We construct time almost-periodic solutions (global in time) with finite regularity to the incompressible Euler equations on the torus $ \mathbb{T}^d $, with $ d = 3 $ and $ d\in\mathbb{N} $ even.
Citation: Luca Franzoi, Riccardo Montalto. Time almost-periodic solutions of the incompressible Euler equations[J]. Mathematics in Engineering, 2024, 6(3): 394-406. doi: 10.3934/mine.2024016
We construct time almost-periodic solutions (global in time) with finite regularity to the incompressible Euler equations on the torus $ \mathbb{T}^d $, with $ d = 3 $ and $ d\in\mathbb{N} $ even.
[1] | P. Baldi, Nearly toroidal, periodic and quasi-periodic motions of fluid particles driven by the Gavrilov solutions of the Euler equations, J. Math. Fluid Mech., 26 (2024), 1. https://doi.org/10.1007/s00021-023-00836-1 doi: 10.1007/s00021-023-00836-1 |
[2] | P. Baldi, M. Berti, E. Haus, R. Montalto, Time quasi-periodic gravity water waves in finite depth, Invent. Math., 214 (2018), 739–911. https://doi.org/10.1007/s00222-018-0812-2 doi: 10.1007/s00222-018-0812-2 |
[3] | P. Baldi, R. Montalto, Quasi-periodic incompressible Euler flows in 3D, Adv. Math., 384 (2021), 107730. https://doi.org/10.1016/j.aim.2021.107730 doi: 10.1016/j.aim.2021.107730 |
[4] | M. Berti, L. Franzoi, A. Maspero, Traveling quasi-periodic water waves with constant vorticity, Arch. Ration. Mech. Anal., 240 (2021), 99–202. https://doi.org/10.1007/s00205-021-01607-w doi: 10.1007/s00205-021-01607-w |
[5] | M. Berti, L. Franzoi, A. Maspero, Pure gravity traveling quasi-periodic water waves with constant vorticity, Commun. Pure Appl. Math., 77 (2024), 990–1064. https://doi.org/10.1002/cpa.22143 doi: 10.1002/cpa.22143 |
[6] | M. Berti, Z. Hassainia, N. Masmoudi, Time quasi-periodic vortex patches of Euler equation in the plane, Invent. Math., 233 (2023), 1279–1391. https://doi.org/10.1007/s00222-023-01195-4 doi: 10.1007/s00222-023-01195-4 |
[7] | M. Berti, R. Montalto, Quasi-periodic standing wave solutions of gravity-capillary water waves, Memoirs of the American Mathematical Society, Vol. 263, 2020. https://doi.org/10.1090/memo/1273 |
[8] | L. Biasco, J. E. Massetti, M. Procesi, Small amplitude weak almost periodic solutions for the 1d NLS, Duke Math. J., 172 (2023), 2643–2714. https://doi.org/10.1215/00127094-2022-0089 doi: 10.1215/00127094-2022-0089 |
[9] | J. Bourgain, On invariant tori of full dimension for 1D periodic NLS, J. Funct. Anal., 229 (2004), 62–94. https://doi.org/10.1016/j.jfa.2004.10.019 doi: 10.1016/j.jfa.2004.10.019 |
[10] | Á. Castro, D. Lear, Traveling waves near Couette flow for the 2D Euler equation, Commun. Math. Phys., 400 (2023), 2005–2079. https://doi.org/10.1007/s00220-023-04636-6 doi: 10.1007/s00220-023-04636-6 |
[11] | Á. Castro, D. Lear, Time periodic solutions for the 2D Euler equation near Taylor-Couette flow, arXiv, 2023. https://doi.org/10.48550/arXiv.2311.06885 |
[12] | P. Constantin, J. La, V. Vicol, Remarks on a paper by Gravilov: Grad-Shafranov equations, steady solutions of the three dimensional incompressible Euler equations with compactly supported velocities, and applications, Geom. Funct. Anal., 29 (2019), 1773–1793. https://doi.org/10.1007/s00039-019-00516-1 doi: 10.1007/s00039-019-00516-1 |
[13] | L. Corsi, G. Gentile, M. Procesi, Almost-periodic solutions to the NLS equation with smooth convolution potentials, arXiv, 2023. https://doi.org/10.48550/arXiv.2309.14276 |
[14] | L. Corsi, R. Montalto, M. Procesi, Almost-periodic response solutions for a forced quasi-linear Airy equation, J. Dyn. Diff. Equat., 33 (2021), 1231–1267. https://doi.org/10.1007/s10884-020-09906-8 doi: 10.1007/s10884-020-09906-8 |
[15] | M. Coti Zelati, T. M. Elgindi, K. Widmayer, Stationary structures near the Kolmogorov and Poiseuille flows in the 2d Euler equations Arch. Ration. Mech. Anal., 247 (2023), 12. https://doi.org/10.1007/s00205-023-01842-3 doi: 10.1007/s00205-023-01842-3 |
[16] | N. Crouseilles, E. Faou, Quasi-periodic solutions of the 2D Euler equation, Asymptotic Anal., 81 (2013), 31–34. https://doi.org/10.3233/ASY-2012-1117 doi: 10.3233/ASY-2012-1117 |
[17] | A. Enciso, D. Peralta-Salas, F. T. de Lizaur, Quasi-periodic solutions to the incompressible Euler equations in dimensions two and higher, J. Differ. Eqations, 354 (2023), 170–182. https://doi.org/10.1016/j.jde.2023.01.013 doi: 10.1016/j.jde.2023.01.013 |
[18] | R. Feola, F. Giuliani, Quasi-periodic traveling waves on an infinitely deep fluid under gravity, Memoirs of the American Mathematical Society, Vol. 295, 2024. https://doi.org/10.1090/memo/1471 |
[19] | L. Franzoi, R. Montalto, A KAM approach to the inviscid limit for the 2D Navier-Stokes equations, Ann. Henri Poincaré, 2024. https://doi.org/10.1007/s00023-023-01408-9 |
[20] | L. Franzoi, N. Masmoudi, R. Montalto, Space quasi-periodic steady Euler flows close to the inviscid Couette flow, arXiv, 2023. https://doi.org/10.48550/arXiv.2303.03302 |
[21] | A. V. Gravilov, A steady Euler flow with compact support, Geom. Funct. Anal., 29 (2019), 190–197. https://doi.org/10.1007/s00039-019-00476-6 doi: 10.1007/s00039-019-00476-6 |
[22] | J. Gómes-Serrano, A. D. Ionescu, J. Park, Quasiperiodic solutions of the generalized SQG equation, arXiv, 2023. https://doi.org/10.48550/arXiv.2303.03992 |
[23] | Z. Hassainia, T. Hmidi, N. Masmoudi, KAM theory for active scalar equations, arXiv, 2021. https://doi.org/10.48550/arXiv.2110.08615 |
[24] | Z. Hassainia, T. Hmidi, E. Roulley, Invariant KAM tori around annular vortex patches for 2D Euler equations, arXiv, 2023. https://doi.org/10.48550/arXiv.2302.01311 |
[25] | Z. Hassainia, E. Roulley, Boundary effects on the emergence of quasi-periodic solutions for Euler equations, arXiv, 2023. https://doi.org/10.48550/arXiv.2202.10053 |
[26] | T. Hmidi, E. Roulley, Time quasi-periodic vortex patches for quasi-geostrophic shallow water equations, arXiv, 2021. https://doi.org/10.48550/arXiv.2110.13751 |
[27] | Z. Lin, C. Zeng, Inviscid dynamical structures near Couette flow, Arch. Ration. Mech. Anal., 200 (2011), 1075–1097. https://doi.org/10.1007/s00205-010-0384-9 doi: 10.1007/s00205-010-0384-9 |
[28] | J. E. Massetti, M. Procesi, L. Biasco, Almost periodic invariant tori for the NLS on the circle, Ann. Inst. H. Poincaré Anal. Non Linéaire, 38 (2021), 711–758. https://doi.org/10.1016/j.anihpc.2020.09.003 doi: 10.1016/j.anihpc.2020.09.003 |
[29] | R. Montalto, M. Procesi, Linear Schrödinger equation with an almost periodic potential, SIAM J. Math. Anal., 53 (2021), 386–434. https://doi.org/10.1137/20M1320742 doi: 10.1137/20M1320742 |
[30] | J. Pöschel, On the construction of almost periodic solutions for a nonlinear Schrödinger equation, Ergod. Th. Dynam. Syst., 22 (2002), 1537–1549. https://doi.org/10.1017/S0143385702001086 doi: 10.1017/S0143385702001086 |
[31] | E. Roulley, Periodic and quasi-periodic Euler-$\alpha$ flows close to Rankine vortices, Dyn. Part. Differ. Eq., 20 (2023), 311–366. https://doi.org/10.4310/DPDE.2023.v20.n4.a3 doi: 10.4310/DPDE.2023.v20.n4.a3 |