε

( fe(∇Qε) + fb(Qε)) dx (2.8)∫
Ω

fhom(Q, x) dx = lim
ε→0

ε3−2α
J∑

j=1

∫
∂P j

ε

f j
s (Qε, ν) dσ. (2.9)

Proposition 2.2 can be reformulated as a Γ-convergence result. Indeed, from Proposition 2.2 we
immediately have F0 ≤ Γ- lim infε→0 Fε (with respect to a suitable topology, induced by the
operator Eε). A trivial recovery sequence suffices to obtain the opposite Γ-lim sup inequality, thanks
to (2.9) and the fact that in the dilute limit, |Pε| → 0. Theorem 2.1 follows from Proposition 2.2 by
general properties of the Γ-convergence.

Throughout the paper, we will write A . B as a short-hand for A ≤ CB, where C is a positive
constant, depending only on the domain, the boundary datum and the free energy functional (2.1), but
not on ε.

2.2. Preliminary results

The main technical tool is the following trace inequality, which is adapted from [7, Lemma 4.1].

Lemma 2.3 ( [12, Lemma 3.1]). Let P ⊆ R3 be a compact, convex set whose interior contains
the origin. Then, there exists a constant C = C(P) > 0 such that, for any a > 0, b ≥ 2a and
any u ∈ H1(bP \ aP), there holds∫

∂(aP)
|u|4 dσ ≤ C

∫
bP\aP

(
|∇u|2 + |u|6

)
dx +

Ca2

b3

∫
bP\aP

|u|4 dx.

Given an inclusion P i, j
ε = xi, j

ε + εαRi, j
ε P j, we consider P̂ i, j

ε := xi, j
ε + µεRi, j

ε P j, where µ > 0 is a
small (but fixed) parameter. By taking µ small enough, we can make sure that the P̂ i, j

ε ’s are pairwise
disjoint. Then, by applying Lemma 2.3 component-wise on P̂ i, j

ε \P
i, j
ε and summing the corresponding

inequalities over i and j, we deduce

Lemma 2.4. For any Q ∈ H1(Ωε,S0), there holds

ε3−2α
∫
∂Pε

|Q|4 dσ . ε3−2α
∫

Ωε

(
|∇Q|2 + |Q|6

)
dx +

∫
Ωε

|Q|4 dx.
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Another tool is the harmonic extension operator, Eε : H1(Ωε, S0)→ H1(Ω, S0), defined by (2.7).

Lemma 2.5. The operator Eε : H1(Ωε, S0)→ H1(Ω, S0) satisfies the following properties.

(i). There exists a constant C > 0 such that ‖∇(EεQ)‖L2(Ω) ≤ C‖∇Q‖L2(Ωε) for any ε > 0 and any
Q ∈ H1(Ωε,S0).

(ii). If the maps Qε ∈ H1(Ω, S ) converge H1(Ω)-strongly to Q as ε→ 0, then Eε(Qε|Ωε
)→ Q strongly

in H1(Ω) as ε→ 0, too.

Proof. For any i, j, consider the inclusion P i, j
ε = xi, j

ε + εαRi, j
ε P j and let R i, j

ε := xi, j
ε + 2εαRi, j

ε P j.
Let Rε := ∪i, jR

i, j
ε . The properties of Laplace equation, combined with a scaling argument (see,

e.g., [12, Lemma 3.4]), imply that

‖∇(EεQ)‖L2(Pε) . ‖∇Q‖L2(Rε\Pε). (2.10)

Statement (i) then follows immediately. To prove Statement (ii), take a sequence Qε ∈ H1(Ω, S0) that
converges strongly to Q as ε→ 0. Then,∥∥∥∇Qε − ∇(Eε(Qε|Ωε

))
∥∥∥

L2(Ω)
≤ ‖∇Qε‖L2(Pε) +

∥∥∥∇(Eε(Qε|Ωε
))
∥∥∥

L2(Pε)
(2.10)
. ‖∇Qε‖L2(Rε) . ‖∇Q‖L2(Rε) + ‖∇Q − ∇Qε‖L2(Ω).

Both terms in the right-hand side converge to 0 as ε→ 0, because |Rε| . ε
3α−3 → 0, and Statement (ii)

follows. �

2.3. Proof of Theorem 2.1

The proof of Theorem 2.1 is largely similar to that of [12, Theorem 1.1]. We reproduce here only
some steps of the proof, either because there require a modification or because they will be useful in
Section 4.

Remarks on the lower semi-continuity of Fε. Even before we address the asymptotic analysis
as ε → 0, we should make sure that, for fixed ε > 0, the functional Fε is sequentially lower semi-
continuous with respect to the weak topology on H1(Ωε, S0). If the surface energy density fs is
bounded from below, then the surface integral is lower semi-continuous by Fatou lemma. If fs has
subcritical growth, that is | fs(Q)| . |Q|p + 1 for some p < 4, then the lower semi-continuity of the
surface integral follows from the compact Sobolev embedding H1/2(∂Ωε, S0) ↪→ Lp(∂Ωε, S0) and
Lebesgue’s dominated convergence theorem. However, our assumption (H8) allows for surface energy
densities that have quartic growth and are unbounded from below, e.g. fs(Q) := − |Q|4. In this case,
the surface integral alone may not be sequentially weakly lower-semi continuous [12, Lemma 3.10].
However, lower semi-continuity may be restored at least on bounded subsets of H1(Ωε, S0), when ε is
small:

Proposition 2.6 ( [12, Proposition 3.9]). Suppose that the assumptions (H1)–(H8) are satisfied. For
any M > 0 there exists ε0(M) > 0 such that following statement holds: if 0 < ε ≤ ε0(M), Qk ⇀ Q
weakly in H1

g(Ωε, S0) and if ‖∇Qk‖L2(Ωε) ≤ M for any k, then

Fε[Q] ≤ lim inf
k→+∞

Fε[Qk].
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The proof carries over from [12], almost word by word, using Lemma 2.4. Essentially, the loss
of lower semi-continuity that may arise from the surface integral can be quantified, with the help
of Lemma 2.4 and the bound on ∇Qk. However, since the surface integral is multiplied by a small
factor ε3−2α, this loss of lower semi-continuity is compensated by the strong convexity of the elastic
term fe, for ε sufficiently small.

