Research article Special Issues

Spatiotemporal patterns and multiple bifurcations of a reaction- diffusion model for hair follicle spacing


  • Received: 29 December 2022 Revised: 28 January 2023 Accepted: 02 February 2023 Published: 13 February 2023
  • In this paper, the dynamical behaviors of a 2-component coupled diffusive system modeling hair follicle spacing is considered. For the corresponding ODEs, we not only consider the stability and instability of the unique positive equilibrium solutions, but also show the existence of unstable Hopf bifurcating periodic solutions. For the reaction-diffusion equations, we are mainly interested in the Turing instability of the positive equilibrium solution, as well as Hopf bifurcations and steady-state bifurcations. Our results showed that, under certain conditions, the reaction-diffusion system not only has Hopf bifurcating periodic solutions (both spatially homogeneous and non-homogeneous, all unstable), but it also has non-constant positive bifurcating equilibrium solutions. This allows for a clearer understanding of the mechanism for the spatiotemporal patterns of this particular system.

    Citation: Zhili Zhang, Aying Wan, Hongyan Lin. Spatiotemporal patterns and multiple bifurcations of a reaction- diffusion model for hair follicle spacing[J]. Electronic Research Archive, 2023, 31(4): 1922-1947. doi: 10.3934/era.2023099

    Related Papers:

  • In this paper, the dynamical behaviors of a 2-component coupled diffusive system modeling hair follicle spacing is considered. For the corresponding ODEs, we not only consider the stability and instability of the unique positive equilibrium solutions, but also show the existence of unstable Hopf bifurcating periodic solutions. For the reaction-diffusion equations, we are mainly interested in the Turing instability of the positive equilibrium solution, as well as Hopf bifurcations and steady-state bifurcations. Our results showed that, under certain conditions, the reaction-diffusion system not only has Hopf bifurcating periodic solutions (both spatially homogeneous and non-homogeneous, all unstable), but it also has non-constant positive bifurcating equilibrium solutions. This allows for a clearer understanding of the mechanism for the spatiotemporal patterns of this particular system.



    加载中


    [1] S. Sick, S. Reinker, J. Timmer, T. Schlake, WNT and DKK determine hair follicle spacing through a reaction-diffusion mechanism, Science, 314 (2006), 1447–1450. https://doi.org/10.1126/science.1130088 doi: 10.1126/science.1130088
    [2] P. Rashkov, Remarks on pattern formation in a model for hair follicle spacing, Disct. Cont. Dyns. Syst. Ser. B, 20 (2015), 1555–1572. https://doi.org/10.3934/dcdsb.2015.20.1555 doi: 10.3934/dcdsb.2015.20.1555
    [3] P. Rashkov, Regular and discontinuous solutions in a reaction-diffusion model for hair follicle spacing, Biomath, 3 (2014), 1–12. https://doi.org/10.11145/j.biomath.2014.11.111 doi: 10.11145/j.biomath.2014.11.111
    [4] F. Veerman, A. Doelman, Pulses in a Gierer-Meinhardt equation with a slow nonlinearity, SIAM J. Dyn. Syst., 12 (2013), 28–60. https://doi.org/10.1137/120878574 doi: 10.1137/120878574
    [5] J. R. Mooney, Steady states of a reaction-diffusion system on the off-centre annulus, SIAM J. Appl. Math., 44 (1984), 745–761. https://doi.org/10.1137/0144053 doi: 10.1137/0144053
    [6] B. N. Nagorcka, Evidence for a reaction-diffusion system as a mechanism controlling mammalian hair growth, BioSystems, 16 (1984), 323–332. https://doi.org/10.1016/0303-2647(83)90015-1 doi: 10.1016/0303-2647(83)90015-1
    [7] B. N. Nagorcka, J. R. Mooney, The role of a reaction-diffusion system in the formation of hair fibres, J. Theor. Biol., 98 (1982), 575–607. https://doi.org/10.1016/0022-5193(82)90139-4 doi: 10.1016/0022-5193(82)90139-4
    [8] F. Yi, H. Zhang, A. Cherif, W. Zhang, Spatiotemporal patterns of a homogenous diffusive system modeling hair growth: Global stability and multiple bifurcation analysis, Comm. Pure. Appl. Anal., 13 (2014), 347–369. https://doi.org/10.3934/cpaa.2014.13.347 doi: 10.3934/cpaa.2014.13.347
    [9] Y. Yang, X. Ju, Diffusion-driven instability of the periodic solutions for a diffusive system modeling mammalian hair growth, Nonlinear Dyn., 111 (2023), 5799–5815. https://doi.org/10.1007/s11071-022-08114-x doi: 10.1007/s11071-022-08114-x
    [10] E. Conway, D. Hoff, J. Smoller, Large time behavior of solutions of systems of nonlinear reaction-diffusion equations, SIAM J. Appl. Math., 35 (1978), 1–16. https://doi.org/10.1137/0135001 doi: 10.1137/0135001
    [11] A. M. Turing, The chemical basis of morphogenesis, Phil. Trans. Royal Soc. London, B237 (1952), 37–72. https://doi.org/10.2307/92463 doi: 10.2307/92463
    [12] B. Hassard, N. Kazarinoff, Y. Wan, Theory and Application of Hopf Bifurcation, Cambridge University Press, Cambridge, 1981.
    [13] S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, Springer-Verlag, New York, 1991.
    [14] F. Yi, J. Wei, J. Shi, Bifurcation and spatiotemporal patterns in a homogenous diffusive predator-prey system, J. Differ. Equations, 246 (2009), 1944–1977. https://doi.org/10.1016/j.jde.2008.10.024 doi: 10.1016/j.jde.2008.10.024
    [15] M. Wang, F. Yi, On the dynamics of the diffusive Field-Noyes model for the Belousov-Zhabotinskii reaction, J. Differ. Equations, 318 (2022), 443–479. https://doi.org/10.1016/j.jde.2022.02.031 doi: 10.1016/j.jde.2022.02.031
    [16] F. Yi, Turing instability of the periodic solutions for reaction-diffusion systems with cross-diffusion and the patch model with cross-diffusion-like coupling, J. Differ. Equations, 281 (2021), 379–410. https://doi.org/10.1016/j.jde.2021.02.006 doi: 10.1016/j.jde.2021.02.006
    [17] J. Jang, W. Ni, M. Tang, Global bifurcation and structure of Turing patterns in the 1-D Lengyel-Epstein model, J. Dyn. Differ. Equations, 16 (2004), 297–320. https://doi.org/10.1007/s10884-004-2782-x doi: 10.1007/s10884-004-2782-x
    [18] W. Ni, M. Tang, Turing patterns in the Lengyel-Epstein system for the CIMA reactions, Trans. Am. Math. Soc., 357 (2005), 3953–3969. https://doi.org/10.1090/S0002-9947-05-04010-9 doi: 10.1090/S0002-9947-05-04010-9
    [19] R. Peng, F. Yi, X. Zhao, Spatiotemporal patterns in a reaction-diffusion model with the Degn-Harrison reaction scheme, J. Differ. Equations, 254 (2013), 2465–2498. https://doi.org/10.1016/j.jde.2012.12.009 doi: 10.1016/j.jde.2012.12.009
    [20] F. Yi, S. Liu, N. Tuncer, Spatiotemporal patterns of a reaction-diffusion Substrate-Inhibition Seelig model, J. Dyn. Differ. Equations, 29 (2017), 219–241. https://doi.org/10.1007/s10884-015-9444-z doi: 10.1007/s10884-015-9444-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1238) PDF downloads(51) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog