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Abstract: Recently, many researchers studied the degenerate multi-special polynomials as degenerate
versions of the multi-special polynomials and obtained some identities and properties of the those
polynomials. The aim of this paper was to introduce the degenerate multi-poly-Changhee polynomials
arising from multiple logarithms and investigate some interesting identities and properties of these
polynomials that determine the relationship between multi-poly-Changhee polynomials, the Stirling
numbers of the second kind, degenerate Stirling numbers of the first kind and falling factorial sequences.
In addition, we investigated the phenomenon of scattering the zeros of these polynomials.
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1. Introduction

Carlitz [1] initiated a degenerate exponential function for the generalization of the Stirling numbers
and attempted to generalize Bernoulli and Eulerian numbers using these functions in 1979. Since then,
studies on degenerate versions of various special functions have been actively conducted by many
researchers. For r ∈ N, Kim-Jang-Kwon studied the generalized degenerate Bernoulli polynomials,
which are given by the generating function to be

tr

eλ(t) − 1
ex
λ(t) =

∞∑
n=0

B
(r)
n,λ(x)

tn

n!
(see [2]). (1.1)

When x = 0, B(r)
n,λ = B

(r)
n,λ(0) are called the generalized Bernoulli numbers. In particular, when r = 1,

then B(1)
n,λ(x) = Bn(x). Note that B(r)

0,λ(x) = B(r)
1,λ(x) = · · · = B(r)

r−1,λ(x) = 0.
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For λ(, 0) ∈ C, the degenerate exponential function is defined by

ex
λ(t) = (1 + λt)

x
λ (see [2–13]). (1.2)

We note that lim
λ→0

ex
λ(t) = ext, e(1)

λ (t) = eλ(t) and

ex
λ(t) =

∞∑
n=0

(x)n,λ
tn

n!
, (1.3)

where (x)0,λ = 1, (x)n,λ = x(x − λ)(x − 2λ) · · · (x − (n − 1)λ), (n ≥ 1).
The Changhee polynomials Chn(x) and the Changhee polynomials of order k Ch(k)

n (x) are respectively
given by the generating functions to be

2
t + 2

(1 + t)x =

∞∑
n=0

Chn(x)
tn

n!
(see [14]). (1.4)

and ( 2
t + 2

)k

(1 + t)x =

∞∑
n=0

Ch(k)
n (x)

tn

n!
(see [14]). (1.5)

The Stirling numbers of the first kind are defined as

(x)n =

n∑
l=0

S 1(n, l)xl, (n ≥ 0) (see [6, 9]), (1.6)

where (x)0 = 1, (x)n = x(x − 1) · · · (x − n + 1), (n ≥ 1), and the Stirling numbers of the second kind are
given by

xn =

n∑
l=0

S 2(n, l)(x)l, (n ≥ 0) (see [6, 9]). (1.7)

Let logλ(t) be the compositional inverse function of eλ(t) such that eλ
(
logλ(t)

)
= logλ (eλ(t)) = t. By

Newton’s binomial expansion, we see that

logλ(1 + t) =
∞∑

n=1

λn−1(1)n,1/λ

n!
tn (see [6, 9, 10]), (1.8)

and by (1.8), we see that lim
λ→0

logλ(1 + t) = log(1 + t).
As the degenerate version of the Stirling numbers of the first and the second kind, Kim-Kim considered

the degenerate Stirling numbers of the second kind S 2,λ(n, k), (n, k ≥ 0), which are given by

(x)n,λ =

n∑
k=0

S 2,λ(n, k)(x)k, (n ≥ 0) (see [6, 9, 10]), (1.9)

and, as the inversion formula of (1.9), the degenerate Stirling numbers of the first kind S 1,λ(n, k) are
given by

(x)n =

n∑
k=0

S 1,λ(n, k)(x)k,λ (n ≥ 0) (see [6, 9, 10]). (1.10)
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Since lim
λ→0

(x)n,λ = xn, we see that lim
λ→0

S 1,λ(n, k) = S 1(n, k) and lim
λ→0

S 2,λ(n, k) = S 2(n, k).
In addition, by (1.9) and (1.10), it is easy to see that

1
k!

