The compatibility between waste plastic polymers and bitumen is the most challenging issue hindering the improvement of modified bitumen performance. The current practice of recycled waste plastics includes the use of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), etc. This study was designed to investigate the compatibility of different waste plastic polymers with bitumen binders by conducting molecular dynamics (MD) simulations at different temperatures. The molecular models of these materials were constructed in this study for the compatibility analysis, and they include the base bitumen, polymers (PVC, PP, and PE), polymer- bitumen blending systems. Using the output and related calculations of these MD models, the properties of these blending systems were measured at different temperatures through the calculation of the solubility parameter (δ) and interaction energies. The compatibility analysis is discussed in the context of these simulation results. The simulation results for the solubility parameters and interaction energies show consistent trends. The results showed that PVC and PP had better compatibility with bitumen at 433.15 K and that PE and bitumen had good compatibility at 393.15 K. Moreover, it can be deduced that the order of compatibility of the three polymers with bitumen is as follows: PVC > PE > PP. In addition, these research results can be referenced for the industry and research development of modified bitumen.
Citation: Hui Yao, Xin Li, Hancheng Dan, Qingli Dai, Zhanping You. Compatibility investigation of waste plastics in bitumen via a molecular dynamics method[J]. Electronic Research Archive, 2023, 31(12): 7224-7243. doi: 10.3934/era.2023366
The compatibility between waste plastic polymers and bitumen is the most challenging issue hindering the improvement of modified bitumen performance. The current practice of recycled waste plastics includes the use of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), etc. This study was designed to investigate the compatibility of different waste plastic polymers with bitumen binders by conducting molecular dynamics (MD) simulations at different temperatures. The molecular models of these materials were constructed in this study for the compatibility analysis, and they include the base bitumen, polymers (PVC, PP, and PE), polymer- bitumen blending systems. Using the output and related calculations of these MD models, the properties of these blending systems were measured at different temperatures through the calculation of the solubility parameter (δ) and interaction energies. The compatibility analysis is discussed in the context of these simulation results. The simulation results for the solubility parameters and interaction energies show consistent trends. The results showed that PVC and PP had better compatibility with bitumen at 433.15 K and that PE and bitumen had good compatibility at 393.15 K. Moreover, it can be deduced that the order of compatibility of the three polymers with bitumen is as follows: PVC > PE > PP. In addition, these research results can be referenced for the industry and research development of modified bitumen.
[1] | B. Madden, M. Jazbec, N. Florin, Increasing packaging grade recovery rates of plastic milk bottles in Australia: A material flow analysis approach, Sustainable Prod. Consumption, 37 (2023), 65–77. https://doi.org/10.1016/j.spc.2023.02.017 doi: 10.1016/j.spc.2023.02.017 |
[2] | Y. Chen, Z. Cui, X. Cui, W. Liu, X. Wang, X. Li, et al., Life cycle assessment of end-of-life treatments of waste plastics in China, Resour. Conserv. Recycl., 146 (2019), 348–357. https://doi.org/10.1016/j.resconrec.2019.03.011 doi: 10.1016/j.resconrec.2019.03.011 |
