Recently, many researchers studied the degenerate multi-special polynomials as degenerate versions of the multi-special polynomials and obtained some identities and properties of the those polynomials. The aim of this paper was to introduce the degenerate multi-poly-Changhee polynomials arising from multiple logarithms and investigate some interesting identities and properties of these polynomials that determine the relationship between multi-poly-Changhee polynomials, the Stirling numbers of the second kind, degenerate Stirling numbers of the first kind and falling factorial sequences. In addition, we investigated the phenomenon of scattering the zeros of these polynomials.
Citation: Sang Jo Yun, Sangbeom Park, Jin-Woo Park, Jongkyum Kwon. Some identities of degenerate multi-poly-Changhee polynomials and numbers[J]. Electronic Research Archive, 2023, 31(12): 7244-7255. doi: 10.3934/era.2023367
Recently, many researchers studied the degenerate multi-special polynomials as degenerate versions of the multi-special polynomials and obtained some identities and properties of the those polynomials. The aim of this paper was to introduce the degenerate multi-poly-Changhee polynomials arising from multiple logarithms and investigate some interesting identities and properties of these polynomials that determine the relationship between multi-poly-Changhee polynomials, the Stirling numbers of the second kind, degenerate Stirling numbers of the first kind and falling factorial sequences. In addition, we investigated the phenomenon of scattering the zeros of these polynomials.
[1] | L. Carlitz, Degenerate stirling, bernoulli and eulerian numbers, Util. Math., 15 (1979), 51–88. |
[2] | W. Kim, L. C. Jang, J. Kwon, Some properties of generalized degenerate Bernoulli polynomials and numbers, Adv. Stud. Cont. Math., 32 (2022), 479–486. |
[3] | D. S. Kim, T. Kim, Representations by degenerate Bernoulli polynomials arising from Volkenborn integral, Math. Methods Appl. Sci., 45 (2022), 6615–6634. https://doi.org/10.1002/mma.8195 doi: 10.1002/mma.8195 |
[4] | T. Kim, D. S. Kim, Combinatorial identities involving degenerate harmonic and hyperharmonic numbers, Adv. Appl. Math., 148 (2023), 102535. https://doi.org/10.1016/j.aam.2023.102535 doi: 10.1016/j.aam.2023.102535 |
[5] | T. Kim, D. S. Kim, A new approach to fully degenerate Bernoulli numbers and polynomials, Filomat, 37 (2023), 2269–2278. https://doi.org/10.2298/FIL2307269K doi: 10.2298/FIL2307269K |
[6] | T. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041 |
[7] | T. Kim, D. S. Kim, Degenerate Whitney numbers of first and second kind of Dowling lattices, Russ. J. Math. Phys., 29 (2022), 358–377. https://doi.org/10.1134/S1061920822030050 doi: 10.1134/S1061920822030050 |
[8] | T. Kim, D. S. Kim, Degenerate r-Whitney numbers and degenerate r-Dowling polynomials via boson operators, Adv. Appl. Math., 140 (2022), 102394. https://doi.org/10.1016/j.aam.2022.102394 doi: 10.1016/j.aam.2022.102394 |
[9] | T. Kim, D. S. Kim, Some identities involving degenerate Stirling numbers associated with several degenerate polynomials and numbers, Russ. J. Math. Phys., 30 (2023), 62–75. https://doi.org/10.1134/S1061920823010041 doi: 10.1134/S1061920823010041 |
[10] | T. Kim, D. S. Kim, Some identities on degenerate r-Stirling numbers via boson operators, Russ. J. Math. Phys., 29 (2022), 508–517. https://doi.org/10.1134/S1061920822040094 doi: 10.1134/S1061920822040094 |
