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Abstract: The primary focus of this paper lies in exploring the limiting dynamics of a neural field
lattice model with state dependent superlinear noise. First, we established the well-posedness of
solutions to these stochastic systems and subsequently proved the existence of periodic measures for
the system in the space of square-summable sequences using Krylov-Bogolyubov’s method. The cutoff
techniques of uniform estimates on tails of solutions was employed to establish the tightness of a family
of probability distributions for the system’s solutions.
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1. Introduction

The objective of this paper is to investigate the existence of periodic measures for a neural field
lattice model with state dependent superlinear noise on ZN with N ∈ N:dui(t) =

(
− αui(t) + fi(ui(t)) +

∑
j∈ZN

ki, jξi, j(u j(t)) + gi(t)
)
dt +
(
λi(ui(t)) + hi(t)

)
dWi(t),

ui(0) = u0,i,
(1.1)

where i = (i1, i2, · · · , iN) ∈ ZN , t > 0, and α > 0. The variable ui represents the neural activity,
specifically the synaptic activity of the ith node. The function fi : R → R describes the continuous
differentiability of neural activity attenuation for the ith node, and ξi, j : R → R is an activation
function that determines a node’s output based on its input. The quantity ki, j represents the synaptic
strength from the jth to the ith node, which can have positive or negative values indicating excitation or
inhibition of the jth neuron on the ith neuron, respectively. The time-dependent functions gi : R → R
and hi : R → R describe the external forcing for drift and diffusion at the ith location, respectively.
This is represented by a sequence of mutually independent two-sided real-valued Wiener processes
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(Wi(t))i∈ZN , defining on a complete filtered probability space (Ω,F , {Ft}t∈R, P), and each Wiener process
Wi is associated with a superlinear state-dependent function λi : R→ R within its coefficient.

Differential equations and dynamical systems play a crucial role in the mathematical modeling and
analysis of aircraft design, aerospace engineering, materials science, biology, medical engineering,
financial engineering, and securities markets, as well as mobile communications, aquatic communica-
tions, and other related fields. The field of dynamical systems have witnessed significant achievements
by numerous esteemed scholars. Among them, the investigation of traveling wave solutions for such
equations have been conducted by [1, 2]. The examination of chaotic properties in the solutions have
been carried out by [3, 4]. The existence and uniqueness of solutions and the existence, uniqueness,
and upper semi-continuity of attractors have been studied by [5–7]. Additionally, Li et al. conducted
an investigation on inverse problems in predator-prey models in [8], while Yin et al. explored a neural
network approach for the inversion of turbulence strength in [9]. These studies on inverse problems in
mathematical physics have generated a significant impact within academic circles.

The lattice systems are commonly derived from spatial discretizations of partial differential
equations. For the asymptotic behavior analysis of lattice systems, we refer readers to [10–13].
Amongst various applications, neural lattice models arising from neural networks have recently gained
significant attention. These models can be broadly classified into two types: one is developed as the
discretization of continuous neural field models, known as neural field lattice systems; and the other is
derived as the limit of finite dimensional discrete neural networks when their sizes become increasingly
large. Recent studies on neural lattice models include Faye’s investigation on traveling fronts for a class
of lattice neural field equations [14], Han and Kloeden’s exploration of long-term dynamics for neural
field lattice models [15], along with Han et al.’s examination of long-term dynamics for Hopfield-type
neural lattice models [16], in addition to Wang et al.’s work [17]. Recently, Wang et al. conducted a
study on the existence of weak pullback mean random attractors and invariant measures for a neural
lattice model with state-dependent nonlinear noise in their work [18]. In addition, Caraballo et al.
investigated the convergence and approximation of invariant measures for neural field lattice models
under noise perturbation in their publication [19].

Currently, extensive research has been conducted on the dynamical behavior of differential
equations driven by linear noise. To effectively handle stochastic systems with nonlinear noise,
Kloeden [20] and Wang [21] introduced the concept of weak pullback mean random attractors.
Subsequently, this concept has been widely applied in numerous studies on stochastic systems by
various scholars in [22–25]. The periodic measures of stochastic differential equations have been
extensively investigated by numerous experts, as documented in [26, 27] and the references therein.
Specifically, the existence and limiting behavior of periodic measures for the stochastic reaction-
diffusion lattice system were examined in [26], considering both globally Lipschitz continuous
nonlinear drift and diffusion terms. However, to the best of our knowledge, the current literature
on periodic measures for the neural field lattice model with state-dependent superlinear noise is
unfortunately lacking. The existence of periodic measures for the lattice systems (1.1) in ℓ2 is
established through the ingenious Krylov-Bogolyubov’s method, which showcases the brilliance of
mathematical prowess. By employing the concept of uniform estimates on the tails of solutions, we
successfully establish the tightness of a family of distribution laws of the solutions.