[3] | W. Leal Filho, U. Saari, M. Fedoruk, A. Iital, H. Moora, M. Klöga, et al., An overview of the problems posed by plastic products and the role of extended producer responsibility in Europe, J. Cleaner Prod., 214 (2019), 550–558. https://doi.org/10.1016/j.jclepro.2018.12.256 doi: 10.1016/j.jclepro.2018.12.256 |
[4] | US EPA O, Plastics: Material-Specific Data, 2017. Available from: https://www.epa.gov/facts-and-figures-about-materials-waste-and-recycling/plastics-material-specific-data. |
[5] | P. He, L. Chen, L. Shao, H. Zhang, F. Lü, Municipal solid waste (MSW) landfill: A source of microplastics? -Evidence of microplastics in landfill leachate, Water Res., 159 (2019), 38–45. https://doi.org/10.1016/j.watres.2019.04.060 doi: 10.1016/j.watres.2019.04.060 |
[6] | M. Sun, M. Zheng, G. Qu, K. Yuan, Y. Bi, J. Wang, Performance of polyurethane modified asphalt and its mixtures, Constr. Build. Mater., 191 (2018), 386–397. https://doi.org/10.1016/j.conbuildmat.2018.10.025 doi: 10.1016/j.conbuildmat.2018.10.025 |
[7] | P. J. Yoo, B. S. Ohm, J. Y. Choi, Toughening characteristics of plastic fiber-reinforced hot-mix asphalt mixtures, KSCE J. Civ. Eng. Manage., 16 (2012), 751–758. https://doi.org/10.1007/s12205-012-1384-0 doi: 10.1007/s12205-012-1384-0 |
[8] | A. Behl, G. Sharma, G. Kumar, A sustainable approach: Utilization of waste PVC in asphalting of roads, Constr. Build. Mater., 54 (2014), 113–117. https://doi.org/10.1016/j.conbuildmat.2013.12.050 doi: 10.1016/j.conbuildmat.2013.12.050 |
[9] | Z. Leng, R. K. Padhan, A. Sreeram, Production of a sustainable paving material through chemical recycling of waste PET into crumb rubber modified asphalt, J. Cleaner Prod., 180 (2018), 682–688. https://doi.org/10.1016/j.jclepro.2018.01.171 doi: 10.1016/j.jclepro.2018.01.171 |
[10] | F. Sadiq Bhat, M. Shafi Mir, A study investigating the influence of nano Al2O3 on the performance of SBS modified asphalt binder, Constr. Build. Mater., 271 (2021), 121499. https://doi.org/10.1016/j.conbuildmat.2020.121499 doi: 10.1016/j.conbuildmat.2020.121499 |
[11] | C. Yang, J. Xie, X. Zhou, Q. Liu, L. Pang, Performance evaluation and improving mechanisms of diatomite-modified asphalt mixture, Materials, 11 (2018), 686. https://doi.org/10.3390/ma11050686 doi: 10.3390/ma11050686 |
[12] | M. Liang, S. Ren, C. Sun, J. Zhang, H. Jiang, Z. Yao, Extruded tire crumb-rubber recycled polyethylene melt blend as asphalt composite additive for enhancing the performance of binder, J. Mater. Civ. Eng., 32 (2020), 04019373. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003044 doi: 10.1061/(ASCE)MT.1943-5533.0003044 |
[13] | G. D. Airey, Rheological evaluation of ethylene vinyl acetate polymer modified bitumens, Constr. Build. Mater., 16 (2002), 473–487. https://doi.org/10.1016/S0950-0618(02)00103-4 doi: 10.1016/S0950-0618(02)00103-4 |
[14] | M. Bai, Investigation of low-temperature properties of recycling of aged SBS modified asphalt binder, Constr. Build. Mater., 150 (2017), 766–773. https://doi.org/10.1016/j.conbuildmat.2017.05.206 doi: 10.1016/j.conbuildmat.2017.05.206 |
[15] | R. K. Padhan, A. Sreeram, Enhancement of storage stability and rheological properties of polyethylene (PE) modified asphalt using cross linking and reactive polymer based additives, Constr. Build. Mater., 188 (2018), 772–780. https://doi.org/10.1016/j.conbuildmat.2018.08.155 doi: 10.1016/j.conbuildmat.2018.08.155 |
[16] | Z. Ren, Y. Zhu, Q. Wu, M. Zhu, F. Guo, H. Yu, et al., Enhanced storage stability of different polymer modified asphalt binders through nano-montmorillonite modification, Nanomaterials, 10 (2020), 641. https://doi.org/10.3390/nano10040641 doi: 10.3390/nano10040641 |
[17] | D. Lo Presti, Recycled Tyre Rubber Modified Bitumens for road asphalt mixtures: A literature review, Constr. Build. Mater., 49 (2013), 863–881. https://doi.org/10.1016/j.conbuildmat.2013.09.007 doi: 10.1016/j.conbuildmat.2013.09.007 |
[18] | A. Topal, Evaluation of the properties and microstructure of plastomeric polymer modified bitumens, Fuel Process. Technol., 91 (2010), 45–51. https://doi.org/10.1016/j.fuproc.2009.08.007 doi: 10.1016/j.fuproc.2009.08.007 |
[19] | Y. Becker, M. Méndez, Y. Rodriguez, Polymer modified asphalt, Vision Tecnol., 9 (2001), 39–50. |
[20] | B. Sengoz, A. Topal, G. Isikyakar, Morphology and image analysis of polymer modified bitumens, Constr. Build. Mater., 23 (2009), 1986–1992. https://doi.org/10.1016/j.conbuildmat.2008.08.020 doi: 10.1016/j.conbuildmat.2008.08.020 |
[21] | C. Li, S. Fan, T. Xu, Method for evaluating compatibility between SBS modifier and asphalt matrix using molecular dynamics models, J. Mater. Civ. Eng., 33 (2021), 04021207. https://doi.org/10.1061/(ASCE)MT.1943-5533.0003863 doi: 10.1061/(ASCE)MT.1943-5533.0003863 |
[22] | X. Yao, C. Li, T. Xu, Interfacial adhesive behaviors between SBS modified bitumen and aggregate using molecular dynamics simulation, Surf. Interfaces, 33 (2022), 102245. https://doi.org/10.1016/j.surfin.2022.102245 doi: 10.1016/j.surfin.2022.102245 |
[23] | S. Wu, L. Montalvo, Repurposing waste plastics into cleaner asphalt pavement materials: A critical literature review, J. Cleaner Prod., 280 (2021), 124355. https://doi.org/10.1016/j.jclepro.2020.124355 doi: 10.1016/j.jclepro.2020.124355 |
[24] | C. Vargas, A. El Hanandeh, Systematic literature review, meta-analysis and artificial neural network modelling of plastic waste addition to bitumen, J. Cleaner Prod., 280 (2021), 124369. https://doi.org/10.1016/j.jclepro.2020.124369 doi: 10.1016/j.jclepro.2020.124369 |
[25] | P. J. Yoo, I. L. Al-Qadi, Pre- and post-peak toughening behaviours of fibre-reinforced hot mix asphalt mixtures, Int. J. Pavement Eng., 15 (2014), 122–132. https://doi.org/10.1080/10298436.2013.839789 doi: 10.1080/10298436.2013.839789 |
[26] | D. Movilla-Quesada, A. C. Raposeiras, L. T. Silva-Klein, P. Lastra-González, D. Castro-Fresno, Use of plastic scrap in asphalt mixtures added by dry method as a partial substitute for bitumen, Waste Manage., 87 (2019), 751–760. https://doi.org/10.1016/j.wasman.2019.03.018 doi: 10.1016/j.wasman.2019.03.018 |
[27] | M. Arabani, M. Pedram, Laboratory investigation of rutting and fatigue in glassphalt containing waste plastic bottles, Constr. Build. Mater., 116 (2016), 378–383. https://doi.org/10.1016/j.conbuildmat.2016.04.105 doi: 10.1016/j.conbuildmat.2016.04.105 |
[28] | V. S. Punith, A. Veeraragavan, S. N. Amirkhanian, Evaluation of reclaimed polyethylene modified asphalt concrete mixtures, Int. J. Pavement Res. Technol., 4 (2011), 1–10. |
[29] | K. Pinsuwan, P. Opaprakasit, A. Petchsuk, L. Dubas, M. Opaprakasit, Chemical recycling of high-density polyethylene (HDPE) wastes by oxidative degradation to dicarboxylic acids and their use as value-added curing agents for acrylate-based materials, Polym. Degrad. Stab., 210 (2023), 110306. https://doi.org/10.1016/j.polymdegradstab.2023.110306 doi: 10.1016/j.polymdegradstab.2023.110306 |
[30] | S. Köfteci, P. Ahmedzade, B. Kultayev, Performance evaluation of bitumen modified by various types of waste plastics, Constr. Build. Mater., 73 (2014), 592–602. https://doi.org/10.1016/j.conbuildmat.2014.09.067 doi: 10.1016/j.conbuildmat.2014.09.067 |
[31] | M. Fakhri, E. Shahryari, T. Ahmadi, Investigate the use of recycled polyvinyl chloride (PVC) particles in improving the mechanical properties of stone mastic asphalt (SMA), Constr. Build. Mater., 326 (2022), 126780. https://doi.org/10.1016/j.conbuildmat.2022.126780 doi: 10.1016/j.conbuildmat.2022.126780 |
[32] | U. Bagampadde, D. Kaddu, B. M. Kiggundu, Evaluation of rheology and moisture susceptibility of asphalt mixtures modified with low density polyethylene, Int. J. Pavement Res. Technol., 6 (2013), 217–224. |
[33] | Z. Du, C. Jiang, J. Yuan, F. Xiao, J. Wang, Low temperature performance characteristics of polyethylene modified asphalts—A review, Constr. Build. Mater., 264 (2020), 120704. https://doi.org/10.1016/j.conbuildmat.2020.120704 doi: 10.1016/j.conbuildmat.2020.120704 |
[34] | S. Moubark, F. Khodary, A. Othman, Evaluation of mechanical properties for polypropylene modified asphalt concrete mixtures, Int. J. Sci. Res. Manage., 5 (2017), 7797–7801. https://doi.org/10.18535/ijsrm/v5i12.28 doi: 10.18535/ijsrm/v5i12.28 |
[35] | E. Sembiring, H. Rahman, Y. M. Siswaya, Utilization of polypropylene to substitute bitumen for asphalt concrete wearing course (AC-WC), Geomate J., 14 (2018), 97–102. https://doi.org/10.21660/2018.42.17347 doi: 10.21660/2018.42.17347 |
[36] | C. Fang, L. Jiao, J. Hu, Q. Yu, D. Guo, X. Zhou, et al., Viscoelasticity of asphalt modified with packaging waste expended polystyrene, J. Mater. Sci. Technol., 30 (2014), 939–943. https://doi.org/10.1016/j.jmst.2014.07.016 doi: 10.1016/j.jmst.2014.07.016 |
[37] | M. R. Mohd Hasan, B. Colbert, Z. You, A. Jamshidi, P. A. Heiden, M. O. Hamzah, A simple treatment of electronic-waste plastics to produce asphalt binder additives with improved properties, Constr. Build. Mater., 110 (2016), 79–88. https://doi.org/10.1016/j.conbuildmat.2016.02.017 doi: 10.1016/j.conbuildmat.2016.02.017 |
[38] | P. Lin, W. Huang, Y. Li, N. Tang, F. Xiao, Investigation of influence factors on low temperature properties of SBS modified asphalt, Constr. Build. Mater., 154 (2017), 609–622. https://doi.org/10.1016/j.conbuildmat.2017.06.118 doi: 10.1016/j.conbuildmat.2017.06.118 |
[39] | M. García-Morales, P. Partal, F. J. Navarro, C. Gallegos, Effect of waste polymer addition on the rheology of modified bitumen, Fuel, 85 (2006), 936–943. https://doi.org/10.1016/j.fuel.2005.09.015 doi: 10.1016/j.fuel.2005.09.015 |
[40] | V. O. Bulatović, V. Rek, K. J. Marković, Rheological properties and stability of ethylene vinyl acetate polymer-modified bitumen, Polym. Eng. Sci., 53 (2013), 2276–2283. https://doi.org/10.1002/pen.23462 doi: 10.1002/pen.23462 |
[41] | M. Singh, P. Kumar, M. R. Maurya, Effect of aggregate types on the performance of neat and EVA-modified asphalt mixtures, Int. J. Pavement Eng., 15 (2014), 163–173. https://doi.org/10.1080/10298436.2013.812211 doi: 10.1080/10298436.2013.812211 |
[42] | M. Á. Salas, H. Pérez-Acebo, V. Calderón, H, Gonzalo-Orden, Bitumen modified with recycled polyurethane foam for employment in hot mix asphalt, Ing. Invest., 38 (2018), 60–66. https://doi.org/10.15446/ing.investig.v38n1.65631 doi: 10.15446/ing.investig.v38n1.65631 |
[43] | M. Salas, H. Pérez-Acebo, Introduction of recycled polyurethane foam in mastic asphalt, Gradevinar, 70 (2018), 403–412. https://doi.org/10.14256/JCE.2181.2017 doi: 10.14256/JCE.2181.2017 |
[44] | B. W. Colbert, Z. You, Properties of modified asphalt binders blended with electronic waste powders, J. Mater. Civ. Eng., 24 (2012), 1261–1267. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000504 doi: 10.1061/(ASCE)MT.1943-5533.0000504 |
[45] | B. W. Colbert, A. Diab, Z. You, Using M-E PDG to study the effectiveness of electronic waste materials modification on asphalt pavements design thickness, Int. J. Pavement Res. Technol., 6 (2013), 319–326. |
[46] | P. K. Singh, S. K. Suman, M. Kumar, Influence of recycled acrylonitrile butadiene styrene (ABS) on the physical, rheological and mechanical properties of bitumen binder, Transp. Res. Procedia, 48 (2020), 3668–3677. https://doi.org/10.1016/j.trpro.2020.08.081 doi: 10.1016/j.trpro.2020.08.081 |
[47] | J. Li, S. Jin, G. Lan, Z. Xu, L. Wang, N. Wang, Research on the glass transition temperature and mechanical properties of poly (vinyl chloride)/dioctyl phthalate (PVC/DOP) blends by molecular dynamics simulations, Chin. J. Polym. Sci., 37 (2019), 834–840. https://doi.org/10.1007/s10118-019-2249-5 doi: 10.1007/s10118-019-2249-5 |
[48] | X. Guo, Y. Liu, J. Wang, Sorption of sulfamethazine onto different types of microplastics: A combined experimental and molecular dynamics simulation study, Mar. Pollut. Bull., 145 (2019), 547–554. https://doi.org/10.1016/j.marpolbul.2019.06.063 doi: 10.1016/j.marpolbul.2019.06.063 |
[49] | A. I. Al-Hadidy, Engineering behavior of aged polypropylene-modified asphalt pavements, Constr. Build. Mater., 191 (2018), 187–192. https://doi.org/10.1016/j.conbuildmat.2018.10.007 doi: 10.1016/j.conbuildmat.2018.10.007 |
[50] | C. Yu, K. Hu, Y. Chen, W. Zhang, Y. Chen, R. Chang, Compatibility and high temperature performance of recycled polyethylene modified asphalt using molecular simulations, Mol. Simul., 47 (2021), 1037–1049. https://doi.org/10.1080/08927022.2021.1944624 doi: 10.1080/08927022.2021.1944624 |
[51] | C. Yu, K. Hu, Q. Yang, D. Wang, W. Zhang, G. Chen, et al., Analysis of the storage stability property of carbon nanotube/recycled polyethylene-modified asphalt using molecular dynamics simulations, Polymers, 13 (2021), 1658. https://doi.org/10.3390/polym13101658 doi: 10.3390/polym13101658 |
[52] | R. M. Izatt, S. R. Izatt, R. L. Bruening, N. E. Izatt, B. A. Moyer, Challenges to achievement of metal sustainability in our high-tech society, Chem. Soc. Rev., 43 (2014), 2451–2475. https://doi.org/10.1039/C3CS60440C doi: 10.1039/C3CS60440C |
[53] | B. J. Alder, T. E. Wainwright, Studies in molecular dynamics. I. General method, J. Chem. Phys. 31 (1959), 459–466. https://doi.org/10.1063/1.1730376 doi: 10.1063/1.1730376 |
[54] | A. Rahman, Correlations in the motion of atoms in liquid argon, Phys. Rev., 136 (1964), A405–A411. https://doi.org/10.1103/PhysRev.136.A405 doi: 10.1103/PhysRev.136.A405 |
[55] | H. Yao, J. Liu, M. Xu, J. Ji, Q. Dai, Z. You, Discussion on molecular dynamics (MD) simulations of the asphalt materials, Adv. Colloid Interface Sci., 299 (2022), 102565. https://doi.org/10.1016/j.cis.2021.102565 doi: 10.1016/j.cis.2021.102565 |
[56] | F. Khabaz, R. Khare, Glass transition and molecular mobility in styrene-butadiene rubber modified asphalt, J. Phys. Chem. B, 119 (2015), 14261–14269. https://doi.org/10.1021/acs.jpcb.5b06191 doi: 10.1021/acs.jpcb.5b06191 |
[57] | P. W. Jennings, J. A. Pribanic, M. A. Desando, M. F. Raub, R. Moats, J. A. Smith, et al., Binder Characterization and Evaluation by Nuclear Magnetic Resonance Spectroscopy, 1993, Washington, DC. |
[58] | A. T. Pauli, F. P. Miknis, A. G. Beemer, J. J. Miller, Assessment of physical property prediction based on asphalt average molecular structures, Preprints-American Chemical Society. Division of Petroleum Chemistry, 50 (2005), 255–259. |
[59] | L. W. Corbett, Composition of asphalt based on generic fractionation, using solvent deasphaltening, elution-adsorption chromatography, and densimetric characterization, Anal. Chem., 41 (1969), 576–579. https://doi.org/10.1021/ac60273a004 doi: 10.1021/ac60273a004 |