Pointwise convergence of the surface energy terms. For ease of notation, let us define

Jε[Q] := ε3−2α
J∑

j=1

∫
∂P j

ε

f j
s (Q, ν) dσ (2.11)

J0[Q] :=
∫

Ω

fhom(Q, x) dx for Q ∈ H1
g(Ω,S0) (2.12)

We state some properties of the functions f j
hom : S0 ×Ω→ R, fhom : S0 ×Ω→ R, defined by (2.5),

(2.4) respectively.

Lemma 2.7. For any j ∈ {1, . . . , J}, the function f j
hom is locally Lispchitz-continuous, and there holds∣∣∣ f j

hom(Q, x)
∣∣∣ . |Q|4 + 1,

∣∣∣∇ f j
hom(Q, x)

∣∣∣ . |Q|3 + 1 (2.13)

for any (Q, x) ∈ S0 ×Ω. Moroever, the function fhom satisfies

| fhom(Q1, x) − fhom(Q2, x)| .
(
|Q1|

3 + |Q2|
3 + 1

)
|Q1 − Q2| (2.14)

for any Q1, Q2 ∈ S0 and any x ∈ Ω.

Proof. Using the definition (2.4) of f j
hom, and the assumption (H8), we obtain

∣∣∣ f j
hom(Q1, x1) − f j

hom(Q2, x2)
∣∣∣ ≤ ∫

∂P j

∣∣∣ f j
s (Q1, R j

∗(x1)νP j) − f j
s (Q2, R j

∗(x2)νP j)
∣∣∣ dσ

.

∫
∂P j

(
|Q1|

3 + |Q2|
3 + 1

) (
|Q1 − Q2| +

∣∣∣∣(R j
∗(x1) − R j

∗(x2)
)
νP j

∣∣∣∣) dσ

Since R j
∗ is Lipschitz-continuous by (H4), we deduce∣∣∣ f j

hom(Q1, x1) − f j
hom(Q2, x2)

∣∣∣ . (
|Q1|

3 + |Q2|
3 + 1

)
(|Q1 − Q2| + |x1 − x2|) (2.15)

and (2.14) follows. We multiply the previous inequality by ξ j, where ξ j is given by (H3), take x1 =

x2 = x, and sum over j. Since ξ j ∈ L∞(Ω) by Assumption (H3), we obtain

| fhom(Q1, x) − fhom(Q2, x)|
(2.5)
≤

J∑
j=1

∥∥∥ξ j
∥∥∥

L∞(Ω)

∣∣∣ f j
hom(Q1, x) − f j

hom(Q2, x)
∣∣∣

.
(
|Q1|

3 + |Q2|
3 + 1

)
|Q1 − Q2|. �
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Let us introduce the auxiliary quantity

J̃ε[Q] := ε3−2α
J∑

j=1

N j
ε∑

i=1

∫
∂P i, j

ε

f j
s (Q(xi, j

ε ), ν) dσ. (2.16)

Lemma 2.8. For any bounded, Lipschitz map Q : Ω→ S0, there holds

J̃ε[Q] =

J∑
j=1

∫
R3

f j
hom(Q(x), x) dµ j

ε(x) (2.17)

(where the measures µ j
ε are defined by (H3)), and∣∣∣Jε[Q] − J̃ε[Q]

∣∣∣ . εα (
‖Q‖3L∞(Ω) + 1

)
‖∇Q‖L∞(Ω). (2.18)

Proof. For any i and j, consider the single inclusion P i, j
ε := xi, j

ε + εαRi, j
ε P j

ε . Since
ν(x) = Ri, j

ε νP j(ε−α(Ri, j
ε )T(x − xi, j

ε )) for any x ∈ ∂P i, j
ε , by a change of variable we obtain

J̃ε[Q] = ε3
J∑

j=1

N j
ε∑

i=1

∫
∂P j

f j
s (Q(xi, j

ε ), Ri, j
ε νP) dσ

(H4)
= ε3

J∑
j=1

N j
ε∑

i=1

∫
∂P j

f j
s (Q(xi, j

ε ), R j
∗(xi, j

ε )νP) dσ

(2.5)
= ε3

J∑
j=1

N j
ε∑

i=1

f j
hom(Q(xi, j

ε ), xi, j
ε ).

Now, (2.17) follows from the definition of µ j
ε, (H3). On the other hand, by decomposing the integral

on ∂P j as a sum of integrals over the boundary of each inclusion, we obtain

∣∣∣Jε[Q] − J̃ε[Q]
∣∣∣ . ε3−2α

J∑
j=1

N j
ε∑

i=1

∫
∂P i, j

ε

∣∣∣ f j
s (Q(x), ν) − f j

s (Q(xi, j
ε ), ν)

∣∣∣ dσ(x)

(H8)
. ε3−2α

N j
ε∑

i=1

J∑
j=1

∫
∂P i, j

ε

(
|Q(x)|3 +

∣∣∣Q(xi, j
ε )

∣∣∣3 + 1
) ∣∣∣Q(x) − Q(xi, j

ε )
∣∣∣ dσ(x)

Since Q is assumed to be Lipschitz continuous and the diameter of P i, j
ε is . εα, we have |Q(x) −

Q(xi, j
ε )| . εα ‖∇Q‖L∞(Ω). This implies∣∣∣Jε[Q] − J̃ε[Q]

∣∣∣ . ε3−ασ(∂Pε)
(
‖Q‖3L∞(R3) + 1

)
‖∇Q‖L∞(Ω).

Finally, we note that σ(∂Pε) . ε2α−3, because there are O(ε−3) inclusions (as a consequence of (H2))
and the surface area of each inclusion is O(ε2α). Thus, the lemma follows. �

Since µ j
ε ⇀

∗ ξ jdx by Assumption (H3), as an immediate consequence of Lemma 2.8 and (2.5),
(2.12) we obtain

Proposition 2.9. For any bounded, Lipschitz map Q : Ω→ S0, there holds Jε[Q]→ J0[Q] as ε→ 0.

Once Proposition 2.9 is proved, the rest of the proof of Proposition 2.2 and Theorem 2.1 follows
exactly as in [12].
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3. Linear terms in the homogenised bulk potential

Proposition 3.1. There exist (possibly disconnected) shapes Pk ⊂ R
3, k ∈ {1, 2, 3, 4, 5, 6} such that

taking as surface energy the Rapini-Papoular surface energy fs(Q, ν) = tr(Q−Qν)2 with Qν = ν⊗ν− 1
3 Id

where ν is the exterior unit-normal, we have:

fPk
hom(Q) =

(
2
3

+ tr(Q2)
)
σ(∂Pk) − 2tr(QMk) (3.1)

where
Mk =

(
π

3
+
π

2

)
Id −

π

2
ek ⊗ ek, k ∈ {1, 2, 3}

M4 =

(
π

3
+
π

2

)
Id −

π

2
e3 ⊗ e3 +

2
3

(e1 ⊗ e2 + e2 ⊗ e1),

M5 =

(
π

3
+
π

2

)
Id −

π

2
e2 ⊗ e2 +

2
3

(e1 ⊗ e3 + e3 ⊗ e1),

M6 =

(
π

3
+
π

2

)
Id −

π

2
e1 ⊗ e1 +

2
3

(e2 ⊗ e3 + e3 ⊗ e2),

with Mk, k ∈ {1, 2, 3, 4, 5, 6} a basis in the linear space of 3 × 3 symmetric matrices.

Proof. By formula (2.4) we have:

fPk
hom(Q) =

∫
∂Pk

(
tr(Q2) − 2tr(QQν) + tr(Qν)2

)
dσ (3.2)

hence we readily get (3.1) with Mk =
∫
∂Pk

ν(x) ⊗ ν(x) dσ(x).
Let us take for 1 ≤ i, j ≤ 3 with i , j the ‘potato wedges’ domains

Ω+
i j := {x = (x1, x2, x3) ∈ R3 : |x| ≤ 1, xi ≥ 0, x j ≥ 0} (3.3)

as candidates for ‘parts of’ our shapes Pk’s (see Figure 1).

Figure 1. The ‘potato wedge’ domain Ω+
23.
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We calculate the term∫
∂Ω+

12

ν ⊗ ν dσ =

∫
Ω+

12∩{x1=0}
ν ⊗ ν dσ︸                  ︷︷                  ︸

:=I1

+

∫
Ω+

12∩{x2=0}
ν ⊗ ν dσ︸                  ︷︷                  ︸

:=I2

+

∫
∂Ω+

12∩{x1·x2>0}
ν ⊗ ν dσ︸                     ︷︷                     ︸

:=I3

Then:
I1 = e1 ⊗ e1

∫
{x2

2+x2
3≤1, x1=0}

dσ =
π

2
e1 ⊗ e1 (3.4)

where e1 := (1, 0, 0). Similarly we get I2 = π
2 e2 ⊗ e2 with e2 := (0, 1, 0). Finally:

(I3)i j =

∫
∂Ω+

12∩{x1·x2>0}
xix j dσ(x), ∀ i, j ∈ {1, 2, 3}. (3.5)

Because x1x3, respectively x2x3 are odd functions in the variable x3 along the domain Ω+
12∩{x1 · x2 > 0}

we have that (I3)13 = (I3)31 = (I3)23 = (I3)32 = 0. Furthermore:

(I3)12 = (I3)21 =

∫
∂Ω+

12∩{x1·x2>0}
x1x2 dσx =

∫ π

0

(∫ π
2

0
sin3 θ cosϕ sinϕ dϕ

)
dθ

=

∫ π

0
sin3 θ dθ ·

∫ π
2

0
cosϕ sinϕ dϕ =

4
3
·

1
2

=
2
3

(3.6)

Similarly we get: (I3)11 = (I3)22 = (I3)33 = π
3 . Summarizing the last calculations, we get:

∫
∂Ω+

12

ν ⊗ ν dσ =


π
3 + π

2
2
3 0

2
3

π
3 + π

2 0
0 0 π

3

 (3.7)

Analogous calculations provide

∫
∂Ω+

13

ν ⊗ ν dσ =


π
3 + π

2 0 2
3

0 π
3 0

2
3 0 π

3 + π
2

 (3.8)

∫
∂Ω+

23

ν ⊗ ν dσ =


π
3 0 0
0 π

3 + π
2

2
3

0 2
3

π
3 + π

2

 (3.9)

Similarly we define, for 1 ≤ i < j ≤ 3,

Ω−i j := {x = (x1, x2, x3) ∈ R3 : |x| ≤ 1, xi ≤ 0, x j ≥ 0} (3.10)

and we have: ∫
∂Ω−12

ν ⊗ ν dσ =


π
3 + π

2 −2
3 0

−2
3

π
3 + π

2 0
0 0 π

3

 (3.11)
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respectively ∫
∂Ω−13

ν ⊗ ν dσ =


π
3 + π

2 0 −2
3

0 π
3 0

−2
3 0 π

3 + π
2

 (3.12)