(eλ(t) − 1)k =

∞∑
n=k

S 2,λ(n, k)
tn

n!
and

1
k!

(logλ(1 + t))k =

∞∑
n=k

S 1,λ(n, k)
tn

n!
(see [6, 9, 10]). (1.11)

Special numbers and polynomials are interesting and important things in pure and applied
mathematics, combinatorics and engineering (see [15]). In particular, authors gave two new identities
involving the famous numbers of Fibonacci, Lucas, Pell and Pell-Lucas numbers in [16]. In [17],
authors gave some new connection formulae between two generalized classes of Fibonacci and Lucas
polynomials, and in [18], some celebrated orthogonal polynomials and other polynomials were given in
terms of Bernoulli polynomials.

As one of the special functions, the Changhee numbers and polynomials were defined by Kim et al.
in [14] and generalized these polynomials. In [19], authors defined the twisted Changhee polynomials
and found some relationships between the Euler polynomials, the Stirling numbers of the first and the
second kind and these polynomials. The (r, s)-analogue of the Changhee polynomials was defined
in [20], and in [21] the authors studied the degenerate version of Changhee polynomials. Jang et al. [22]
investigated the zeros of twisted Changhee polynomials, and Park gave the degenerate version of twisted
q-Changhee polynomials of higher order in [23] and found some identities.

In 1998, Srivastava et al. [24] studied the generalized Bernoulli polynomials B(α)
n (x), and Kim et al. [13]

introduced the generalized degenerate Bernoulli numbers β(α)
n,λ by means of the Gauss hypergeometric

function. Recently, Kim et al. [12] introduced the degenerate multi-poly-Bernoulli polynomials
β(k1,k2,··· ,kr)

n,λ (x) by using the multiple polylogarithm. In [25], authors defined degenerate multi-poly-Euler
polynomials by using degenerate multi-polyexponential functions and found some interesting identities
of these polynomials and numbers. In [26], authors defined multi-poly-Genocchi polynomials with
parameters a, b and c by using multiple polylogarithms and found some relationships between
logarithm functions, poly-Bernoulli numbers and those polynomials. Kaneko et al. [27] defined the a
zeta function that interpolates multi-poly-Bernoulli numbers, and showed that both these zeta functions and
the ξ-function defined by Arakawa and Kaneko are related closely to multiple zeta functions. Choi et al.
introduced the Legendre-based poly-Euler polynomials and Legendre-based multi-poly-Euler polynomials
and found some related identities and formulas in [28].

In this paper, we consider the degenerate multi-poly-Changhee polynomials and numbers and
investigate some properties and identities of those polynomials. Furthermore, we find explicit examples
of the degenerate multi-poly-Changhee polynomials and investigate the phenomenon of scattering the
zeros of these polynomials.

2. The degenerate multi-poly Changhee numbers

For k1, k2, · · · , kr ∈ Z, the multiple logarithm is given by

Lik1,··· ,kr (x) =
∑

0<n1<n2<···<nr

xnr

nk1
1 nk2

2 · · · n
kr
r

(see [12, 25–27]), (2.1)

where the sum is over all integers n1, n2, · · · , nr satisfying 0 < n1 < n2 < · · · < nr.
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From (2.1), Kim et al. [12] obtained the following results:

d
dx

Lik1,··· ,kr (x) =
1
x

Lik1,···kr−1,kr−1(x), (2.2)

Li1, · · · , 1︸   ︷︷   ︸
r−times

(x) =
1
r!

