
https://www.aimspress.com/journal/mine

Mathematics in Engineering, 6(3): 394–406.
DOI:10.3934/mine.2024016
Received: 11 January 2024
Revised: 13 May 2024
Accepted: 13 May 2024
Published: 23 May 2024

Research article

Time almost-periodic solutions of the incompressible Euler equations†

Luca Franzoi and Riccardo Montalto*

Dipartimento di Matematica “Federigo Enriques”, Università degli Studi di Milano, Via Cesare
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1. Introduction

The goal of this paper is to construct time almost-periodic solutions (infinite dimensional invariant
tori) of the Euler equations

∂tu + u · ∇u + ∇p = 0, div u = 0,
u : R × Td → Rd, p : R × Td → R,

(1.1)

on the d-dimensional torus Td, T := R/2πZ, where either d = 3 or d ≥ 2 is any even positive integer.
These solutions extend the works ot Crouseille & Faou [16] (in dimension 2) and Enciso, Peralta Salas
& Torres de Lizaur [17] (in dimensions 3 or even) from time quasi-periodic to time almost-periodic
solutions. In fact, the construction here follows closely the one in [17].

We need to specify how a smooth solution of the Euler equation (1.1) is called almost-periodic in
this paper. We need some preliminaries.

Let Cs
div(Td,Rd), with s ∈ N ∪ {+∞}, be the space of Cs-smooth, divergence free d-dimensional

vector fields on Td. This space is a Banach space if s < ∞ and a Fréchet space when s = ∞. We endow
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it with the system of seminorms (‖ · ‖n,∞)n∈{0,1,...,s} defined by

‖ f ‖n,∞ := sup
x∈Td

max
α∈Nd

0
|α|=n

|∂αx f (x)|, n = 0, 1, ..., s , (1.2)

throughout the paper, for sake of simplicity in the notation, | · | denotes the standard Euclidean norm,
without specifying the dimension of the evaluated object, which will be clear from the context each
time. We denote by `∞(N,N) the set of sequences in N that are bounded. Let (Jk)k∈N ∈ `

∞(N,N) \ {0}
be given and, for a fixed m ∈ {1, ..., d − 1}, we define the sequence

(Nk)k∈N ∈ `
∞(N,N), Nk := (d − m)Jk ∈ N, k ∈ N. (1.3)

We define the infinite dimensional torus (TNk)k∈N and its “tangent space” (RNk)k∈N as

(TNk)k∈N :=
{
θ = (θk)k∈N : θk ∈ T

Nk , |θ|∞ < ∞
}
,

(RNk)k∈N :=
{
ν = (νk)k∈N : νk ∈ R

Nk , |ν|∞ < ∞
}
,

(1.4)

where we defined |ν|∞ := supk∈N |νk|. Note that, since (Nk)k∈N is bounded, then |θ|∞ ≤ (2π)‖(Nk)‖`∞ < ∞

for any sequence θ = (θk)k∈N.

Definition 1.1. Let s ∈ N∪ {+∞}. We say that u(t, x) is time almost-periodic if there exists a sequence
of vectors ν ∈ (RNk)k∈N and a C1-smooth embedding U : (TNk)k∈N → C

s
div(Td,Rd) such that the velocity

field u(t, x) can be written as

u(t, · ) = U(ϑ)|ϑ=θ+νt, for some θ ∈ (TNk)k∈N, (1.5)

and the sequence of frequency vectors ν = (νk)k∈N is non-resonant, meaning that∑
k∈N

νk · `k , 0, ∀ ` = (`k)k∈N ∈ (ZNk)k∈N with 0 < |`|η < ∞, (1.6)

where, for a fixed η > 0, we define |`|η :=
∑

k∈N kη|`k|. Note that |`|η < ∞ implies that `k , 0 ∈ ZNk only
for finitely many k ∈ N.

Definition 1.2. By saying that the map U : (TNk)k∈N → C
s
div(Td,Rd) is C1

b (C1 and bounded), we mean
that, U is a Frechet-differentiable map with continuous Frechet derivative and for any n ∈ {0, 1, . . . , s},
there exists a constant Cn > 0 such that

sup
ϑ∈(TNk )k∈N

‖U(ϑ)‖n,∞ ≤ Cn,

sup
ϑ∈(TNk )k∈N

‖dϑU(ϑ)[ϑ̂]‖n,∞ ≤ Cn|ϑ̂|∞ ∀ ϑ̂ ∈ (RNk)k∈N,
(1.7)

where the linear operator dϑU(ϑ) : (RNk)k∈N → C
s
div(Td,Rd) is the Fréchet differential of the embedding

U(ϑ) at the point ϑ ∈ (TNk)k∈N.

With this definition of a C1
b embedding, we have that the function u(t, · ) is C1 with respect to t ∈ R,

by (1.5) and
∂tu(t, · ) = dϑU(θ + νt)[ν] ∈ Cs

div(Td,Rd).
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We will look for solutions where the embedding U is non-symmetric, or non-traveling, in the sense
that, for any ϑ ∈ (TNk)k∈N, the divergence-free vector field U(ϑ) is not invariant under any 1-parameter
group of translations on Td. In this way, we ensure that the solution u(t, x) depends effectively on all d
coordinates and we do not have any reduction to solutions of lower dimensions by traveling directions.

The statement of the main result is the following.

Theorem 1.3 (Time almost-periodic solutions of the Euler equations). Assume that the dimension d is
either 3 or even. Let S ∈ N be fixed. There exists ε0 ∈ (0, 1) small enough such that, for any ε ∈ (0, ε0)
and for any sequence of frequencies ν ∈ (RNk)k∈N \ {0} satisfying

sup
k∈N

ε−(S +1)(k−1)|νk| < ∞, (1.8)

there exists a non-symmetric C1
b embedding U : (TNk)k∈N → C

S
div(Td,Rd) and a family of initial data

uθ ∈ CS
div(Td,Rd), θ ∈ (TNk)k∈N, such that u(t, · ) = U(θ + νt), with u(0, · ) = uθ, is a solution of (1.1)

with pressure p(t, · ) = P(θ + νt), where

P(ϑ) := (−∆)−1[div(U(ϑ) · ∇U(ϑ))
]

: (TNk)k∈N → C
S (Td). (1.9)

As a consequence, if the sequence ν = (νk)k∈N is non-resonant, namely it satisfies (1.6), then the solution
u(t, x) is time almost-periodic.

Remark 1.4. As it will be clear from the construction in the following section, the embedding U(ϑ) is
determined as a combination of infinitely many embedding Uk(ϑk), with ϑk ∈ T

Nk , which coincides with
the embedding constructed in [17], with the size of the embedding Uk becoming smaller and smaller
as k → ∞. The major difference in the analysis with respect to [17] is that we have to effectively prove
the smoothness of the embedding and the regularity of the vector field. This is not trivial.

Remark 1.5. The condition (1.6) of irrationality for the sequence of frequencies ν ∈ (RNk)k∈N \ {0}
is not necessary in the construction of the embedding U. Depending on relations between all the
frequencies, we may obtain embedding for lower dimensional tori, either finite dimensional (quasi-
periodic or periodic) or still infinite dimensional (that is, almost-periodic). On the other hand, the
control on the frequency vectors in (1.8) is required to ensure that the solution u(t, x) is indeed a
finitely smooth vector field and a simpler control on the norm |ν|∞ is not enough. At the physical level,
is also implies that we obtain solutions whose leading order frequencies of oscillations are only finitely
many and the almost-periodicity in time is due to the presence of infinitely oscillations with smaller
and smaller frequencies.

Related results. In the last years, there has been a discrete surge of works proving the existence of time
quasi-periodic waves for PDEs arising in fluid dynamics. With the exception of the aforementioned
works [16, 17], there type of results in literature are proved by means of KAM for PDEs techniques,
to deal with the presence of small divisors issues and consequent losses of regularity. For the two
dimensional water waves equations, we mention Berti and Montalto [7], Baldi et al. [2] for time
quasi-periodic standing waves and Berti, Maspero and Franzoi [4, 5], Feola and Giuliani [18] for
time quasi-periodic traveling wave solutions. Recently, the existence of time quasi-periodic solutions
was proved for the contour dynamics of vortex patches in active scalar equations. We mention Berti,
Hassainia and Masmoudi [6] for vortex patches of the Euler equations close to Kirchhoff ellipses,
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Hmidi and Roulley [26] for the quasi-geostrophic shallow water equations, Hassainia, Hmidi and
Masmoudi [23] and Gómes-Serrano, Ionescu and Park [22] for generalized surface quasi-geostrophic
equations, Roulley [31] for Euler-α flows, Hassainia and Roulley [25] for Euler equations in the unit
disk close to Rankine vortices, and Hassainia, Hmidi and Roulley [24] for 2D Euler annular vortex
patches. Time quasi-periodic solutions were also constructed for the 3D Euler equations with time
quasi-periodic external force [3] and for the forced 2D Navier-Stokes equations [19] approaching in
the zero viscosity limit time quasi-periodic solutions of the 2D Euler equations for all times.