∫
∂Ω−23

ν ⊗ ν dσ =


π
3 0 0
0 π

3 + π
2 −2

3
0 −2

3
π
3 + π

2

 (3.13)

We take then:

P1 := Ω+
23 ∪

(
Ω−23 − (0, 1, 0)

)
, P2 := Ω+

13 ∪
(
Ω−13 − (1, 0, 0)

)
,

P3 := Ω+
12 ∪

(
Ω−12 − (1, 0, 0)

)
and, respectively

P4 := Ω+
12, P5 := Ω+

13, P6 := Ω+
23. �

Proposition 3.2. Let P be a 3×3 symmetric matrix, not necessarily traceless, and W ∈ R. There exists
a family of JP ∈ N shapes P j and corresponding surface energy strengths i j, j ∈ {1, . . . , JP} such that,
taking for each shape the Rapini-Papoular surface energy with corresponding intensity i j, i.e.,

f j
s (Q, ν) = W i j tr(Q − Qν)2 (3.14)

with Qν := ν ⊗ ν − 1
3 Id and ν is the exterior unit-normal, the corresponding homogenised potential is:

f P
hom(Q) = −WαP

(
1
3

+
1
2

tr(Q2)
)

+ Wtr(QP) (3.15)

with αP ∈ R explicitly computable in terms of the shapes volumes and the surface energy strengths.

Proof. We take Mk, k ∈ {1, . . . , 6}, as provided in Proposition 3.1, to be a linear basis in the spaces of
3 × 3 symmetric matrices. Then there exists ak := P · Mk, k ∈ {1, . . . , 6} such that

P =

6∑
k=1

akMk

Let P1, . . . , P JP be the connected components of P1, . . . , Pk. Each P j is a compact, convex set of
the form (3.3) or (3.10) (see Figure 1). For j ∈ {1, . . . , JP}, we define the corresponding intensities
as i j = −1

2ak where k = k( j) is such that P j ⊆ Pk. Then, noting that the homogenised potentials
corresponding to each species will add together to provide the homogenised porential corresponding
to all the species, we get:

f P
hom(Q) = −

1
2

7∑
k=1

ak fP
k

hom(Q) = −W
(
1
3

+
1
2

tr(Q2)
) 6∑

k=1

ikσ(∂Pk) + Wtr(QP) (3.16)

hence we obtain the claimed (3.15) with αP :=
∑6

k=1 ikσ(∂Pk). �
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Remark 3.3. We can, without loss of generality, drop the constant term in a bulk potential, since
adding a constant to an energy functional does not change the minimiser. In particular in f P

hom we can
ignore the term −W

3 αP.

We wish now to choose the surface energy densities f j
s of Rapini-Papoular type and the shapes

of the colloidal particles, in such a way that given the symmetric 3 × 3 matrix P and W ∈ R, local
minimisers of the Landau-de Gennes functional

Fε[Q] =

∫
Ωε

(
f LdG
e (∇Q) + a tr(Q2) − b tr(Q3) + c

(
tr(Q2)

)2
)

dx

+ ε3−2α
J∑

j=1

∫
∂P j

ε

f j
s (Q, ν) dσ

(3.17)

(with f LdG
e given by (2.2)) converge to local minimisers of the homogenised functional

F0[Q] =

∫
Ω

(
f LdG
e (∇Q) + a′ tr(Q2) − b tr(Q3) + c

(
tr(Q2)

)2
+ Wtr(PQ)

)
dx. (3.18)

We will assume that 1 < α < 3/2 and the centres of the inclusions, xi, j
ε , satisfy (H2) and that they are

uniformly distributed, i.e., they satify (H3) with ξ j = 1. We also assume that all inclusions of the same
family are parallel to each other, that is, we take Ri, j

ε = Id for any i, j, ε (in particular, (H4) is satisfied
with R j

∗ = Id).

Remark 3.4. One could also choose colloidal particles and corresponding surface energies that
modify the b and c coefficients, but for this it would not suffice to use Rapini-Papoular type of surface
energies (see for instance Section 2.2 in [12]).

Corollary 3.5. Let (a, b, c) ∈ R3 with c > 0. Let a′ ∈ R, W > 0, and let P be a symmetric, 3 × 3
matrix. Suppose that the inequalities (2.3) are satisfied. Then, there exists a family of shapes P j and
a corresponding surface energy f j

s for each of them, such that for any isolated local minimiser Q0 of
the functional F0 defined by (3.18), and for ε > 0 small enough, there exists a local minimiser Qε of
the functional Fε, defined by (3.17), such that EεQε → Q0 strongly in H1(Ω, S0).

Proof. This statement is a particular case of our main result, Theorem 2.1. If (2.3) holds and c > 0,
c′ > 0, then the conditions (H6)–(H7) are satisfied.

We take JP species P j, j ∈ {1, . . . , JP} and surface energies given by (3.14), as in Proposition 3.1.
Each P j is a compact, convex set of the form (3.3) or (3.10), so (H5) is satisfied (up to translations)
and (H8) is satisfied too. The homogenised potential corresponding to these is:

f P
hom(Q) = −WαP

(
1
3

+
1
2

tr(Q2)
)

+ Wtr(QP) (3.19)

where αP :=
∑6

k=1
P·Mk

2 σ(∂Pk) (and the Mk, k ∈ {1, . . . , 6} are those from Proposition 3.1). We further
take one more species, of spherical colloids P JP+1 := B1, and define the surface energy density

f JP+1
s (Q, ν) :=

1
4π

(
a′ +

WαP

2
− a

)
(ν · Q2ν). (3.20)
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This produces (see also for instance Remark 2.9 in [12]) a homogenised potential

f sph
hom(Q) :=

(
a′ +

WαP

2
− a

)
tr(Q2)

Then the homogenised potential for all the JP + 1 species is

fhom(Q) = f sph
hom(Q) + f P

hom(Q)

= (a′ − a) tr(Q2) + b tr(Q3) + c (tr(Q2))2 + Wtr(PQ) −
W
3
αP

and, since we can, without loss of generality, see Remark 3.3 drop the constant term −W
3 αP, the

corollary follows from Theorem 2.1. �

4. The limit functional in the case of stronger anchoring strength

The purpose of this section is to study the asymptotic behaviour, as ε → 0, of minimisers of a
functional with a different choice of the scaling for the surface anchoring strength. We consider the
free energy functional:

Fε,γ[Q] :=
∫

Ωε

( fe(∇Q) + fb(Q)) dx + ε3−2α−γ
J∑

j=1

∫
∂P j

ε

f j
s (Q, ν) dσ. (4.1)

(where ν(x) denotes as usually the exterior normal at the point x on the boundary), with α ∈ (1, 3
2 ) and

K1. 0 < γ < 1/4.

Due to the extra factor ε−γ in front of the surface integral, we cannot apply Proposition 2.6 to obtain
the lower semi-continuity of Fε,γ for fixed ε. Therefore, in contrast with the previous sections, we
assume boundedness from below on the surface term.

K2. fs ≥ 0.

Remark 4.1. Under the assumption (K2), the sequential weak lower semi-continuity of Fε (for fixed ε)
follows from the compact embedding H1/2(∂Ωε) ↪→ L2(∂Ωε) and Fatou’s lemma. Therefore, a routine
application of the direct method of the Calculus of Variations shows that minimisers of Fε exist, for
any ε > 0.

As a consequence of (K2) and of (H3), the function fhom is non-negative, too. In fact, we will also
assume that

K3. inf{ fhom(Q, x) : Q ∈ S0} = 0 for any x ∈ Ω.

Recall that, for any j ∈ {1, . . . , J}, the measures µ j
ε := ε−3 ∑

i δxi, j
ε

are supposed to converge weakly∗ to
a non-negative function ξ j ∈ L∞(Ω). We need to prescribe a rate of convergence. We express the rate
of convergence in terms of the W−1,1-norm (that is, the dual Lipschitz norm, also known as flat norm
in some contexts):

Fε := max
j=1, 2, ..., J

sup
{ ∫

Ω

ϕ dµ j
ε −

∫
Ω

ϕ ξ j dx :

ϕ ∈ W1,∞(Ω), ‖∇ϕ‖L∞(Ω) + ‖ϕ‖L∞(Ω) ≤ 1
}
.

(4.2)
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K4. There exists a constant λflat > 0 such that Fε ≤ λflatε for any ε.

Remark 4.2. The assumption (K4) is satisfied if the inclusions are periodically distributed. Consider,
for simplicity, the case J = 1, and suppose that the centres of the inclusions, xi

ε, are exactly the
points y ∈ (εZ)3 such that y + [−ε/2, ε/2]3 ⊆ Ω. Let Ωε := ∪i(xi

ε + [−ε/2, ε/2]3). Then, for any ϕ ∈
W1,∞(Ω), we have

∣∣∣∣∣∫
Ω

ϕ dµε −
∫

Ω

ϕ dx
∣∣∣∣∣ ≤ Nε∑

i=1

∫
xi
ε+[−ε/2, ε/2]3

∣∣∣ϕ − ϕ(xi
ε)
∣∣∣ +

∫
Ω\Ωε

|ϕ|

≤

√
3 ε
2
‖∇ϕ‖L∞(Ω) |Ωε| + ‖ϕ‖L∞(Ω) |Ω \Ωε| .

Moreover, |Ω \Ωε| . ε, because Ω \Ωε ⊆ {y ∈ Ω : dist(y, ∂Ω) ≤
√

3 ε}. Therefore, (K4) holds.

Finally, we assume some regularity on the boundary datum g : ∂Ω→ S0.

K5. g is bounded and Lipschitz.

Γ-convergence to a constrained problem. We can now define the candidate limit functional. Let

A :=
{
Q ∈ H1

g(Ω, S0) : fhom(x, Q(x)) = 0 for a.e. x ∈ Ω
}
, (4.3)

and F̃ : L2(Ω, S0)→ (−∞, +∞],

F̃ (Q) :=


∫

Ω

( fe(∇Q) + fb(Q)) dx if Q ∈ A

+∞ otherwise.

Theorem 4.3. Suppose that the assumptions (H1)–(H8), (K1)–(K5) are satisfied. Then, the following
statements hold.

i. Given a family of maps Qε ∈ H1
g(Ωε, S0) such that supε Fε,γ(Q) < +∞, there exists a non-

relabelled sequence and Q0 ∈ A such that EεQε ⇀ Q0 weakly in H1(Ω),

F̃ (Q0) ≤ lim inf
ε→0

Fε,γ(Qε).

ii. For any Q0 ∈ A , there exists a sequence of maps Qε ∈ H1
g(Ωε, S0) such that EεQε → Q0 strongly

in H1(Ω) and

lim sup
ε→0

Fε,γ(Qε) ≤ F̃ (Q0).

Remark 4.4. The theorem is only meaningful when A is non-empty, and it may happen that A is
empty even if fhom(g(x), x) = 0 for any x ∈ ∂Ω.
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4.1. Proof of Theorem 4.3

Before we give the proof of Theorem 4.3, we state some auxiliary results. We first recall some
properties of the convolution, which will be useful in constructing the recovery sequence.