(− log(1 − x))r, (2.3)

and

S (

r−times︷   ︸︸   ︷
1, · · · , 1)

1 (x)(n, r) = (−1)n−rS 1(n, r) =
[
n
r

]
, (2.4)

where the multi-Stirling number of the first kind is defined by

Lik1,··· ,kr (t) =
∞∑

n=r

S (k1,··· ,kr)
1 (n, r)

tn

n!
. (2.5)

Now we consider the degenerate multi-poly-Changhee polynomials, which are given by the
generating function to be

2rLik1,··· ,kr (1 − e−t)
tr(2 + t)r ex

λ(logλ(1 + t)) =
∞∑

n=0

Ch(k1,··· ,kr)
n (x)

tn

n!
. (2.6)

Theorem 2.1. For r ∈ Z, r ≥ 1 and n ∈ N ∪ {0}, we have

Ch(k1,··· ,kr)
n (x) =

n∑
l=0

l∑
m=0

(
n
l

)
S 1,λ(l,m)Ch(k1,··· ,kr)

n−l (x)m,λ.

In particular, k1 = · · · = kr = 1, Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

n (x) = 1
r!Ch(r)

n (x) and (n ≥ 0).

Proof. From (2.6), we observe that
∞∑

n=0

Ch(k1,··· ,kr)
n (x)

tn

n!
=

2rLik1,··· ,kr (1 − e−t)
tr(2 + t)r ex

λ(logλ(1 + t))

=

 ∞∑
n=0

Ch(k1,··· ,kr)
n

tn

n!

  ∞∑
n=0

(x)n,λ
1
n!

(
logλ(1 + t)

)n


=

∞∑
n=0

 n∑
l=0

l∑
m=0

(
n
l

)
S 1,λ(l,m)(x)m,λCh(k1,··· ,kr)

n−l

 tn

n!
.

(2.7)

Therefore, by comparing the coefficients on the both sides of (2.7), we proved the theorem. □

Theorem 2.2. For r ∈ Z, r ≥ 1 and n ∈ N ∪ {0}, we have

Ch(k1,··· ,kr)
n (x) =

n∑
b=0

b∑
l=0

l+1∑
nr=1

∞∑
m=0

(
n
b

)(
b
l

)(
kr + m − 1

m

)
nr!

×
(−1)l+1+nr+mS 2(l + 1, nr)

l + 1
n−kr−m

r Ch(k1,··· ,kr−1−m)
b−l Chn−b(x).
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Proof. From (2.6), we note that

∞∑
n=0

Ch(k1,··· ,kr)
n (x)

tn

n!
=

2rLik1,··· ,kr (1 − e−t)
tr(2 + t)r ex

λ(logλ(1 + t))

=
2r

tr(2 + t)r

∑
0<n1<···<nr−1

1

nk1
1 · · · n

kr−1
r−1

∞∑
nr=nr−1+1

(1 − e−t)nr

nkr
r

ex
λ(logλ(1 + t))

=
2r

tr(2 + t)r

∑
0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1
r−1

∞∑
nr=1

(1 − e−t)nr

(nr + nr−1)kr
ex
λ(logλ(1 + t))

=
2r

tr(2 + t)r

∑
0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1
r−1

×

∞∑
nr=1

nr!
1

nr!
(1 − e−t)nr

1
(nr + nr−1)kr

ex
λ(logλ(1 + t))

=
2

(2 + t)
ex
λ(logλ(1 + t))

1
t

2r−1

tr−1(2 + t)r−1

×
∑

0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1
r−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1−m
r−1

∞∑
m=0

(−1)m

(
kr + m − 1

m

)
(2.8)

=
2

(2 + t)
ex
λ(logλ(1 + t))

2r−1

tr−1(2 + t)r−1

∑
0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1−m
r−1

×

∞∑
l=0

 l+1∑
nr=1

∞∑
m=0

(−1)m

(
kr + m − 1

m

)
nr!