[60] | L. Zhang, M. L. Greenfield, Analyzing properties of model asphalts using molecular simulation, Energy Fuels, 21 (2007), 1712–1716. https://doi.org/10.1021/ef060658j doi: 10.1021/ef060658j |
[61] | L. Artok, Y. Su, Y. Hirose, M. Hosokawa, S. Murata, M. Nomura, Structure and reactivity of petroleum-derived asphaltene, Energy Fuels, 13 (1999), 287–296. https://doi.org/10.1021/ef980216a doi: 10.1021/ef980216a |
[62] | D. D. Li, M. L. Greenfield, Chemical compositions of improved model asphalt systems for molecular simulations, Fuel, 115 (2014), 347–356. https://doi.org/10.1016/j.fuel.2013.07.012 doi: 10.1016/j.fuel.2013.07.012 |
[63] | S. Ren, X. Liu, P. Lin, Y. Gao, S. Erkens, Insight into the compatibility behaviors between various rejuvenators and aged bitumen: Molecular dynamics simulation and experimental validation, Mater. Des., 223 (2022), 111141. https://doi.org/10.1016/j.matdes.2022.111141 doi: 10.1016/j.matdes.2022.111141 |
[64] | X. Xin, Z. Yao, J. Shi, M. Liang, H. Jiang, J. Zhang, et al., Rheological properties, microstructure and aging resistance of asphalt modified with CNTs/PE composites, Constr. Build. Mater., 262 (2020), 120100. https://doi.org/10.1016/j.conbuildmat.2020.120100 doi: 10.1016/j.conbuildmat.2020.120100 |
[65] | M. N. Rahman, M. Ahmeduzzaman, M. A. Sobhan, T. U. Ahmed, Performance evaluation of waste polyethylene and PVC on hot asphalt mixtures, Am. J. Civil Eng. Archit., 1 (2013), 97–102. https://doi.org/10.12691/ajcea-1-5-2 doi: 10.12691/ajcea-1-5-2 |
[66] | S. Tapkın, The effect of polypropylene fibers on asphalt performance, Build. Environ., 43 (2008), 1065–1071. https://doi.org/10.1016/j.buildenv.2007.02.011 doi: 10.1016/j.buildenv.2007.02.011 |
[67] | M. Su, J. Zhou, J. Lu, W. Che, H. Zhang, Using molecular dynamics and experiments to investigate the morphology and micro-structure of SBS modified asphalt binder, Mater. Today Commun., 30 (2022), 103082. https://doi.org/10.1016/j.mtcomm.2021.103082 doi: 10.1016/j.mtcomm.2021.103082 |
[68] | F. Guo, J. Zhang, J. Pei, W. Ma, Z. Hu, Y. Guan, Evaluation of the compatibility between rubber and asphalt based on molecular dynamics simulation, Front. Struct. Civ. Eng., 14 (2020), 435–445. https://doi.org/10.1007/s11709-019-0603-x doi: 10.1007/s11709-019-0603-x |
[69] | M. Liang, X. Xin, W. Fan, J. Zhang, H. Jiang, Z. Yao, Comparison of rheological properties and compatibility of asphalt modified with various polyethylene, Int. J. Pavement Eng., 22 (2021), 11–20. https://doi.org/10.1080/10298436.2019.1575968 doi: 10.1080/10298436.2019.1575968 |
[70] | W. D. Cornell, P. Cieplak, C. I. Bayly, I. R. Gould, K. M. Merz, D. M. Ferguson, et al., A second generation force field for the simulation of proteins, nucleic acids, and organic molecules J. Am. Chem. Soc. 1995,117, 5179−5197, J. Am. Chem. Soc., 118 (1996), 2309–2309. https://doi.org/10.1021/ja955032e doi: 10.1021/ja955032e |
[71] | M. Valiev, E. J. Bylaska, N. Govind, K. Kowalski, T. P. Straatsma, H. J. J. Van Dam, et al., NWChem: A comprehensive and scalable open-source solution for large scale molecular simulations, Comput. Phys. Commun., 181 (2010), 1477–1489. https://doi.org/10.1016/j.cpc.2010.04.018 doi: 10.1016/j.cpc.2010.04.018 |
[72] | H. Yao, J. Liu, M. Xu, A. Bick, Q. Xu, J. Zhang, Generation and properties of the new asphalt binder model using molecular dynamics (MD), Sci. Rep., 11 (2021), 9890. https://doi.org/10.1038/s41598-021-89339-5 doi: 10.1038/s41598-021-89339-5 |
[73] | X. Yu, J. Wang, J. Si, J. Mei, G. Ding, J. Li, Research on compatibility mechanism of biobased cold-mixed epoxy asphalt binder, Constr. Build. Mater., 250 (2020), 118868. https://doi.org/10.1016/j.conbuildmat.2020.118868 doi: 10.1016/j.conbuildmat.2020.118868 |