Lemma 4.5. For any P ∈ H1(R3, S0) and σ > 0, there exists a smooth map Pσ : R3 → S0 that
satisfies the following properties:

‖Pσ‖L∞(R3) . σ
−1/2 ‖P‖L6(R3) , ‖∇Pσ‖L∞(R3) . σ

−3/2 ‖∇P‖L2(R3) (4.4)
‖P − Pσ‖L2(R3) . σ ‖∇P‖L2(R3) (4.5)

‖∇P − ∇Pσ‖L2(R3) → 0 as σ→ 0. (4.6)

Moreover, if U ⊆ U′ are Borel subsets of R3 such that dist(U, R3 \ U′) > σ, then

‖Pσ‖L2(U) ≤ ‖P‖L2(U′). (4.7)

Proof. Let us take a non-negative, even function ϕ ∈ C∞c (R3), supported in the unit ball B1, such that
‖ϕ‖L1(R3) = 1. Let ϕσ(x) := σ−3ϕ(x/σ). By a change of variable, we see that

‖ϕσ‖Lp(R3) = σ3/p−3 ‖ϕ‖Lp(R3) for any p ∈ [1, +∞). (4.8)

Let Pσ be defined as the convolution Pσ := P ∗ ϕσ. Then, by Young’s inequality, we have

‖∇Pσ‖L∞(R3) = ‖(∇P) ∗ ϕσ‖L∞(R3) ≤ ‖∇P‖L2(R3) ‖ϕσ‖L2(R3)

(4.8)
. σ−3/2 ‖∇P‖L2(R3).

The other inequality in (4.4) is obtained in a similar way. The condition (4.6) is a well-known property
of convolutions.

Let us prove (4.5). Let ψ be the Fourier transform∗ of ϕ. Then, ψ is smooth and rapidly decaying
(that is, it belongs to the Schwartz space S (R3)) and, in particular, it is Lipschitz continuous.
Moreover, ψ(0) =

∫
R3 ϕ(x) dx = 1. By the properties of the Fourier transform, we have ϕ̂σ(ξ) = ψ(σξ).

By applying Plancherel theorem, we obtain

‖P − Pσ‖
2
L2(R3) =

∫
R3
|P̂(ξ)|2(1 − ψ(σξ))2 dξ

=

∫
R3
|P̂(ξ)|2(ψ(0) − ψ(σξ))2 dξ

≤ σ2 ‖∇ψ‖2L∞(R3)

∫
R3
|ξ|2 |P̂(ξ)|2 dξ

=
σ2

4π2 ‖∇ψ‖
2
L∞(R3) ‖∇P‖2L2(R3).

It only remains to prove (4.7). Let χ be the indicator function of U′ (i.e., χ = 1 on U′ and χ = 0
elsewhere). Observe that Pσ = (χP) ∗ϕσ on U, because ϕσ is supported on the ball Bσ of radius σ and,
by assumption, dist(U, R3 \ U′) > σ. Then, Young inequality implies

‖P‖L2(U) ≤ ‖χP‖L2(R3) ‖ϕσ‖L1(R3) = ‖P‖L2(U′). �
∗We adopt the convention ϕ̂(ξ) =

∫
R3 ϕ(x) exp(−2πix · ξ) dx.
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Lemma 4.6. Let Ω ⊆ R3 a bounded, smooth domain, and let g : Ω → S0 be a bounded, Lipschitz
map. For any Q ∈ H1

g(Ω, S0) and σ ∈ (0, 1), there exists a bounded, Lipschitz map Qσ : Ω→ S0 that
satisfies the following properties:

Qσ = g on ∂Ω (4.9)

‖Qσ‖L∞(Ω) . σ
−1/2

(
‖Q‖H1(Ω) + ‖g‖L∞(Ω)

)
(4.10)

‖∇Qσ‖L∞(Ω) . σ
−3/2

(
‖Q‖H1(Ω) + ‖g‖W1,∞(Ω)

)
(4.11)

‖Q − Qσ‖L2(Ω) . σ ‖Q‖H1(Ω) (4.12)
‖∇Q − ∇Qσ‖L2(Ω) → 0 as σ→ 0. (4.13)

Proof. Since Ω is bounded and smooth, we can extend g to a bounded, Lipschitz map R3 → S0, still
denoted g for simplicity, in such a way that ‖g‖L∞(R3) . ‖g‖L∞(Ω), ‖∇g‖L∞(R3) . ‖∇g‖L∞(Ω). Let P := Q−g.
Then, P ∈ H1

0(Ω, S0), and we extend P to a new map P ∈ H1(R3, S0) by setting P := 0 on R3 \Ω. By
applying Lemma 4.5 to P, we construct a family of smooth maps (Pσ)σ>0 that satisfies (4.4)–(4.7). We
define

P̃σ(x) := min
(
1, σ−1dist(x, ∂Ω)

)
Pσ(x) for x ∈ Ω.

The map P̃σ : Ω → S0 is bounded, Lipschitz, and P̃σ = 0 on ∂Ω. We claim that P̃σ satisfies (4.10)–
(4.13) with g ≡ 0; the lemma will follow by taking Qσ := P̃σ + g. First, we note that (4.10) is a
consequence of the extension of P to the whole R3 and (4.4) together with the Gagliardo-Nirenberg-
Soboleve inequality. Then we check (4.11). Clearly |P̃σ| ≤ |Pσ|. Using the chain rule, and keeping in
mind that the function dist(·, ∂Ω) is 1-Lipschitz, we see that

|∇P̃σ| ≤ |∇Pσ| + σ−1|Pσ| a.e. on Ω (4.14)

and (4.11) follows, with the help of (4.4).
We pass to the proof of (4.12). Let Γσ := {x ∈ R3 : dist(x, ∂Ω) < σ}. Since ∂Ω is a compact,

smooth manifold, for sufficiently small σ the set Γσ is diffeomorphic to the product ∂Ω × (−σ, σ). We
identify Γσ ' ∂Ω × (−σ, σ) and denote the variable in Γσ as x = (y, t) ∈ ∂Ω × (−σ, σ). We apply
Poincaré inequality to the map P on each slice {y} × (−σ, σ):∫ σ

−σ

|P(y, t)|2 dt =

∫ σ

0
|P(y, t) − P(y, 0)|2 dt . σ2

∫ σ

0
|∂tP(y, t)|2 dt.

By integrating with respect to y ∈ ∂Ω, we obtain

‖P‖L2(Γσ) . σ ‖∇P‖L2(Γσ) (4.15)

and hence,

‖P̃σ − Pσ‖L2(Ω) . ‖Pσ‖L2(Γσ) . ‖P‖L2(Γσ) + ‖P − Pσ‖L2(Ω)
(4.5),(4.15)
. σ ‖∇P‖L2(Ω).

Finally, let us prove (4.13). Combining (4.7) and (4.15), we deduce

‖Pσ‖L2(Γσ) ≤ ‖P‖L2(Γ2σ) . σ ‖∇P‖L2(Γ2σ). (4.16)
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Therefore, we have

‖∇P̃σ − ∇Pσ‖L2(Ω) ≤ ‖∇P̃σ‖L2(Γσ) + ‖∇Pσ‖L2(Γσ)

(4.14)
. ‖∇Pσ‖L2(Γσ) + σ−1 ‖Pσ‖L2(Γσ)

(4.16)
. ‖∇P‖L2(Γ2σ) + ‖∇Pσ − ∇P‖L2(Ω)

and both terms in the right-hand side converge to zero as σ→ 0, due to (4.6). �

Lemma 4.7. For any Q ∈ H1
g(Ω, S0), there exists a sequence (Qε)ε>0 in H1

g(Ω, S0) that converges
H1(Ω)-strongly to Q and satisfies

|Jε[Qε] − J0[Q]| . ε1/4
(
‖Q‖4H1(Ω) + 1

)
(the functionals Jε, J0 are defined in (2.11), (2.12) respectively). The constant implied in front of the
right-hand side depends on the L∞(∂Ω)-norms of g and ∇g, as well as Ω, f j

s , P j, R j
∗ with j ∈ {1, . . . , J}.

Proof. Let us fix a small ε > 0. Let β be a positive parameter, to be chosen later, and let Qε := Qεβ ∈

H1
g(Ω, S0) be the Lipschitz map given by Lemma 4.6. We have

|Jε[Qε] − J0[Q]| ≤ |Jε[Qε] − J̃ε[Qε]| + |J̃ε[Qε] − J0[Qε]| + |J0[Qε] − J0[Q]| (4.17)

where J̃ε is defined by (2.16). We will estimate separately all the terms in the right-hand side.
First, let us estimate the difference Jε[Qε] − J̃ε[Qε]. This can be achieved with the help of

Lemma 2.8:

|Jε[Qε] − J̃ε[Qε]|
(2.18)
. εα

(
‖Qε‖

3
L∞(Ω) + 1

)
‖∇Qε‖L∞(Ω)

(4.10),(4.11)
. εα−3β

(
‖Q‖4H1(Ω) + 1

) (4.18)

(here and througout the rest of the proof, the constant implied in front of the right-hand side may
depend on the L∞-norms of g and ∇g).

As for the second term, J̃ε[Qε]−J0[Qε], we write J̃ε in the form (2.17) and we re-write J0 using (2.5),
(2.12):

|J̃ε[Qε] − J0[Qε]| ≤
J∑

j=1

∣∣∣∣∣∫
Ω

f j
hom(Qε, x) dµ j

ε −

∫
Ω

f j
hom(Qε, x) ξ j dx

∣∣∣∣∣
(4.2)
≤ Fε

J∑
j=1

(
‖∇( f j

hom(Qε, ·))‖L∞(Ω) + ‖ f j
hom(Qε, ·)‖L∞(Ω)

)
.

(4.19)

To estimate the terms at the right-hand side, we apply Lemma 2.7 and Lemma 4.6:

‖∇( f j
hom(Qε, ·))‖L∞(Ω)

(2.13)
.

(
‖Qε‖

3
L∞(Ω) + 1

)
‖∇Qε‖L∞(Ω)

(4.11)
. ε−3β

(
‖Q‖4H1(Ω) + 1

)
,
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and

‖ f j
hom(Qε, ·)‖L∞(Ω)

(2.13)
. ‖Qε‖

4
L∞(Ω) + 1

(4.11)
. ε−2β

(
‖Q‖4H1(Ω) + 1

)
.

Injecting these inequalities into (4.19), and using that Fε . ε by Assumption (4.2), we obtain

|J̃ε[Qε] − J0[Qε]| . ε1−3β
(
‖Q‖4H1(Ω) + 1

)
. (4.20)

Finally, the term J0[Qε] − J0[Q]. We apply Lemma 2.7 and the Hölder inequality:

|J0[Qε] − J0[Q]| ≤
∫

Ω

| fhom(Qε, ·) − fhom(Q, ·)|

(2.14)
≤

∫
Ω

(
|Q|3 + |Qε|

3 + 1
)
|Q − Qε|

.
(
‖Q‖3L6(Ω) + ‖Qε‖

3
L6(Ω) + 1

)
‖Q − Qε‖L2(Ω)

The sequence Qε is bounded in L6(Ω), thanks to Sobolev embedding and to Lemma 4.6. Therefore,

|J0[Qε] − J0[Q]|
(4.12)
. εβ ‖Q‖4H1(Ω) + εβ ‖Q‖H1(Ω). (4.21)

Combining (4.17), (4.18), (4.20) and (4.21), we deduce

|Jε[Qε] − J0[Q]| . εmin(α−3β, 1−3β, β)
(
‖Q‖4H1(Ω) + 1

)
.

Keeping into account that α > 1, we see that the optimal choice of β is β = 1/4, and the lemma
follows. �

Lemma 4.8. Let Qε ∈ H1(Ωε, S0) be a family of maps, such that EεQε → Q strongly in H1(Ω),
as ε→ 0. Then,

lim sup
ε→0

∫
Ωε

( fe(∇Qε) + fb(Qε)) dx ≤
∫

Ω

( fe(∇Q) + fb(Q)) dx.

Proof. By Sobolev embedding, we have EεQε → Q strongly in L6(Ω). Then, up to extraction of a
non-relabelled subsequence, we find functions he ∈ L2(Ω), hb ∈ L6(Ω) such that

|∇(EεQε)| ≤ he, |EεQε| ≤ hb a.e. on Ω, for any ε. (4.22)

Let χε be the the indicator function of Ωε (i.e., χε := 1 on Ωε and χε := 0 elsewhere). Thanks to (H6),
(H7) and to (4.22), we have

( fe(∇Qε) + fb(Qε)) χε . h2
e + h6

b + 1 ∈ L1(Ω) a.e. on Ω, for any ε.

Moreover, since |Pε| . ε
3α−3 → 0, χε converges to 1 strongly in L1(Ω) and we may extract a further

subsequence so to have χε → 1 a.e. Then, the lemma follows from Lebesgue’s dominated converge
theorem. �

Mathematics in Engineering Volume 2, Issue 2, 290–312.



310

Proof of Theorem 4.3. Let Qε ∈ H1
g(Ωε, S0), for ε > 0, be a family of maps such that supε Fε,γ(Q) <

+∞. We first extract a (non-relabelled) subsequence ε→ 0, so that lim supε→0 Fε,γ(Qε) is achieved as a
limit; this allows us to pass freely to subsequences, in what follows. Thanks to (H6), (H7), (K2), we have
supε ‖Qε‖L2(Ωε) < +∞. By Lemma 2.5, there is a (non-relabelled) subsequence and Q0 ∈ H1

g(Ω, S0)
such that EεQε ⇀ Q0 weakly in H1(Ω). By Proposition 2.2, there holds

F̃ (Q) ≤ lim inf
ε→0

∫
Ωε

( fe(∇Qε) + fb(Qε)) ≤ lim inf
ε→0

Fε,γ(Qε)

and
J0[Q0] = lim

ε→0
Jε[Qε] ≤ lim sup

ε→0
εγFε,γ(Qε) = 0,

so Q0 belongs to the class A defined by (4.3). Thus, Statement (i) is proved.
We now prove Statement (ii). Let Q0 ∈ H1

g(Ω, Ω) be fixed. We can suppose without loss of
generality that Q ∈ A , otherwise the statement is trivial. Due to Lemma 4.7, there is a sequence Q̃ε ∈

H1
g(Ω, S0) such that Q̃ε → Q0 strongly in H1(Ω) and

∣∣∣Jε[Q̃ε]
∣∣∣ = ε3−2α

∣∣∣∣∣∣∣
J∑

j=1

∫
∂P j

f j
s (Q̃ε, ν) dσ

∣∣∣∣∣∣∣ . ε1/4
(
‖Q‖4L4(Ω) + 1

)
. (4.23)

Let Qε := Q̃ε|Ωε
. By Lemma 2.5, EεQε → Q0 strongly in H1(Ω). Using Lemma 4.8 and (4.23), and

recalling that γ < 1/4, we conclude that

lim sup
ε→0

Fε,γ(Qε) = lim sup
ε→0

∫
Ωε

( fe(∇Qε) + fb(Qε)) + lim sup
ε→0

ε−γJε[Qε]︸                ︷︷                ︸
=0, by (4.23)

≤ F̃ (Q0),

so the proof is complete. �
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23. Ravnik M, Žumer S (2009) Landau-de Gennes modelling of nematic liquid crystal colloids. Liq
Cryst 36: 1201–1214.

24. Rey A (2001) Generalized nematostatics. Liq Cryst 28: 549–556.

25. Reznikov Y, Buchnev O, Tereshchenko O, et al. (2003). Ferroelectric nematic suspension. Appl
Phys Lett 82: 1917–1919.

26. Sluckin TJ, Poniewierski A (1984) Fluid and Interfacial Phenomena, Chichester: John Wiley.

27. Smalyukh II (2018) Liquid crystal colloids. Annu Rev Condens Matter Phys 9: 207–226.

28. Wang Y, Canevari G, Majumdar A (2019) Order reconstruction for nematics on squares with
isotropic inclusions: A Landau-de Gennes study. SIAM J Appl Math 79: 1314–1340.

29. Wang Y, Zhang P, Chen JZY (2017) Topological defects in an unconfined nematic fluid induced
by single and double spherical colloidal particles. Phys Rev E 96: 042702.

c© 2020 the Author(s), licensee AIMS Press. This
is an open access article distributed under the
terms of the Creative Commons Attribution License
(http://creativecommons.org/licenses/by/4.0)

Mathematics in Engineering Volume 2, Issue 2, 290–312.

http://creativecommons.org/licenses/by/4.0

	Introduction
	An homogenisation result for polydisperse, inhomogeneous nematic colloids in the dilute regime
	Statement of the homogenisation result
	Preliminary results
	Proof of Theorem 2.1

	Linear terms in the homogenised bulk potential
	The limit functional in the case of stronger anchoring strength
	Proof of Theorem 4.3