(−1)l+1−nr S 2(l + 1, nr)
l + 1

n−kr−m
r

 tl

l!

=

 ∞∑
n=0

Chn(x)
tn

n!

  ∞∑
n=0

Ch(k1,··· ,kr−1−m)
n

tn

n!


×

∞∑
l=0

 l+1∑
nr=1

∞∑
m=0

(−1)m

(
kr + m − 1

m

)
nr!

(−1)l+1−nr S 2(l + 1, nr)
l + 1

n−kr−m
r

 tl

l!

=

 ∞∑
n=0

Chn(x)
tn

n!


 ∞∑

n=0

n∑
l=0

l+1∑
nr=1

∞∑
m=0

(
n
l

)
(−1)m

(
kr + m − 1

m

)
nr!

×
(−1)l+1−nr S 2(l + 1, nr)

l + 1
n−kr−m

r Ch(k1,··· ,kr−1−m)
n−l

)
tn

n!

=

∞∑
n=0

 n∑
b=0

b∑
l=0

l+1∑
nr=1

∞∑
m=0

(
n
b

)(
b
l

)
(−1)m

(
kr + m − 1

m

)
nr!

×
(−1)l+1−nr S 2(l + 1, nr)

l + 1
n−kr−m

r Ch(k1,··· ,kr−1−m)
b−l Chn−b(x)

)
tn

n!
.
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Therefore, by comparing the coefficients on the both sides of (2.8), our proof is completed. □

Corollary 2.3. For r ∈ Z, r ≥ 1 and n ∈ N ∪ {0}, we have

Ch(k1,··· ,−kr)
n (x)

=

n∑
b=0

b∑
l=0

l+1∑
nr=1

∞∑
m=0

(
n
b

)(
b
l

)(
kr

m

)
nr!

(−1)l+1+nr S 2(l + 1, nr)
l + 1

n−kr−m
r Ch(k1,··· ,kr−1−m)

b−l Chn−b(x).

Proof. Replacing kr by −kr, then

(
−kr + m − 1

m

)
= (−1)m

(
kr

m

)

and so our corollary is proved. □

From now on, we get the recurrence relation of the degenerate multi-poly-Changhee polynomials.

Theorem 2.4. For r ∈ Z, r ≥ 1 and n ∈ N ∪ {0}, we have

Ch(k1,··· ,kr)
n (x + 1) − Ch(k1,··· ,kr)

n (x)

=

n∑
k=1

n−k∑
a=0

k∑
nr=1

∞∑
m=0

(
n
k

)(
n − k

a

)
(−1)m+k−nr

(
kr + m − 1

m

)
nr!n−kr−m

r

×S 2(k, nr)Ch(k1,··· ,kr−1)
n−k,λ (x)Chn−k−a. (n ≥ 1).
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Proof. Consider that

∞∑
n=0

(
Ch(k1,··· ,kr)

n (x + 1) − Ch(k1,··· ,kr)
n (x)

) tn

n!
=

2rex
λ(logλ(1 + t))
tr−1(2 + t)r Lik1,··· ,kr (1 − e−t)

=
2rex
λ(logλ(1 + t))
tr−1(2 + t)r

∑
0<n1<···<nr−1

1

nk1
1 · · · n

kr−1
r−1

∞∑
nr=nr−1+1

(1 − e−t)nr

nkr
r

=
2rex
λ(logλ(1 + t))
tr−1(2 + t)r

∑
0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1
r−1

∞∑
nr=1

(1 − e−t)nr

(nr + nr−1)kr

nr!
nr!

=
2

2 + t
2r−1

tr−1(1 + t)r−1 ex
λ(logλ(1 + t))

∑
0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1−m
r−1

×

∞∑
nr=1

∞∑
m=0

(−1)m

(
kr + m − 1

m

)
nr!n−kr−m

r

∞∑
l=nr

(−1)nr+lS 2(l, nr)
tl

l!

=

 ∞∑
n=0

Chn
tn

n!

  ∞∑
n=0

Ch(k1,··· ,kr−1
n,λ (x)

tn

n!


×

 ∞∑
k=1

k∑
nr=1

∞∑
m=0

(−1)m+k−nr

(
kr + m − 1

m

)
nr!n−kr−m

r S 2(k, nr)
tk

k!


=

∞∑
m=0

 m∑
a=0

(
m
a

)
Ch(k1,··· ,kr−1)

m,λ (x)Chm−a
tm

m!


×

 ∞∑
k=1

k∑
nr=1

∞∑
m=0

(−1)m+k−nr

(
kr + m − 1

m

)
nr!n−kr−m

r S 2(k, nr)
tk

k!


=

∞∑
n=1

 n∑
k=1

n−k∑
a=0

k∑
nr=1

∞∑
m=0

(
n
k

)(
n − k

a

)
(−1)m+k−nr

(
kr + m − 1

m

)
nr!n−kr−m

r

×S 2(k, nr)Ch(k1,··· ,kr−1)
n−k,λ (x)Chn−k−a

) tn

n!
.

(2.9)

Therefore, by comparing the coefficients on the both sides of (2.9), we proved our theorem. □

We will get another result of the recurrence relation as follows:

Theorem 2.5. For r ∈ Z, r ≥ 1 and n ∈ N ∪ {0}, we have

Ch(k1,··· ,kr)
n,λ (x + 1) − Ch(k1,··· ,kr)

n,λ (x)

= 2
n∑

a=0

a+1∑
nr=1

∞∑
m=0

(
n
a

)
nr!n

−kr−m
r−1

(−1)a+1−nr+mS 2(a + 1, nr)
a + 1

.
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Proof. Note that

∞∑
n=0

(
Ch(k1,··· ,kr)

n (x + 1) − Ch(k1,··· ,kr)
n (x)

) tn

n!
=

2rex
λ(logλ(1 + t))
tr(2 + t)r−1 Lik1,··· ,kr (1 − e−t)

=
2
t

2r−1

tr−1

ex
λ(logλ(1 + t))

(2 + t)r−1

∑
0<n1<···<nr−1

1

nk1
1 · · · n

kr−1
r−1

∞∑
nr=nr−1+1

(1 − e−t)nr

nkr
r

= 2
2r−1ex

λ(logλ(1 + t))
tr−1(2 + t)r−1

∑
0<n1<···<nr−1

(1 − e−t)nr−1

nk1
1 · · · n

kr−1−m
r−1

×

∞∑
a=1

a∑
nr=1

∞∑
m=0

nr!(−1)a−nr+mS 2(a, nr)
(
kr + m − 1

m

)
n−kr−m

r
ta

a!

= 2

 ∞∑
n=0

Ch(k1,··· ,kr−1−m)
n,λ (x)

tn

n!


×

 ∞∑
a=0

a+1∑
nr=1

∞∑
m=0

nr!
(−1)a+1−nr+mS 2(a + 1, nr)

(
kr+m−1,m

n

)−kr−m

r

a + 1

 ta

a!

= 2
∞∑

n=0

n∑
a=0

a+1∑
nr=1

∞∑
m=0

(
n
a

)
nr!n

−kr−m
r−1

(−1)a+1−nr+mS 2(a + 1, nr)
a + 1

ta

a!
.

(2.10)

Therefore, by comparing the coefficients on both sides of (2.10), our theorem is proved. □

Theorem 2.6. For r ∈ Z, r ≥ 1 and n ∈ N ∪ {0}, we have

Ch(k1,··· ,kr)
n,λ (x + y) =

n∑
m=0

Ch(k1,··· ,kr)
n−m,λ (x)(y)m.

Proof. From (2.6), we observe that

∞∑
n=0

Ch(k1,··· ,kr)
n,λ (x + y)

tn

n!

=
2rex+y
λ (logλ(1 + t))

tr(2 + t)r Lik1,··· ,kr (1 − e−t)

=
2r

tr(2 + t)r Lik1,··· ,kr (1 − e−t)ex
λ(logλ(1 + t))ey

λ(logλ(1 + t))

=

 ∞∑
n=0

Ch(k1,··· ,kr)
n,λ (x)

tn

n!

  ∞∑
n=0

(y)n
tn

n!


=

∞∑
n=0

n∑
m=0

Ch(k1,··· ,kr)
n−m,λ (x)(y)m

tn

n!
.

(2.11)

Therefore, by comparing the coefficients on both sides of (2.10), we obtain our theorem. □
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3. The zeros of degenerate multi-poly-Changhee polynomials

It is well known that finding the roots of polynomials is a very important task in applied mathematics.
There is no formula for the roots of polynomials of degree five or higher, and there are formulas for the
roots of polynomials of degree four or less, but their expressions are very complex. Hence, we want to
investigate the numerical pattern of the roots of the polynomials Ch(k1,··· ,kr)

n (x). Before investigating the

numerical pattern of the roots of the polynomials Ch(k1,··· ,kr)
n (x), we present the graphs of Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

n (x)

with n = 5 for r = 2, 3, 4, 5 and of Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

n (x) with r = 5 for n = 2, 3, 4, 5 in Figure 1.

(a) n = 5

0 2 4 6 8
-20

-10

0

10

20

30

40

50

r=5

r=4

r=3

r=2

(b) r = 5

0 2 4 6 8

-6

-4

-2

0

2

4

6

n=5

n=4

n=3

n=2

Figure 1. The graph of Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

n (x).

The polynomial Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

n (x) can be explicitly expressed by using Mathematica. For example,

Ch(1,1)
1 (x) =

1
2

(−1 + x),

Ch(1,1)
2 (x) =

1
4

(3 − 6x + 2x2),

Ch(1,1)
3 (x) =

1
4

(−6 + 19x − 12x2 + 2x3),

Ch(1,1,1)
1 (x) =

1
12

(−3 + 2x),

Ch(1,1,1)
2 (x) =

1
6

(3 − 4x + x2),

Ch(1,1,1)
3 (x) =

1
12

(−15 + 31x − 15x2 + 2x3).

We want to observe the impact of the parameter r on the distribution of the roots of the polynomials.
For the aims, we set the degree of the polynomial as n = 40. Using the Mathematical tool with 100

working precision, the roots of the polynomial Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

n (x) are computed. The absolute numerical
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error is bounded as the following:

40∑
i=1

|Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

40 (xi)| < 10−62,

where xi denotes the roots of the polynomial. Hence, the numerical roots are reliable. We compute the

numerical roots of Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

40 (x) with r = 2, 3, 10. The numerical results are plotted in Figure 2.

(a) r = 2
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Figure 2. The computed roots of Ch(

r−times︷   ︸︸   ︷
1, · · · , 1)

40 (x).

4. Conclusions

Degenerate versions of some special polynomials and numbers were initiated by Carlitz, and many
researchers have introduced many degenerate numbers and polynomials using Carlitz’s degeneracy
theory. Moreover, researchers also studied the identities and properties of these degenerate numbers and
polynomials. Here, we would like to mention that the study of degenerate versions is not limited only to
polynomials but can be extended also to transcendental functions like gamma functions, degenerate
umbral calculus and degenerate probability density function.

In this paper, we considered the degenerate multi-poly-Changhee numbers and polynomials, which
are defined by means of the multiple polylogarithms. We investigated some properties for those numbers
and polynomials and also presented explicit examples of the polynomials by using the Mathematica
tool. In order to better understanding the polynomials, the distribution of roots was presented.

In research following this paper, we plan to expand various special polynomials and numbers using
multiple polylogarithm functions or multiple poly-exponential functions and find their properties.
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