Research article Special Issues

Study on the storage stability performance enhancement mechanism of graphene on rubber-modified asphalt based on size effect

  • Received: 25 October 2022 Revised: 19 January 2023 Accepted: 06 February 2023 Published: 16 February 2023
  • The application of waste rubber powder (WRP) for asphalt pavement could achieve the harmless and resourceful utilization of solid waste, but the storage stability of waste rubber powder modified asphalt (RA) is one of the main problems restricting its application. Existing studies have demonstrated that graphene could enhance the storage stability of RA, but graphene's size effect on the modifying effect and its corresponding mechanism are still uncertain. In this research, the effects of graphene microstructural properties (i.e., molecular size and layer number) on the storage stability of RA were investigated by storage stability testing, dynamic shear rheometry (DSR) testing and fluorescence microscopy (FM) testing, in combination with molecular dynamics simulation (MD). The experimental results indicated that graphene improved the storage stability of RA significantly, with few-layer graphene being more effective in enhancing it. MD was used to investigate the graphene size effect on RA in compatibility, intermolecular binding energy and structural stability of the system. The simulation results revealed that small-sized graphene molecules were more compatible with RA. Meanwhile, few-layer, small-sized graphene can provide higher binding energy and better enhancement of storage stability of RA. The number of graphene layers mainly influences the binding energy rather than solubility parameters. The relative concentration distribution results demonstrated that graphene facilitated the spatial distribution of asphaltenes, rubber components and light components. This research provides theoretical support for the rational selection of microstructural properties of graphene to improve the modified asphalt storage stability performance.

    Citation: Yutong Xie, Yingli Gao, Meijie Liao, Weiwei Tian. Study on the storage stability performance enhancement mechanism of graphene on rubber-modified asphalt based on size effect[J]. Electronic Research Archive, 2023, 31(4): 2048-2070. doi: 10.3934/era.2023105

    Related Papers:

  • The application of waste rubber powder (WRP) for asphalt pavement could achieve the harmless and resourceful utilization of solid waste, but the storage stability of waste rubber powder modified asphalt (RA) is one of the main problems restricting its application. Existing studies have demonstrated that graphene could enhance the storage stability of RA, but graphene's size effect on the modifying effect and its corresponding mechanism are still uncertain. In this research, the effects of graphene microstructural properties (i.e., molecular size and layer number) on the storage stability of RA were investigated by storage stability testing, dynamic shear rheometry (DSR) testing and fluorescence microscopy (FM) testing, in combination with molecular dynamics simulation (MD). The experimental results indicated that graphene improved the storage stability of RA significantly, with few-layer graphene being more effective in enhancing it. MD was used to investigate the graphene size effect on RA in compatibility, intermolecular binding energy and structural stability of the system. The simulation results revealed that small-sized graphene molecules were more compatible with RA. Meanwhile, few-layer, small-sized graphene can provide higher binding energy and better enhancement of storage stability of RA. The number of graphene layers mainly influences the binding energy rather than solubility parameters. The relative concentration distribution results demonstrated that graphene facilitated the spatial distribution of asphaltenes, rubber components and light components. This research provides theoretical support for the rational selection of microstructural properties of graphene to improve the modified asphalt storage stability performance.



