The primary focus of this paper lies in exploring the limiting dynamics of a neural field lattice model with state dependent superlinear noise. First, we established the well-posedness of solutions to these stochastic systems and subsequently proved the existence of periodic measures for the system in the space of square-summable sequences using Krylov-Bogolyubov's method. The cutoff techniques of uniform estimates on tails of solutions was employed to establish the tightness of a family of probability distributions for the system's solutions.
Citation: Xintao Li, Rongrui Lin, Lianbing She. Periodic measures for a neural field lattice model with state dependent superlinear noise[J]. Electronic Research Archive, 2024, 32(6): 4011-4024. doi: 10.3934/era.2024180
The primary focus of this paper lies in exploring the limiting dynamics of a neural field lattice model with state dependent superlinear noise. First, we established the well-posedness of solutions to these stochastic systems and subsequently proved the existence of periodic measures for the system in the space of square-summable sequences using Krylov-Bogolyubov's method. The cutoff techniques of uniform estimates on tails of solutions was employed to establish the tightness of a family of probability distributions for the system's solutions.
[1] |
S. N. Chow, J. Mallet-Paret, W. Shen, Traveling waves in lattice dynamical systems, J. Differ. Equations, 149 (1998), 248–291. https://doi.org/10.1006/jdeq.1998.3478 doi: 10.1006/jdeq.1998.3478
![]() |
[2] |
C. E. Elmer, E. S. Van Vleck, Analysis and computation of traveling wave solutions of bistable differential-difference equations, Nonlinearity, 12 (1999), 771–798. https://doi.org/10.1088/0951-7715/12/4/303 doi: 10.1088/0951-7715/12/4/303
![]() |
[3] |
S. N. Chow, W. Shen, Dynamics in a discrete Nagumo equation: Spatial topological chaos, SIAM J. Appl. Math., 55 (1995), 1764–1781. https://doi.org/10.1137/S0036139994261757 doi: 10.1137/S0036139994261757
![]() |
[4] |
S. N. Chow, J. Mallet-Paret, Pattern formation and spatial chaos in lattice dynamical systems Ⅰ, IEEE Trans. Circuits Syst., 42 (1995), 746–751. https://doi.org/10.1109/81.473583 doi: 10.1109/81.473583
![]() |
[5] |
Y. Chen, X. Wang, K. Wu, Wong-Zakai approximations of stochastic lattice systems driven by long-range interactions and multiplicative white noises, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 1092–1115. https://doi.org/10.3934/dcdsb.2022113 doi: 10.3934/dcdsb.2022113
![]() |
[6] |
A. Gu, Weak pullback mean random attractors for stochastic evolution equations and applications, Stoch. Dyn., 22 (2022), 2240001. https://doi.org/10.1142/S0219493722400019 doi: 10.1142/S0219493722400019
![]() |
[7] |
R. Liang, P. Chen, Existence of weak pullback mean random attractors for stochastic Schrödinger lattice systems driven by superlinear noise, Discrete Contin. Dyn. Syst. Ser. B, 28 (2023), 4993–5011. https://doi.org/10.3934/dcdsb.2023050 doi: 10.3934/dcdsb.2023050
![]() |
[8] |
Y. Li, H. Liu, C. W. Lo, On inverse problems in predator-prey models, J. Differ. Equations, 397 (2024), 349–376. https://doi.org/10.1016/j.jde.2024.04.009 doi: 10.1016/j.jde.2024.04.009
![]() |
[9] |
W. Yin, B. Zhang, P. Meng, L. Zhou, D. Qi, A neural network method for inversion of turbulence strength, J. Nonlinear Math. Phys., 31 (2024), 22. https://doi.org/10.1007/s44198-024-00186-0 doi: 10.1007/s44198-024-00186-0
![]() |
[10] |
R. Wang, B. Wang, Random dynamics of p-Laplacian lattice systems driven by infinite-dimensional nonlinear noise, Stoch. Proc. Appl., 130 (2020), 7431–7462. https://doi.org/10.1016/j.spa.2020.08.002 doi: 10.1016/j.spa.2020.08.002
![]() |
[11] |
Z. Chen, B. Wang, Asymptotic behavior of stochastic complex lattice systems driven by superlinear noise, J. Theor. Probab., 36 (2023), 1487–1519. https://doi.org/10.1007/s10959-022-01206-9 doi: 10.1007/s10959-022-01206-9
![]() |