The paper is structured as follows: Section 2 introduces the notations and discusses the well-
posedness of system (1.1). The subsequent section establishes essential uniform estimates of solutions,
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which play a pivotal role in demonstrating the main findings in the following section. The primary
focus of Section 4 is to investigate the existence of periodic measures for system (1.1) in space ℓ2.

2. Preliminaries

In this section, we will investigate the well-posedness of the stochastic neural field lattice system
(1.1). We begin with the following Banach space ℓr, where ℓr is defined by

ℓr =
{
u = (ui)i∈ZN |ui ∈ R,

∑
i∈ZN
|ui|

r < ∞
}

with norm ∥u∥rr =
∑

i∈ZN
|ui|

r if 1 ≤ r < ∞,

ℓ∞ =
{
u = (ui)i∈ZN |ui ∈ R, sup

i∈ZN
|ui| < ∞

}
with norm ∥u∥ℓ∞ = sup

i∈ZN
|ui| if r = ∞.

Particularly, ℓ2 is a Hilbert space with the inner product and norm given by

(u, v) =
∑
i∈ZN

uivi, ∥u∥2 = (u, u), u, v ∈ ℓ2.

For the nonlinear drift function fi ∈ C1(R,R) in system (1.1), we assume that for all z ∈ R and
i ∈ ZN ,

fi(z)z ≤ −γ|z|p + ϕ1,i, ϕ1 = (ϕ1,i)i∈ZN ∈ ℓ1, (2.1)

| fi(z)| ≤ ϕ2,i|z|p−1 + ϕ3,i, ϕ2 = (ϕ2,i)i∈ZN ∈ ℓ∞, ϕ3 = (ϕ3,i)i∈ZN ∈ ℓ2, (2.2)

| f ′i (z)| ≤ ϕ4,i|z|p−2 + ϕ5,i, ϕ4 = (ϕ4,i)i∈ZN ∈ ℓ∞, ϕ5 = (ϕ5,i)i∈ZN ∈ ℓ∞, (2.3)

where p > 2 and γ > 0 are constants. For the sequence of continuously differentiable diffusion function
λi, we assume that for every z ∈ R and i ∈ ZN ,

|λi(z)| ≤ φ1,i|z|
q
2 + φ2,i, φ1 = (φ1,i)i∈ZN ∈ ℓ

2p
p−q , φ2 = (φ2,i)i∈ZN ∈ ℓ2, (2.4)

|λ′i(z)| ≤ φ3,i|z|
q
2−1 + φ4,i, φ3 = (φ3,i)i∈ZN ∈ ℓq, φ4 = (φ4,i)i∈ZN ∈ ℓ∞, (2.5)

where q ∈ [2, p) is a constant. Moreover, we assume that there exists a constant κ > 0 such that∑
i∈ZN

∑
j∈ZN

k2
i, j ≤ κ. (2.6)

For i, j ∈ ZN and z ∈ R, we assume that the activation function ξi, j is globally Lipschitz continuous
with Lipchitz constant L1, and there exist ai, j ∈ R and bi, j > 0 such that

|ξi, j(z)| ≤ ai, j|z| + bi, j, with ∥a∥2 =
∑
i∈ZN

∑
j∈ZN

|ai, j|
2 < ∞, ∥b∥2 =

∑
i∈ZN

∑
j∈ZN

|bi, j|
2 < ∞. (2.7)

In addition, we assume

16κ∥a∥2 ≤ α2. (2.8)
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Suppose G(t),H(t) : R → ℓ2, G(t) = (gi(t))i∈ZN , H(t) = (hi(t))i∈ZN are both continuous in t ∈ R,
which shows that for t ∈ R,

∥G(t)∥2 =
∑
i∈ZN

|gi(t)|2 < ∞ and ∥H(t)∥2 =
∑
i∈ZN

|hi(t)|2 < ∞. (2.9)

In order to investigate the periodic measures of system (1.1), we assume that all given time-
dependent functions are T -periodic in t ∈ R for some T > 0; that is, for all t ∈ R,

G(t + T ) = G(t), H(t + T ) = H(t).

If χ : R→ R is a continuous T -periodic function, we denote

χ̄ = max
0≤t≤T

χ(t).