    加载中


    [1] Q. Z. Wang, N. N. Wang, M. L. Tseng, Y. M. Huang, N. L. Li, Waste tire recycling assessment: Road application potential and carbon emissions reduction analysis of crumb rubber modified asphalt in China, J. Clean. Prod., 249 (2020), 119411. https://doi.org/10.1016/j.jclepro.2019.119411 doi: 10.1016/j.jclepro.2019.119411
    [2] T. Ma, H. Wang, L. He, Y. Zhao, X. Huang, J. Chen, Property characterization of asphalt binders and mixtures modified by different crumb rubbers, J. Mater. Civ. Eng., 29 (2017), 04017036. https://doi.org/10.1061/(asce)mt.1943-5533.0001890 doi: 10.1061/(asce)mt.1943-5533.0001890
    [3] X. Ding, L. Chen, T. Ma, H. Ma, L. Gu, T. Chen, et al., Laboratory investigation of the recycled asphalt concrete with stable crumb rubber asphalt binder, Constr. Build. Mater., 203 (2019), 552–557. https://doi.org/10.1016/j.conbuildmat.2019.01.114 doi: 10.1016/j.conbuildmat.2019.01.114
    [4] F. Chen, J. Qian, Studies of the thermal degradation of waste rubber, Waste Manage., (2003), 463–467. https://doi.org/10.1016/S0956-053X(03)00090-4 doi: 10.1016/S0956-053X(03)00090-4
    [5] Y. Zhu, G. Xu, T. Ma, J. Fan, S. Li, Performances of rubber asphalt with middle/high content of waste tire crumb rubber, Constr. Build. Mater., 335 (2022), 127488. https://doi.org/10.1016/j.conbuildmat.2022.127488 doi: 10.1016/j.conbuildmat.2022.127488
    [6] J. Li, M. Saberian, B. T. Nguyen, Effect of crumb rubber on the mechanical properties of crushed recycled pavement materials, J. Environ. Manage., 218 (2018), 291–299. https://doi.org/10.1016/j.jenvman.2018.04.062 doi: 10.1016/j.jenvman.2018.04.062
    [7] B. Świeczko-Żurek, P. Jaskula, J. A. Ejsmont, A. Kędzierska, P. Czajkowski, Rolling resistance and tyre/road noise on rubberised asphalt pavement in Poland, Road Mater. Pavement Des., 18 (2017), 151–167. https://doi.org/10.1080/14680629.2016.1159245 doi: 10.1080/14680629.2016.1159245
    [8] F. J. Navarro, P. Partal, F. Martínez-Boza, C. Gallegos, Thermo-rheological behaviour and storage stability of ground tire rubber-modified bitumens, Fuel, (2004), 2041–2049. https://doi.org/10.1016/j.fuel.2004.04.003 doi: 10.1016/j.fuel.2004.04.003
    [9] I. Gawel, R. Stepkowski, F. Czechowski, Molecular interactions between rubber and asphalt, Ind. Eng. Chem. Res., 45 (2006), 3044–3049. https://doi.org/10.1021/ie050905r doi: 10.1021/ie050905r
    [10] H. Xue, Y. Cao, Q. Liu, H. Zhang, M. Zhang, Stability evaluation and mechanism of asphalts modified with various rubber powder contents, Front. Mater., 7 (2021), 622479. https://doi.org/10.3389/fmats.2020.622479 doi: 10.3389/fmats.2020.622479
    [11] P. Kong, G. Xu, J. Yang, X. Chen, Y. Zhu, Study on storage stability of activated reclaimed rubber powder modified asphalt, Materials (Basel), 14 (2021), 4684–4684. https://doi.org/10.3390/ma14164684 doi: 10.3390/ma14164684
    [12] R. Wang, Y. Xiong, M. Yue, M. Hao, J. Yue, Investigating the effectiveness of carbon nanomaterials on asphalt binders from hot storage stability, thermodynamics, and mechanism perspectives, J. Clean. Prod., 276 (2020), 124180. https://doi.org/10.1016/j.jclepro.2020.124180 doi: 10.1016/j.jclepro.2020.124180
    [13] Y. Chen, Q. Wang, Z. Li, S. Ding, Rhysiological properties of graphene nanoplatelets/rubber crowd composite modified asphalt, Constr. Build. Mater., 261 (2020), 120505. https://doi.org/10.1016/j.conbuildmat.2020.120505 doi: 10.1016/j.conbuildmat.2020.120505
    [14] X. Li, Y. M. Wang, Y. L. Wu, H. R. Wang, M. Chen, H. D. Sun, et al., Properties and modification mechanism of asphalt with graphene as modifier, Constr. Build. Mater., 272 (2021), 121919. https://doi.org/10.1016/j.conbuildmat.2020.121919 doi: 10.1016/j.conbuildmat.2020.121919
    [15] B. B. Singh, F. Mohanty, S. S. Das, S. K. Swain, Graphene sandwiched crumb rubber dispersed hot mix asphalt, J. Traffic Transp. Eng. (English Ed., 7 (2020), 652–667. https://doi.org/10.1016/j.jtte.2019.02.003 doi: 10.1016/j.jtte.2019.02.003