[12] |
D. Li, B. Wang, X. Wang, Limiting behavior of invariant measures of stochastic delay lattice systems, J. Dyn. Differ. Equations, 34 (2022), 1453–1487. https://doi.org/10.1007/s10884-021-10011-7 doi: 10.1007/s10884-021-10011-7
![]() |
[13] |
P. W. Bates, K. Lu, B. Wang, Attractors for lattice dynamical systems, Int. J. Bifurcation Chaos, 11 (2001), 143–153. https://doi.org/10.1142/S0218127401002031 doi: 10.1142/S0218127401002031
![]() |
[14] |
G. Faye, Traveling fronts for lattice neural field equations, Phys. D, 378 (2018), 20–32. https://doi.org/10.1016/j.physd.2018.04.004 doi: 10.1016/j.physd.2018.04.004
![]() |
[15] |
X. Han, P. E. Kloeden, Sigmoidal approximations of Heaviside functions in neural lattice models, J. Differ. Equations, 268 (2020), 5283–5300. https://doi.org/10.1016/j.jde.2019.11.010 doi: 10.1016/j.jde.2019.11.010
![]() |
[16] |
X. Han, P. E. Kloeden, B. Usman, Long term behavior of a random Hopfield neural lattice model, Commun. Pure Appl. Anal., 18 (2019), 809–824. https://doi.org/10.3934/cpaa.2019039 doi: 10.3934/cpaa.2019039
![]() |
[17] |
X. Wang, P. E. Kloeden, X. Han, Attractors of Hopfield-type lattice models with increasing neuronal input, Discrete Contin. Dyn. Syst. Ser. B, 25 (2020), 799–813. https://doi.org/10.3934/dcdsb.2019268 doi: 10.3934/dcdsb.2019268
![]() |
[18] |
X. Wang, P. E. Kloeden, X. Han, Stochastic dynamics of a neural field lattice model with state dependent nonlinear noise, Nodea Nonlinear Differ., 28 (2021), 43. https://doi.org/ 10.1007/s00030-021-00705-8 doi: 10.1007/s00030-021-00705-8
![]() |
[19] |
T. Caraballo, Z. Chen, L. Li, Convergence and approximation of invariant measures for neural field lattice models under noise perturbation, SIAM J. Appl. Dyn. Syst., 23 (2024), 358–382. https://doi.org/10.1137/23M157137X doi: 10.1137/23M157137X
![]() |
[20] |
P. E. Kloeden, T. Lorenz, Mean-quare random dynamical systems, J. Differ. Equations, 253 (2012), 1422–1438. https://doi.org/10.1016/j.jde.2012.05.016 doi: 10.1016/j.jde.2012.05.016
![]() |
[21] |
B. Wang, Weak pullback attractors for mean random dynamical systems in Bochner spacs, J. Dyn. Differ. Equations, 31 (2019), 2177–2204. https://doi.org/10.1007/s10884-018-9696-5 doi: 10.1007/s10884-018-9696-5
![]() |
[22] |
X. Li, Limiting dynamics of stochastic complex Ginzburg-Landau lattice systems with long-range interactions in weighted space, J. Math. Phys., 65 (2024), 022703. https://doi.org/10.1063/5.0168869 doi: 10.1063/5.0168869
![]() |
[23] |
Y. Lin, D. Li, Limiting behavior of invariant measures of highly nonlinear stochastic retarded lattice systems, Discrete Contin. Dyn. Syst. Ser. B, 27 (2022), 7561–7590. https://doi.org/ 10.3934/dcdsb.2022054 doi: 10.3934/dcdsb.2022054
![]() |
[24] |
R. Wang, B. Wang, Global well-posedness and long-term behavior of discrete reaction-diffusion equations driven by superlinear noise, Stoch. Anal. Appl., 39 (2021), 667–696. https://doi.org/10.1080/07362994.2020.1828917 doi: 10.1080/07362994.2020.1828917
![]() |
[25] |
R. Wang, T. Caraballo, N. H. Tuan, Asymptotic stability of evolution systems of probability measures for nonautonomous stochastic systems: Theoretical results and applications, P. Am. Math. Soc., 151 (2023), 2449–2458. https://doi.org/10.1090/proc/16359 doi: 10.1090/proc/16359
![]() |
[26] |
D. Li, B. Wang, X. Wang, Periodic measures of stochastic delay lattice systems, J. Differ. Equations, 272 (2021), 74–104. https://doi.org/10.1016/j.jde.2020.09.034 doi: 10.1016/j.jde.2020.09.034
![]() |
[27] |
Y. Lin, Periodic measures of reaction-diffusion lattice systems driven by superlinear noise, Electron. Res. Arch., 30 (2022), 35–51. https://doi.org/10.3934/era.2022002 doi: 10.3934/era.2022002
![]() |
[28] |
B. Wang, Attractors for reaction-diffusion equations in unbounded domains, Phys. D, 128 (1999), 41–52. https://doi.org/10.1016/S0167-2789(98)00304-2 doi: 10.1016/S0167-2789(98)00304-2
![]() |