For all u = (ui)i∈ZN ∈ ℓ2, define the operator F, Λ, and Ξ by

F(u) = ( fi(ui))i∈ZN , Λ(u) = (λi(ui))i∈ZN ,

Ξ(u) = (Ξi(ui))i∈ZN with Ξi(ui) =
∑
j∈ZN

ki, jξi, j(u j). (2.10)

By (2.3), we get that there exists θ1 ∈ (0, 1) such that for p > 2 and u, v ∈ ℓ2,∑
i∈ZN

| fi(ui) − fi(vi)|2 =
∑
i∈ZN

| f ′i (θ1ui + (1 − θ1)vi)|2|ui − vi|
2

≤
∑
i∈ZN

(|ϕ4,i||θ1ui + (1 − θ1)vi|
p−2 + |ϕ5,i|)2|ui − vi|

2

≤ (22p−4∥ϕ4∥
2
ℓ∞(∥u∥2p−4 + ∥v∥2p−4) + 2∥ϕ5∥

2
ℓ∞)∥u − v∥2,

(2.11)

which along with F(0) ∈ ℓ2 and according to (2.2) implies F(u) ∈ ℓ2 for all u ∈ ℓ2. Then, F : ℓ2 → ℓ2

is well-defined. In addition, it follows from (2.11) that F : ℓ2 → ℓ2 is a locally Lipschitz continuous
function; that is, for every c ∈ N, there exists a constant L2(c) > 0 such that for all u, v ∈ ℓ2 with
∥u∥ ≤ c and ∥v∥ ≤ c,

∥F(u) − F(v)∥ ≤ L2(c)∥u − v∥. (2.12)

For u ∈ ℓ2, by (2.6), (2.7), and (2.10), we have

∥Ξ(u)∥2 ≤
∑
i∈ZN

(∑
j∈ZN

ki, j(ai, j|u j| + bi, j)
)2
≤
∑
i∈ZN

∑
j∈ZN

k2
i, j

∑
j∈ZN

(ai, j|u j| + bi, j)2

≤ 2κ∥a∥2∥u∥2 + 2κ∥b∥2.
(2.13)

In addition, for all u, v ∈ ℓ2, it follows from the globally Lipschitz continuity of ξi, j, Cauchy’s inequality,
and (2.6) that

∥Ξ(u) − Ξ(v)∥2 ≤ L2
1

∑
i∈ZN

(∑
j∈ZN

ki, j|u j − v j|
)2
≤ L2

1

∑
i∈ZN

∑
j∈ZN

k2
i, j

∑
j∈ZN

|u j − v j|
2

≤ L2
1κ∥u − v∥2,

(2.14)
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which, along with (2.13), implies that Ξ(u) belongs to ℓ2 and is a globally Lipschitz continuous
function.

In order to rewrite the terms λi(ui) + hi(t) as vectors in ℓ2, define two sequence of operators Λi and
Hi by

Λi(u) = (λi(ui))ei, Hi(t) = (hi(t))ei, i ∈ ZN ,

where ei represents the infinite sequence with a value of 1 at position i and a value of 0 elsewhere.
Then, we can get that Λ(u) =

∑
i∈ZN
Λi(u) and H(t) =

∑
i∈ZN

Hi(t) for every u ∈ ℓ2 and

∥Λ(u)∥2 =
∑
i∈ZN

∥Λi(u)∥2, ∥Λ(u) − Λ(v)∥2 =
∑
i∈ZN

∥Λi(u) − Λi(v)∥2. (2.15)

For q ∈ [2, p) and u ∈ ℓ2, we can get from (2.4) and Young’s inequality that

∥Λ(u)∥2 =
∑
i∈ZN

|λi(ui)|2 ≤ 2
∑
i∈ZN

(|φ1,i|
2|ui|

q + |φ2,i|
2)

≤
γ

2

∑
i∈ZN

|ui|
p +

p − q
p

( pγ
2q

)− q
p−q 2

p
p−q

∑
i∈Z

|φ1,i|
2p
p−q + 2

∑
i∈ZN

|φ2,i|
2

=
γ

2
∥u∥pp +

p − q
p

( pγ
2q

)− q
p−q 2

p
p−q ∥φ1|

2p
p−q
2p
p−q

+ 2∥φ2∥
2,

(2.16)

where γ is the same number in (2.1). By (2.16) and ℓ2 ⊆ ℓp, we get that Λ(u) ∈ ℓ2 for all u ∈ ℓ2 and
p > 2. Then, Λ(u) : ℓ2 → ℓ2 is also well-defined. By (2.5), we get that there exists θ2 ∈ (0, 1) such that
for q ∈ [2, p) and u, v ∈ ℓ2,

∥Λ(u) − Λ(v)∥2 =
∑
i∈ZN

|Λi(ui) − Λi(vi)|2

=
∑
i∈ZN

|λ′i(θ2ui + (1 − θ2)vi)|2|ui − vi|
2

≤
∑
i∈ZN

(|φ3,i||θ2ui + (1 − θ2)vi)|
q
2−1 + |φ4,i|)2|ui − vi|

2

≤
∑
i∈ZN

(2q−2|φ3,i|
2(|ui|

q−2 + |vi|
q−2) + 2|φ4,i|

2)|ui − vi|
2

≤
∑
i∈ZN

(
2q−2
(4
q
|φ3,i|

q +
q − 2

q
|ui|

q +
q − 2

q
|vi|

q
)
+ 2|φ4,i|

2
)
|ui − vi|

2

≤ (2q−1(∥φ3∥
q
q + ∥u∥

q + ∥v∥q) + 2∥φ4∥
2
ℓ∞)∥u − v∥2,

(2.17)

which shows that Λ : ℓ2 → ℓ2 is a locally Lipschitz continuous function; that is, for every c ∈ N, we
can find a constant L3(c) > 0 such that for all u, v ∈ ℓ2 with ∥u∥ ≤ c and ∥v∥ ≤ c,

∥Λ(u) − Λ(v)∥2 ≤ L2
3(c)∥u − v∥2. (2.18)

By the above notation, system (1.1) can be rewritten as follows: For all t > 0,du(t) =
(
− αu(t) + F(u(t)) + Ξ(u(t)) +G(t)

)
dt +

∑
i∈ZN

(
Λi(u(t)) + Hi(t)

)
dWi(t),

u(0) = u0.
(2.19)
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Let u0 ∈ L2(Ω, ℓ2) be F0-measurable. A continuous ℓ2-valued Ft-adapted stochastic process u(t) is
called a solution of system (2.19) if u(t) ∈ L2(Ω,C([0,T ], ℓ2))

⋂
Lp(Ω, Lp(0,T, ℓp)) for all T > 0, t ≥ 0

and for almost all ω ∈ Ω,

u(t) = u0 +

∫ t

0

(
− αu(s) + F(u(s)) + Ξ(u(s)) +G(s)

)
ds +

∑
i∈ZN

∫ t

0

(
Λi(u(s)) + Hi(s)

)
dWi(s).

By (2.1)–(2.9) and the theory of functional differential equations, we can get that for any u0 ∈

L2(Ω, ℓ2), system (2.19) has local solutions u(t) ∈ L2(Ω,C([0,T ], ℓ2))
⋂

Lp(Ω, Lp(0,T, ℓp)) for every
T > 0. Moreover, similar to [24], we can get that the local solutions to system (2.19) are also global.

3. Uniform estimates

In this section, we establish uniform estimates for the solutions to system (2.19), which play a
crucial role in proving the existence of periodic measures. Specifically, we will demonstrate the
compactness of a family of probability distributions related to u(t) in ℓ2.

Lemma 3.1. Suppose (2.1)–(2.9) hold. Let u0 ∈ L2(Ω, ℓ2) be the initial data of system (2.19), then the
solution u(t, 0, u0) of the system (2.19) satisfies

E
[
∥u(t, 0, u0)∥2

]
+

∫ t

0
eα(r−t)E

[
∥u(r, 0, u0)∥pp

]
dr

≤ M1
(
E
[
∥u0∥

2] + ∥ϕ1∥1 + ∥φ1∥
2p
p−q
2p
p−q

+ ∥φ2∥
2 + ∥H̄∥ + ∥Ḡ∥

)
,

(3.1)

where M1 is a positive constant independent of u0.

Proof. By (2.19) and Itô’s formula, we get that for all t ≥ 0,

d∥u∥2 = −2α∥u∥2dt + 2
(
F(u) + Ξ(u) +G(t), u

)
dt + ∥Λ(u) + H(t)∥2dt

+ 2
∑
i∈ZN

(
u,Λi(u) + Hi(t)

)
dWi(t). (3.2)

Taking the expectation, we obtain that for t ≥ 0,
d
dt
E
[
∥u∥2
]
= −2αE

[
∥u∥2
]
+ 2E
[(

F(u), u
)]
+ 2E
[(
Ξ(u), u

)]
+ 2E
[(

G(t), u
)]
+ E
[
∥Λ(u) + H(t)∥2

]
. (3.3)

By (2.1), we have

2E
[(

F(u), u
)]
≤ −2γE

[
∥u∥pp
]
+ 2∥ϕ1∥1. (3.4)

By (2.7) and Young’s inequality, we get

2E
[(
Ξ(u), u

)]
≤ 2E

[∑
i∈ZN

ui

∑
j∈ZN

ki, j(ai, j|u j| + bi, j)
]

≤
α

4
E
[
∥u∥2
]
+

4
α
E
[∑

i∈ZN

(∑
j∈ZN

ki, j(ai, j|u j| + bi, j)
)2]

≤
α

4
E
[
∥u∥2
]
+

8κ
α

(
∥a∥2E

[
∥u∥2
]
+ ∥b∥2

)
=
α

4
E
[
∥u∥2
]
+

8κ∥a∥2

α
E
[
∥u∥2
]
+

8κ∥b∥2

α
.