    [16] Y. Meng, H. Guo, R. Xu, R. Zhang, C. Ma, Rheological and microscopic properties of graphene rubber composite modified asphalt, Jianzhu Cailiao Xuebao/Journal Build. Mater., 23 (2020), 1246–1251. https://doi.org/10.3969/j.issn.1007-9629.2020.05.034 doi: 10.3969/j.issn.1007-9629.2020.05.034
    [17] J. Liu, P. Hao, Z. Dou, J. Wang, L. Ma, Rheological, healing and microstructural properties of unmodified and crumb rubber modified asphalt incorporated with graphene/carbon black composite, Constr. Build. Mater., 305 (2021), 124512. https://doi.org/10.1016/j.conbuildmat.2021.124512 doi: 10.1016/j.conbuildmat.2021.124512
    [18] A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, et al., Raman spectrum of graphene and graphene layers, Phys. Rev. Lett., 97 (2006), 187401. https://doi.org/10.1103/PhysRevLett.97.187401 doi: 10.1103/PhysRevLett.97.187401
    [19] S. K. Tiwari, S. Sahoo, N. Wang, A. Huczko, Graphene research and their outputs: Status and prospect, J. Sci. Adv. Mater. Devices., 5 (2020), 10–29. https://doi.org/10.1016/j.jsamd.2020.01.006 doi: 10.1016/j.jsamd.2020.01.006
    [20] Y. B. Xie, M. R. Huang, X. G. Li, Review: Layer-number controllable preparation of high-quality graphene for wide applications, J. Harbin Inst. Technol. (New Ser., 27 (2020), 136–157. https://doi.org/10.11916/j.issn.1005-9113.20003 doi: 10.11916/j.issn.1005-9113.20003
    [21] A. A. MOOSA, M. S. ABED, Graphene preparation and graphite exfoliation, Turkish J. Chem., 45 (2021), 493–519. https://doi.org/10.3906/kim-2101-19 doi: 10.3906/kim-2101-19
    [22] K. Vollmayr-Lee, Introduction to molecular dynamics simulations, Am. J. Phys., 88 (2020), 401–422. https://doi.org/10.1119/10.0000654 doi: 10.1119/10.0000654
    [23] F. Guo, J. Zhang, J. Pei, B. Zhou, Z. Hu, Study on the mechanical properties of rubber asphalt by molecular dynamics simulation, J. Mol. Model., 25 (2019), 365. https://doi.org/10.1007/s00894-019-4250-x doi: 10.1007/s00894-019-4250-x
    [24] Y. Chen, Q. Wang, Z. Li, S. Ding, Rhysiological properties of graphene nanoplatelets/rubber crowd composite modified asphalt, Constr. Build. Mater., 261 (2020), 120505. https://doi.org/10.1016/j.conbuildmat.2020.12050-5 doi: 10.1016/j.conbuildmat.2020.12050-5
    [25] Y. Wen, Q. Liu, L. Chen, J. Pei, J. Zhang, R. Li, Review and comparison of methods to assess the storage stability of terminal blend rubberized asphalt binders, Constr. Build. Mater., 258 (2020), 119586. https://doi.org/10.1016/j.conbuildmat.2020.119586 doi: 10.1016/j.conbuildmat.2020.119586
    [26] G. Polacco, S. Filippi, F. Merusi, G. Stastna, A review of the fundamentals of polymer-modified asphalts: Asphalt/polymer interactions and principles of compatibility, Adv. Colloid Interface Sci., 224 (2015), 72112. https://doi.org/10.1016/j.cis.2015.07.010 doi: 10.1016/j.cis.2015.07.010
    [27] M. Ragab, M. Abdelrahman, Enhancing the crumb rubber modified asphalt's storage stability through the control of its internal network structure, Int. J. Pavement Res. Technol., 11 (2018), 13–27. https://doi.org/10.1016/j.ijprt.2017.08.003 doi: 10.1016/j.ijprt.2017.08.003
    [28] D. D. Li, M. L. Greenfield, Chemical compositions of improved model asphalt systems for molecular simulations, Fuel, 115 (2014), 347–356. https://doi.org/10.1016/j.fuel.2013.07.012 doi: 10.1016/j.fuel.2013.07.012
    [29] G. Xu, H. Wang, Molecular dynamics study of oxidative aging effect on asphalt binder properties, Fuel, 188 (2017), 1–10. https://doi.org/10.1016/j.fuel.2016.10.021 doi: 10.1016/j.fuel.2016.10.021
    [30] Y. Lan, D. Li, R. Yang, W. Liang, L. Zhou, Z. Chen, Computer simulation study on the compatibility of cyclotriphosphazene containing aminopropylsilicone functional group in flame retarded polypropylene/ammonium polyphosphate composites, Compos. Sci. Technol., 88 (2013), 9–15. https://doi.org/10.1016/j.compscitech.2013.08.026 doi: 10.1016/j.compscitech.2013.08.026
    [31] H. Wang, Z. You, J. Mills-Beale, P. Hao, Laboratory evaluation on high temperature viscosity and low temperature stiffness of asphalt binder with high percent scrap tire rubber, Constr. Build. Mater., 26 (2012), 583–590. https://doi.org/10.1016/j.conbuildmat.2011.06.061 doi: 10.1016/j.conbuildmat.2011.06.061
    [32] Y. Qiao, W. Sheng, C. He, C. Liu, Z. Rao, Experimental study on the effect of different surfactants on the thermophysical properties of graphene filled nanofluids, Int. J. Energy Res., 45 (2021), 10043–10063. https://doi.org/10.1002/er.6497 doi: 10.1002/er.6497
    [33] Y. Meng, H. Guo, R. Xu, L. Liu, Study on the properties of graphene modified rubber asphalt under the effect of thermal aging, Gongneng Cailiao/Journal Funct. Mater., 51 (2020), 08001–08006. https://doi.org/10.3969/j.issn.1001-9731.2020.08.001 doi: 10.3969/j.issn.1001-9731.2020.08.001
    [34] S. D. Christian, Regular and related solutions: The solubility of gases, liquids, and solids(Hildebrand, Joel H; Prausnitz, John M.), J. Chem. Educ., 48 (1971), 562–A562. https://doi.org/10.1021/ed048pa562.1 doi: 10.1021/ed048pa562.1
    [35] Z. Long, L. You, X. Tang, W. Ma, Y. Ding, F. Xu, Analysis of interfacial adhesion properties of nano-silica modified asphalt mixtures using molecular dynamics simulation, Constr. Build. Mater., 255 (2020), 119354. https://doi.org/10.1016/j.conbuildmat.2020.119354 doi: 10.1016/j.conbuildmat.2020.119354
    [36] C. Li, S. Fan, T. Xu, Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models, J. Mater. Civ. Eng., 33 (2021), 4021207. https://doi.org/10.1061/(asce)mt.1943-5533.0003863 doi: 10.1061/(asce)mt.1943-5533.0003863
    [37] R. Yu, C. Fang, P. Liu, X. Liu, Y. Li, Storage stability and rheological properties of asphalt modified with waste packaging polyethylene and organic montmorillonite, Appl. Clay Sci., 104 (2015), 1–7. https://doi.org/10.1016/j.clay.2014.11.033 doi: 10.1016/j.clay.2014.11.033
    [38] A. H. Abed, H. U. Bahia, Enhancement of permanent deformation resistance of modified asphalt concrete mixtures with nano-high density polyethylene, Constr. Build. Mater., 236 (2020), 117604–117604. https://doi.org/10.1016/j.conbuildmat.2019.117604 doi: 10.1016/j.conbuildmat.2019.117604
    [39] C. Yu, K. Hu, Q. Yang, D. Wang, W. Zhang, G. Chen, et al., Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations, Polymers (Basel), 13 (2021), 1658–1658. https://doi.org/10.3390/polym13101658 doi: 10.3390/polym13101658
    [40] Q. Zeng, Y. Liu, Q. Liu, P. Liu, Y. He, Y. Zeng, Preparation and modification mechanism analysis of graphene oxide modified asphalts, Constr. Build. Mater., 238 (2020), 117706. https://doi.org/10.1016/j.conbuildmat.2019.117706 doi: 10.1016/j.conbuildmat.2019.117706
    [41] X. Zhang, G. Huang, C. Zhou, X. Yuan, J. He, M. Feng, et al., Research status of graphene material in fields of asphalt composites, Zhongnan Daxue Xuebao (Ziran Kexue Ban)/Journal Cent. South Univ. (Science Technol., 50 (2019), 1637–1644. https://doi.org/10.11817/j.issn.1672-7207.2019.07.017 doi: 10.11817/j.issn.1672-7207.2019.07.017
    [42] L. Gong, R. J. Young, I. A. Kinloch, I. Riaz, R. Jalil, K. S. Novoselov, Optimizing the reinforcement of polymer-based nanocomposites by graphene, ACS Nano., 6 (2012), 2086–2095. https://doi.org/10.1021/nn203917d doi: 10.1021/nn203917d
    [43] Y. Q. Tan, G. N. Li, L. Y. Shan, H. J. Lyu, A. X. Meng, Research progress of bitumen microstructures and components, Jiaotong Yunshu Gongcheng Xuebao/J. Traffic Transp. Eng., 20 (2020). https://doi.org/10.19818/j.cnki.1671-1637.2020.06.001 doi: 10.19818/j.cnki.1671-1637.2020.06.001
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1218) PDF downloads(67) Cited by(4)

Article outline

Figures and Tables

Figures(15)  /  Tables(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog