This article is devoted to study the following quasilinear Schrödinger system with super-quadratic condition:
$ \begin{equation*} \left\{\begin{matrix} -\Delta u+V_{1}(x)u-\Delta (u^{2})u = h(u,v),\ x\in \mathbb{R}^{N},\\ -\Delta v+V_{2}(x)v-\Delta (v^{2})v = g(u,v),\ x\in \mathbb{R}^{N},\\ \end{matrix}\right. \end{equation*} $
where $ N \geq3 $, $ V_{1}(x) $, $ V_{2}(x) $ are variable potentials and $ h $, $ g $ satisfy some conditions. By establishing a suitable Nehari-Pohožaev type constraint set and considering related minimization problem, we prove the existence of ground states.
Citation: Yixuan Wang, Xianjiu Huang. Ground states of Nehari-Pohožaev type for a quasilinear Schrödinger system with superlinear reaction[J]. Electronic Research Archive, 2023, 31(4): 2071-2094. doi: 10.3934/era.2023106
This article is devoted to study the following quasilinear Schrödinger system with super-quadratic condition:
$ \begin{equation*} \left\{\begin{matrix} -\Delta u+V_{1}(x)u-\Delta (u^{2})u = h(u,v),\ x\in \mathbb{R}^{N},\\ -\Delta v+V_{2}(x)v-\Delta (v^{2})v = g(u,v),\ x\in \mathbb{R}^{N},\\ \end{matrix}\right. \end{equation*} $
where $ N \geq3 $, $ V_{1}(x) $, $ V_{2}(x) $ are variable potentials and $ h $, $ g $ satisfy some conditions. By establishing a suitable Nehari-Pohožaev type constraint set and considering related minimization problem, we prove the existence of ground states.
[1] | S. Kurihara, Large-amplitude quasi-solitons in superfluids films, J. Phys. Soc. Jpn., 50 (1981), 3262–3267. https://doi.org/10.1143/JPSJ.50.3262 doi: 10.1143/JPSJ.50.3262 |
[2] | E. W. Laedke, K. H. Spatschek, L. Stenflo, Evolution theorem for a class of perturbed envelope soliton solutions, J. Math. Phys., 24 (1963), 2764–2769. https://doi.org/10.1063/1.525675 doi: 10.1063/1.525675 |
[3] | A. V. Borovskii, A. L. Galkin, D. Book, Dynamical modulation of an ultrashort high-intensity laser pulse in matter, J. Exp. Theor. Phys., 77 (1993), 562–573. |
[4] | H. S. Brandi, C. Manus, G. Mainfray, Relativistic and ponderomotive self-focusing of a laser beam in a radially inhomogeneous plasma, Physics Fluids B Plasma Phys., 5 (1993), 3539–3550. https://doi.org/10.1063/1.860828 doi: 10.1063/1.860828 |
[5] | X. L. Chen, R. N. Sudan, Necessary and sufficient conditions for self-focusing of short ultraintense laser pulse, Phys. Rev. Lett., 70 (1993), 2082–2085. https://doi.org/10.1103/PhysRevLett.70.2082 doi: 10.1103/PhysRevLett.70.2082 |
[6] | S. Cuccagna, On instability of excited states of the nonlinear Schrödinger equation, Phys. D. Nonlinear Phenom., 238 (2009), 38–54. https://doi.org/10.1016/j.physd.2008.08.010 doi: 10.1016/j.physd.2008.08.010 |
[7] | H. Lange, B. Toomire, P. F. Zweifel, Time-dependent dissipation in nonlinear Schrödinger systems, J. Math. Phys., 36 (1995), 1274–1283. https://doi.org/10.1063/1.531120 doi: 10.1063/1.531120 |
[8] | X. H. Tang, S. T. Chen, Singularly perturbed choquard equations with nonlinearity satisfying Berestycki-Lions assumptions, Adv. Nonlinear Anal., 9 (2019), 413–437. https://doi.org/10.1515/anona-2020-0007 doi: 10.1515/anona-2020-0007 |
[9] | F. G. Bass, N. N. Nasanov, Nonlinear electromagnetic-spin waves, Phys. Rep., 189 (1990), 165–223. https://doi.org/10.1016/0370-1573(90)90093-H doi: 10.1016/0370-1573(90)90093-H |
[10] | L. Briill, H. Lange, Solitary waves for quasilinear Schrödinger equations, Expo. Math., 4 (1986), 279–288. |
[11] | R. W. Hasse, A general method for the solution of nonlinear soliton and kink Schrödinger equations, Z. f$\ddot{u}$r Phys. B Condens. Matter, 37 (1980), 83–87. https://doi.org/10.1007/BF01325508 doi: 10.1007/BF01325508 |
[12] | A. M. Kosevich, B. A. Ivanov, A. S. Kovalev, Magnetic solitons, Phys. Rep., 194 (1990), 117–238. https://doi.org/10.1016/0370-1573(90)90130-T doi: 10.1016/0370-1573(90)90130-T |
[13] | H. Lange, M. Poppenberg, H. Teismann, Nash-Moser methods for the solution of quasilinear Schrödinger equations, Commun. Partial Differ. Equations, 24 (1999), 1399–1418. https://doi.org/10.1080/03605309908821469 doi: 10.1080/03605309908821469 |
[14] | V. G. Makhankov, V. K. Fedyanin, Nonlinear effects in quasi-one-dimensional models and condensed matter theory, Phy. Rep., 104 (1984), 1–86. |
[15] | M. Poppenberg, K. Schmitt, Z. Q. Wang, On the existence of soliton solutions to quasilinear Schrödinger equations, Calc. Var. Partial Differ. Equations, 14 (2002), 329–344. https://doi.org/10.1007/s005260100105 doi: 10.1007/s005260100105 |
[16] | G. R. W. Quispel, H. W. Capel, Equation of motion for the Heisenberg spin chain, Phys. A Stat. Mech. Appl., 110 (1982), 41–80. https://doi.org/10.1016/0378-4371(82)90104-2 doi: 10.1016/0378-4371(82)90104-2 |
[17] | J. Q. Liu, Y. Q. Wang, Z. Q. Wang, Soliton solutions for quasilinear Schrödinger equations, Ⅱ, J. Differ. Equations, 187 (2003), 473–493. https://doi.org/10.1016/S0022-0396(02)00064-5 doi: 10.1016/S0022-0396(02)00064-5 |
[18] | T. Bartsch, Z. Q. Wang, Existence and multiplicity results for some superlinear elliptic problems on $\mathbb{R}^{N}$, Commun. Partial Differ. Equations, 20 (1995), 1725–1741. https://doi.org/10.1080/03605309508821149 doi: 10.1080/03605309508821149 |
[19] | M. Colin, L. Jeanjean, Solutions for a quasilinear Schrödinger equation: a dual approach, Nonlinear Anal., 56 (2004), 213–226. https://doi.org/10.1016/j.na.2003.09.008 doi: 10.1016/j.na.2003.09.008 |
[20] | D. Ruiz, G. Siciliano, Existence of ground states for a modified nonlinear Schrödinger equations, Nonlinearity, 23 (2010), 1221–1233. 10.1088/0951-7715/23/5/011 doi: 10.1088/0951-7715/23/5/011 |
[21] | S. T. Chen, V. D. R$\breve{a}$dulescu, X. H. Tang, B. L. Zhang, Ground state solutions for quasilinear Schrödinger equations with variable potential and superlinear reaction, Rev. Mat. Iberoam., 36 (2020), 1549–1570. https://doi.org/10.4171/RMI/1175 doi: 10.4171/RMI/1175 |
[22] | Y. X. Guo, Z. W. Tang, Ground state solutions for quasilinear Schrödinger systems, J. Math. Anal. Appl., 389 (2012), 322–339. https://doi.org/10.1016/j.jmaa.2011.11.064 doi: 10.1016/j.jmaa.2011.11.064 |
[23] | U. Severo, E. da Silva, On the existence of standing wave solutions for a class of quasilinear Schrödinger systems, J. Math. Anal. Appl., 412 (2014), 763–775. https://doi.org/10.1016/j.jmaa.2013.11.012 doi: 10.1016/j.jmaa.2013.11.012 |
[24] | J. Q. Chen, Q. Zhang, Ground state solution of Nehari-Pohožaev type for periodic quasilinear Schrödinger system, J. Math. Phys., 61 (2020), 101510. https://doi.org/10.1063/5.0014321 doi: 10.1063/5.0014321 |
[25] | J. H. Chen, B. T. Cheng, X. J. Huang, Ground state solutions for a class of quasilinear Schrödinger equations with Choquard type nonlinearity, Appl. Math. Lett., 102 (2020), 106141. https://doi.org/10.1016/j.aml.2019.106141 doi: 10.1016/j.aml.2019.106141 |
[26] | J. H. Chen, X. J. Huang, B. T. Cheng, Positive solutions for a class of quasilinear Schrödinger equations with superlinear condition, Appl. Math. Lett., 87 (2019), 165–171. https://doi.org/10.1016/j.aml.2018.07.035 doi: 10.1016/j.aml.2018.07.035 |
[27] | J. H. Chen, X. J. Huang, B. T. Cheng, C. X. Zhu, Some results on standing wave solutions for a class of quasilinear Schrödinger equations, J. Math. Phys., 60 (2019), 091506. https://doi.org/10.1063/1.5093720 doi: 10.1063/1.5093720 |
[28] | J. H. Chen, X. J. Huang, D. D. Qin, B. T. Cheng, Existence and asymptotic behavior of standing wave solutions for a class of generalized quasilinear Schrödinger equations with critical Sobolev exponents, Asymptotic Anal., 120 (2020), 199–248. https://doi.org/10.3233/ASY-191586 doi: 10.3233/ASY-191586 |
[29] | J. H. Chen, Q. F. Wu, X. J. Huang, C. X. Zhu, Positive solutions for a class of quasilinear Schrödinger equations equations with two parameters, Bull. Malays. Math. Sci. Soc., 43 (2020), 2321–2341. https://doi.org/10.1007/s40840-019-00803-y doi: 10.1007/s40840-019-00803-y |
[30] | Y. T. Shen, Y. J. Wang, Soliton solutions for generalized quasilinear Schrödinger equations, Nonlinear Anal. Theory Methods Appl., 80 (2013), 194–201. https://doi.org/10.1016/j.na.2012.10.005 doi: 10.1016/j.na.2012.10.005 |
[31] | J. Chen, Q. Zhang, Existence of positive ground state solutions for quasilinear Schrödinger system with positive parameter, Appl. Anal., (2022). https://doi.org/10.1080/00036811.2022.2033232 doi: 10.1080/00036811.2022.2033232 |
[32] | W. Zhang, J. Zhang, V. D. Rădulescu, Concentrating solutions for singularly perturbed double phase problems with nonlocal reaction, J. Differ. Equations, 347 (2023), 56–103. https://doi.org/10.1016/j.jde.2022.11.033 doi: 10.1016/j.jde.2022.11.033 |
[33] | J. Zhang, W. Zhang, Semiclassical states for coupled nonlinear Schrödinger system with competing potentials, J. Geom. Anal., 32 (2022), 1–36. |
[34] | G. Li, On the existence of nontrivial solutions for quasilinear Schrödinger systems, Boundary Value Probl., 1 (2022), 1–17. |
[35] | J. Q. Chen, Q. Zhang, Existence of ground state solution of Nehari-Pohožaev type for a quasilinear Schrödinger system, Differential Integral Equations, 34 (2021), 1-20. https://doi.org/10.57262/die/1610420451 doi: 10.57262/die/1610420451 |
[36] | J. M. do $\acute{O}$, U. B. Severo, Quasilinear Schrödinger equations involving concave and convex nonlinearities, Commun. Pure Appl. Anal., 8 (2009), 621–644. http://doi.org/10.3934/cpaa.2009.8.621 doi: 10.3934/cpaa.2009.8.621 |
[37] | S. T. Chen, X. H. Tang, F. F. Liao, Existence and asymptotic behavior of sign-changing solutions for fractional Kirchhoff-type problems in low dimensions, Nonlinear Differ. Equations Appl. NoDEA, 25 (2018), 1–23. https://doi.org/10.1007/s00030-018-0531-9 doi: 10.1007/s00030-018-0531-9 |
[38] | S. T. Chen, B. T. Zhang, X. H. Tang, Existence and non-existence results for Kirchhoff-type problems with convolution nonlinearity, Adv. Nonlinear Anal., 9 (2018), 148–167. https://doi.org/10.1515/anona-2018-0147 doi: 10.1515/anona-2018-0147 |