[11] | T. Kim, D. S. Kim, H. K. Kim, On generalized degenerate Euler–Genocchi polynomials, Appl. Math. Sci. Eng., 31 (2022), 2159958. https://doi.org/10.1080/27690911.2022.2159958 doi: 10.1080/27690911.2022.2159958 |
[12] | T. Kim, D. S. Kim, A note on degenerate multi-poly-Bernoulli numbers and polynomials, Appl. Anal. Disc. Math., 17 (2023). |
[13] | T. Kim, D. S. Kim, L. C. Jang, H. Lee, H. Kim, Generalized degenerate Bernoulli numbers and polynomials arising from Gauss hypergeometric function, Adv. Differ. Equation, 2021 (2021), 175. https://doi.org/10.1186/s13662-021-03337-5 doi: 10.1186/s13662-021-03337-5 |
[14] | D. S. Kim, T. Kim, J. Seo, A note on Changhee polynomials and numbers, Adv. Studies Theor. Phys., 7 (2013), 993–1003. |
[15] | G. E. Andrew, R. Askey, R. Roy, Special functions, in Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge, 1999. |
[16] | W. M. Abd-Elhameed, N. A. Zeyada, New identities involving generalized Fibonacci and generalized Lucas numbers, Indian J. Pure Appl. Math., 49 (2018), 527–537. https://doi.org/10.1007/s13226-018-0282-7 doi: 10.1007/s13226-018-0282-7 |
[17] | W. M. Abd-Elhameed, A. N. Philippou, N. A. Zeyada, An novel results for two generalized classes of Fibonacci and Lucas polynomials and their uses in the reduction of some radicals, Mathematics, 10 (2022), 2342. https://doi.org/10.3390/math10132342 doi: 10.3390/math10132342 |
[18] | W. M. Abd-Elhameed, A. K. Amin, Novel identities of Bernoulli polynomials involving closed forms for some definite integrals, Symmetry, 14 (2022), 2284. https://doi.org/10.3390/sym14112284 doi: 10.3390/sym14112284 |
[19] | S. H. Rim, J. W. Park, S. S. Pyo, J. Kwon, The $n$-th twisted Changhee polynomials and numbers, Bull. Korean Math. Soc., 52 (2015), 741–749. |
[20] | Y. K. Cho, T. Kim, T. Mansour, S. H. Rim, On a $(r, s)$-analogue of Changhee and Daehee numbers and polynomials, Kyungpook Math. J., 55 (2015), 225–232. https://doi.org/10.5666/KMJ.2015.55.2.225 doi: 10.5666/KMJ.2015.55.2.225 |
[21] | H. I. Kwon, T. Kim, J. J. Seo, A note on degenerate Changhee numbers and polynomials, Proc. Jangjeon Math. Soc., 18 (2015), 295–305. |
[22] | L. C. Jang, C. S. Ryoo, J. J. Seo, H. I. Kwon, Some properties of the twisted Changhee polynomials and their zeros, Appl. Math. Comput., 274 (2016), 169–177. https://doi.org/10.1016/j.amc.2015.10.052 doi: 10.1016/j.amc.2015.10.052 |
[23] | J. W. Park, On the twisted $q$-Changhee polynomials of higher order, J. Comput. Anal. Appl., 20 (2016), 424–431. |
[24] | H. M. Srivastava, P. G. Todorov, An explicit formula for the generalized Bernoulli polynomials, J. Math. Anal. and Appl., 130 (1988), 509–513. https://doi.org/10.1016/0022-247X(88)90326-5 doi: 10.1016/0022-247X(88)90326-5 |
[25] | W. A. Khan, M. Acikgoz, U. Duran, Note on the type $2$ degenerate multi-poly-Euler polynomials, Symmetry, 12 (2020), 1691. https://doi.org/10.3390/sym12101691 doi: 10.3390/sym12101691 |
[26] | R. B. Corcino, M. P. Laurente, M. Ann R. P. Vega, On multi poly-Genocchi polynomials with parameters $a, b$ and $c$, Eur. J. Pure Appl. Math., 13 (2020), 444–458. https://doi.org/10.29020/nybg.ejpam.v13i3.3676 doi: 10.29020/nybg.ejpam.v13i3.3676 |
[27] | M. Kaneko, H. Tsumura, Multi-poly-Bernoulli numbers and related zeta functions, Nagoya Math. J., 232 (2018), 19–54. https://doi.org/10.1017/nmj.2017.16 doi: 10.1017/nmj.2017.16 |
[28] | J. Choi, N. Khan, T. Usman, A note on Legendre-based multi poly-Eule polynomials, Bull. Iran. Math. Soc., 44 (2018), 707–717. https://doi.org/10.1007/s41980-018-0045-6 doi: 10.1007/s41980-018-0045-6 |