(3.5)
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Note that

2E
[(

G(t), u
)]
≤
α

4
E
[
∥u∥2
]
+

4
α
E
[
∥G(t)∥2

]
. (3.6)

By (2.4), we obtain

E
[
∥Λ(u) + H(t)∥2

]
≤ 2E

[∑
i∈ZN

λ2
i (ui)
]
+ 2E
[
∥H(t)∥2

]
≤ 2E

[∑
i∈ZN

(φ1,i|ui|
q
2 + φ2,i)2

]
+ 2E
[
∥H(t)∥2

]
≤ 4E

[∑
i∈ZN

(φ2
1,i|ui|

q + φ2
2,i)
]
+ 2E
[
∥H(t)∥2

]
≤
γ

2
E
[
∥u∥pp
]
+

p − q
p

( pγ
2q

)− q
p−q 4

p
p−q ∥φ1∥

2p
p−q
2p
p−q

+ 4∥φ2∥
2 + 2E

[
∥H(t)∥2

]
.

(3.7)

It follows from (3.3)–(3.7) and (2.8) that

d
dt
E
[
∥u(t)∥2

]
+ αE

[
∥u(t)∥2

]
+

3γ
2
E
[
∥u(t)∥pp

]
≤ 2∥ϕ1∥1 +

p − q
p
( pγ
2q
)− q

p−q 4
p

p−q ∥φ1∥
2p
p−q
2p
p−q

+ 4∥φ2|
2 +

8κ∥b∥2

α
+ 2E
[
∥H(t)∥2

]
+

4
α
E
[
∥G(t)∥2

]
,

(3.8)

which implies that for t ≥ 0,

E
[
∥u(t, 0, u0)∥2

]
+

3γ
2

∫ t

0
eα(r−t)E

[
∥u(r, 0, u0)∥pp

]
dr ≤ e−αtE

[
∥u0∥

2] +C1

∫ t

0
eα(r−t)dr, (3.9)

where C1 = 2∥ϕ1∥1 +
p−q

p

(
pγ
2q

)− q
p−q 4

p
p−q ∥φ1∥

2p
p−q
2p
p−q

+ 4∥φ2|
2 + 8κ∥b∥2

α
+ 2∥H̄∥2 + 4

α
∥Ḡ∥2. This completes the

proof. □

The subsequent step involves obtaining uniform estimates on the tails of solutions to the stochastic
lattice system (2.19).

Lemma 3.2. Suppose (2.1)–(2.9) hold. For compact subsetK ∈ ℓ2, there is a number N0 = N0(K) ∈ N
such that the solution u(t, 0, u0) of the system (2.19) satisfies, for all n ≥ N0 and t ≥ 0,

E
[∑
∥i∥≥n

|ui(t, 0, u0)|2
]
+

∫ t

0
eα(r−t)E

[∑
∥i∥≥n

|ui(r, 0, u0)|p
]
dr ≤ ε, (3.10)

where u0 ∈ K and ∥i∥ := max1≤ j≤N |i j|.

Proof. Let ϑ be a smooth function which is defined on R such that 0 ≤ ϑ(z) ≤ 1 for all z ∈ R, and

ϑ(z) =
{

0, 0 ≤ |z| ≤ 1;
1, |z| ≥ 2.

For n ∈ N, set ϑn =
(
ϑ
(
∥i∥
n

))
i∈ZN

and ϑnu =
(
ϑ
(
∥i∥
n

)
ui

)
i∈ZN

. By (2.19), we have

d(ϑnu) =
(
− αϑnu + ϑnF(u) + ϑnΞ(u) + ϑnG(t)

)
dt +
∑
i∈ZN

(
ϑnΛi(u) + ϑnHi(t)

)
dWi(t),
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which along with Itô’s formula implies that

d∥ϑnu∥2 = − 2α∥ϑnu∥2dt + 2(ϑnF(u), ϑnu)dt + 2(ϑnΞ(u), ϑnu)dt + 2(ϑnG(t), ϑnu)dt

+
∑
i∈ZN

∥ϑnΛi(u) + ϑnHi(t)∥2dt + 2
∑
i∈ZN

(
ϑnΛi(u) + ϑnHi(t), ϑnu

)
dWi(t). (3.11)

Then, we get that for all t ≥ 0,

d
dt
E
[
∥ϑnu∥2

]
= − 2αE

[
∥ϑnu∥2

]
+ 2E
[
(ϑnF(u), ϑnu)

]
+ 2E
[
(ϑnΞ(u), ϑnu)

]
+ 2E
[
(ϑnG(t), ϑnu)

]
+ E
[∑

i∈ZN

∥ϑnΛi(u) + ϑnHi(t)∥2
]
.

(3.12)

By (2.1), we find

2E
[
(ϑnF(u), ϑnu)

]
≤ 2E

[∑
i∈ZN

ϑ2
(∥i∥

n

)
(−γ|ui|

p + ϕ1,i)
]

≤ −2γE
[∑

i∈ZN

ϑ2
(∥i∥

n

)
|ui|

p
]
+ 2
∑
∥i∥≥n

ϕ1,i.

(3.13)

By (2.7) and Young’s inequality, we have

2E
[
(ϑnΞ(u), ϑnu)

]
≤
α

4
E
[
∥ϑnu∥2

]
+

4
α
E
[∑

i∈ZN

ϑ2
(∥i∥

n

)(∑
j∈ZN

ki, jξi, j(u j)
)2]

≤
α

4
E
[
∥ϑnu∥2

]
+

8κ
α
E
[∑

i∈ZN

ϑ2
(∥i∥

n

)(∑
j∈ZN

|ai, ju j|
2 + |bi, j|

2
)]

=
α

4
E
[
∥ϑnu∥2

]
+

8κ∥a∥2

α
E
[
∥ϑnu∥2

]
+

8κ
α

∑
∥i∥≥n

∑
j∈ZN

|bi, j|
2.

(3.14)

Note that

2E
[
(ϑnG(t), ϑnu)

]
≤
α

4
E
[
∥ϑnu∥2

]
+

4
α
E
[
∥ϑnG(t)∥2

]
. (3.15)

For the last term of (3.12), by (2.4), we get

E
[∑

i∈ZN

∥ϑnΛ(u) + ϑnH(t)∥2
]
≤ 2E

[∑
i∈ZN

ϑ2
(∥i∥

n

)
(φ1,i|ui|

q
2 + φ2,i)2

]
+ 2E
[
∥ϑnH(t)∥2

]
≤ 4E

[∑
i∈ZN

ϑ2
(∥i∥

n

)
(φ2

1,i|ui|
q + φ2

2,i)
]
+ 2E
[
∥ϑnH(t)∥2

]
≤
γ

2
E
[∑

i∈ZN

ϑ2
(∥i∥

n

)
|ui|

p
]
+ 2E
[
∥ϑnH(t)∥2

]
+ 4
∑
∥i∥≥n

|φ2,i|
2 +

p − q
p

( pγ
2q

)− q
p−q 4

p
p−q

∑
∥i∥≥n

|φ1,i|
2p
p−q .

(3.16)
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It follows from (3.12)–(3.16) and (2.8) that

d
dt
E
[
∥ϑnu∥2

]
+ αE

[
∥ϑnu∥2

]
+

3γ
2
E
[∑

i∈ZN

ϑ2
(∥i∥

n

)
|ui|

p
]

≤ 2
∑
∥i∥≥n

ϕ1,i +
p − q

p

( pγ
2q

)− q
p−q 4

p
p−q

∑
∥i∥≥n

|φ1,i|
2p
p−q + 4

∑
∥i∥≥n

|φ2,i|
2

+ 2
∑
∥i∥≥n

|H̄i|
2 +

4
α

∑
∥i∥≥n

|Ḡi|
2 +

8κ
α

∑
∥i∥≥n

∑
j∈ZN

|bi, j|
2,

which implies that

E
[
∥ϑnu(t, 0, u0)∥2

]
+

3γ
2

∫ t

0
eα(r−t)E

[∑
i∈ZN

ϑ2
(∥i∥

n

)
|ui(r, 0, u0)|p

]
dr

≤ e−αtE
[
∥ϑnu0∥

2] + 1
α

(
2
∑
∥i∥≥n

ϕ1,i +
p − q

p

( pγ
2q

)− q
p−q 4

p
p−q

∑
∥i∥≥n

|φ1,i|
2p
p−q

+ 4
∑
∥i∥≥n

|φ2,i|
2 + 2

∑
∥i∥≥n

|H̄i|
2 +

4
α

∑
∥i∥≥n

|Ḡi|
2 +

8κ
α

∑
∥i∥≥n

∑
j∈ZN

|bi, j|
2
)
.

(3.17)

Since K is a compact subset of ℓ2, we get that

lim
n→∞

sup
u0∈K

sup
t≥0

e−αtE
[
∥ϑnu0∥

2] ≤ lim
n→∞

sup
u0∈K

E
[∑
∥i∥≥n

|u0,i|
2
]
= 0. (3.18)

By ϕ1 ∈ ℓ
1, φ1 ∈ ℓ

2p
p−q , φ2 ∈ ℓ

2, (2.7), and (2.9), we infer that

2
∑
∥i∥≥n

ϕ1,i +
p − q

p

( pγ
2q

)− q
p−q 4

p
p−q

∑
∥i∥≥n

|φ1,i|
2p
p−q + 4

∑
∥i∥≥n

|φ2,i|
2

+ 2
∑
∥i∥≥n

|H̄i|
2 +

4
α

∑
∥i∥≥n

|Ḡi|
2 +

8κ
α

∑
∥i∥≥n

∑
j∈ZN

|bi, j|
2 → 0 as n→ ∞.

(3.19)

It follows from (3.17)–(3.19) that as n→ ∞,

sup
u0∈K

sup
t≥0

(
E
[
∥ϑnu(t, 0, u0)∥2

]
+

∫ t

0
eα(r−t)E

[∑
i∈ZN

ϑ2
(∥i∥

n

)
|ui(r, 0, u0)|p

]
dr
)
→ 0. (3.20)

Then, for every ε > 0, we can find that there exists a number N0 = N0(K) ∈ N such that for all n ≥ N0

and t ≥ 0,

E
[ ∑
∥i∥≥2n

|ui(t, 0, u0)|2
]
+

∫ t

0
eα(r−t)E

[ ∑
∥i∥≥2n

|ui(r, 0, u0)|p
]
dr

≤ E
[
∥ϑnu(t, 0, u0)∥2

]
+

∫ t

0
eα(r−t)E

[∑
i∈ZN

ϑ2
(∥i∥

n

)
|ui(r, 0, u0)|p

]
dr ≤ ε

(3.21)

uniformly for u0 ∈ K and t ≥ 0. This concludes the proof. □
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Remark 1. In order to establish the existence of periodic measures for stochastic lattice system
(2.19), the main challenge lies in deriving the tightness of a family of probability distributions of
solutions. Our approach involves approximating solutions in ℓ2 using finite-dimensional methods. In
order to achieve this, it is necessary to establish uniformly small estimates for the “tail ends” of these
solutions for t ≥ 0 as stated in Lemma 3.2. For further elaboration on cutoff techniques related to
estimating the “tail ends”, please refer to [13, 28].

4. Existence of periodic measures

The primary focus of this section is to establish the existence of periodic measures for the lattice
system (2.19) in ℓ2. First, we introduce the transition operators associated with the lattice system and
subsequently provide evidence for the convergence and compactness properties exhibited by a family
of probability distributions representing solutions to this particular lattice system.

Suppose ψ : ℓ2 → R is a bounded Borel function. For 0 ≤ r ≤ t, we set

(pr,tψ)(u0) = E[ψ(u(t, r, u0))], ∀u0 ∈ ℓ
2.

In addition, for G ∈ B(ℓ2), 0 ≤ r ≤ t, and u0 ∈ ℓ
2, we set

p(r, u0; t,G) = (pr,t1G)(u0),

where 1G is the characteristic function of G. Then, we can get that p(r, u0; t, ·) is the probability
distribution of u(t) in ℓ2. Furthermore, the transition operator p0,t is denoted as pt for the sake of
convenience.

Definition 4.1. A probability measure µ on ℓ2 is called a periodic measure of lattice system (2.19) if∫
ℓ2

(p0,t+Tψ)(u0)dµ(u0) =
∫
ℓ2

(p0,tψ)(u0)dµ(u0), ∀t ≥ 0,T > 0.

Now, we show the properties of transition operators {pr,t}0≤r≤t as follows.

Lemma 4.1. Suppose (2.1)–(2.9) hold. Then, we have
(i) The family {pr,t}0≤r≤t is Feller; that is, if ψ : ℓ2 → R is bounded and continuous, then pr,tψ : ℓ2 →

R is bounded and continuous.
(ii) The family {pr,t}0≤r≤t is T-periodic; that is,

p(r, u0; t, ·) = p(r + T, u0; t + T, ·),∀r ∈ [0, t], u0 ∈ ℓ
2.

(iii) {u(t, 0, u0)}t≥0 is a ℓ2-value Markov process.

Lemma 4.2. Suppose (2.1)–(2.9) hold. Then, the family {L(u(t, 0, u0)) : t ≥ 0} of the distribution laws
of the solutions to system (2.19) is tight on ℓ2.

Proof. For all t ≥ 0, by Lemma 3.1 and Chebyshev’s inequality, we get that there exists a constant
c1 > 0 such that

P{∥u(t)∥2 ≥ R} ≤
1
R2E
[
∥u(t)∥2

]
≤

c1

R2 .
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Then, for each ε > 0, there exists a constant R1 = R1(ε) > 0 such that

P{∥u(t)∥2 ≥ R1} ≤
ε

2
, ∀t ≥ 0. (4.1)

By Lemma 3.2, we obtain that for every ε > 0 and m ∈ N, there exists an integer nm = nm(ε,m) ≥ 1
such that

E
[ ∑
∥i∥≥nm

|ui(t)|2
]
≤

ε

22m+2 , ∀t ≥ 0. (4.2)

Then, for all t ≥ 0 and m ∈ N, we get

P
( ∞⋃

m=1

{ ∑
∥i∥≥nm

|ui(t)|2 ≥
1

2m

})
≤

∞∑
m=1

2mE
[ ∑
∥i∥≥nm

|ui(t)|2
]
≤
ε

4
,

which shows that for all t ≥ 0,

P
({ ∑
∥i∥≥nm

|ui(t)|2 ≤
1

2m ,∀m ∈ N
})
> 1 −

1
2
ε. (4.3)

For ε > 0, setZε = Z1,ε
⋂
Z2,ε, where

Z1,ε = {v ∈ ℓ2 : ∥v∥ ≤ R1(ε)}, (4.4)

Z2,ε =
{
v ∈ ℓ2 :

∑
∥i∥≥nm

|vi(t)|2 ≤
1

2m ,∀m ∈ N
}
. (4.5)

It follows from (4.1) and (4.3) that for all t ≥ 0,

P({u(t) ∈ Zε}) > 1 − ε. (4.6)

Given ϵ > 0, choose an interger m0 = m0(ϵ) ∈ N such that 2m0 > 8
ϵ2 . Then, by (4.5), we get that for all

v ∈ Zε, ∑
∥i∥≥nm0

|vi(t)|2 ≤
1

2m0
<
ϵ2

8
. (4.7)

The set {(vi)∥i∥≤m0 : v ∈ Zε} is bounded in the finite-dimensional space R2m0+1 as shown by (4.4), and
therefore is pre-compact. As a result, {v : v ∈ Zε} has a finite open cover of balls with radius ϵ

2 , which
combined with (4.7) implies that the set {v : v ∈ Zε} has a finite open cover of balls with radius ϵ in
ℓ2. Since ϵ > 0 can be chosen arbitrarily, the set {v : v ∈ Zε} is pre-compact in ℓ2. This completes the
proof. □

Now, the main outcome of this paper has been proved by Krylov-Bogolyubov’s method.

Theorem 4.1. Suppose (2.1)–(2.9) hold. Then, system (2.19) has a periodic measure on ℓ2.
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Proof. For each n ∈ N, the probability measure µn is defined by

µn =
1
n

n∑
l=1

p(0, 0; lT, ·). (4.8)

It follows from Lemma 4.2 that the sequence (µn)∞n=1 is tight in ℓ2. Consequently, there exist a
probability measure µ on ℓ2 and a subsequence (still denoted by (µn)∞n=1) such that

µn → µ, as n→ ∞. (4.9)

By (4.8)–(4.9) and Lemma 4.1, we can get that for every t ≥ 0 and every bounded and continuous
function ψ : ℓ2 → R,∫

ℓ2
(p0,tψ)(u0)dµ(u0) =

∫
ℓ2

∫
ℓ2
ψ(y)p(0, u0; t, dy)dµ(u0)

= lim
n→∞

1
n

n∑
l=1

∫
ℓ2

∫
ℓ2
ψ(y)p(0, u0; t, dy)p(0, 0; lT, du0)

= lim
n→∞

1
n

n∑
l=1

∫
ℓ2

∫
ℓ2
ψ(y)p(lT, u0; t + lT, dy)p(0, 0; lT, du0)

= lim
n→∞

1
n

n∑
l=1

∫
ℓ2
ψ(y)p(0, 0; t + lT, dy)

= lim
n→∞

1
n

n∑
l=1

∫
ℓ2
ψ(y)p(0, 0; t + lT + T, dy)

= lim
n→∞

1
n

n∑
l=1

∫
ℓ2

∫
ℓ2
ψ(y)p(0, u0; t + T, dy)p(0, 0; lT, du0)

=

∫
ℓ2

∫
ℓ2
ψ(y)p(0, u0; t + T, dy)dµ(u0)

=

∫
ℓ2

(p0,t+Tψ)(u0)dµ(u0),

which implies that µ is a periodic measure of system (2.19). This completes the proof. □
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