The existence of other non-trivial invariant structures is also a topic of interest in fluid dynamics.
In particular, for the Euler equations in two dimension close to shear flows, we mention the works by
Lin and Zeng [27], and Castro and Lear [10] for periodic traveling waves close the Couette flow, by
Coti Zelati, Elgindi and Widmayer [15] for stationary waves around non-monotone shears, by Franzoi,
Masmoudi and Montalto [20] for quasi-periodic traveling waves close to the Couette flow, and the
recent work by Castro and Lear [11] for time periodic rotating solutions close to the Taylor-Couette
flow.

Concerning the existence of almost periodic solutions by means of KAM methods, we mention
Pöschel [30], Bourgain [9], Biasco, Massetti and Procesi [8,28] and Corsi, Gentile and Procesi [13]. In
all these results the authors consider semilinear NLS type equations with external parameters. For
PDEs with unbounded perturbations (with external parameters as well) we mention Montalto and
Procesi [29] and Corsi, Montalto and Procesi [14].

We remark that our result is the first one concerning existence of almost-periodic solutions for an
autonomous quasi-linear PDEs in higher space dimension and it is obtained with non-KAM techniques.

Notations. In this paper, we use the following notations:
• Bd,ρ(p) := {x ∈ Rd : |x − p| < ρ}, with p ∈ Rd and ρ > 0;
• Cs(Tm1 ,Rm2) :=

{
f : Rm1 → Rm2 : ‖ f ‖n,∞ < ∞ ∀ n ∈ N ∪ {0}, n ≤ s

}
, s ∈ N ∪ {∞};

• C∞(X,R) := C∞(X), with X = Td,Rd;
• a . b stands for a ≤ Cb, for some constant C > 0;
• a .n b stands for a ≤ Cnb, for some constant Cn > 0 depending on n.

2. Proof of Theorem 1.3

The scheme follows essentially the one proposed in [17], with the required adaptations. The
key starting point is the existence of smooth, compactly supported stationary solutions of the Euler
equations. In d = 3, this is celebrated result by Gravilov [21] (see also [12]), whereas in even dimension
it has been proved in [17]. We recall the statement of the result of the latter.

Proposition 2.1 (Smooth stationary Euler flows with compact support– Proposition 2, [17]). If d = 3
or d ∈ N is even, there exists a smooth, compactly supported solution v(x) ∈ C∞div(Rd,Rd), with pressure
pv(x) ∈ C∞(Rd), of

v · ∇v + ∇pv = 0, div v = 0, x ∈ Rd. (2.1)

Remark 2.2. In [1], Baldi studies the fluid particle dynamics with vector field given exactly by the
compactly supported solutions found in [21] in dimension d = 3, and proved the existence of periodic
and quasi-periodic motions.
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Without any loss of generality, we assume that spt(v), spt(pv) ⊆ Bd,1(0) ⊂ Rd. Then, given S ∈ N
and for any k ∈ N, we define the rescaled functions, for any ε ∈ (0, 1) small enough,

vk(x) := ε(S +1)(k−1)v(ε−kx), pvk(x) := ε2(S +1)(k−1) pv(ε−kx). (2.2)

A straightforward computation shows that vk(x) ∈ C∞div(Rd,Rd) is also a solution of (2.1) with pressure
pvk(x) ∈ C∞(Rd) with compact support

spt(vk), spt(pvk) ⊆ Bd,εk(0) ⊂ Rd, (2.3)

and we have the control on the seminorms, for any n ∈ N0,

‖vk‖n,∞ ≤ Cnε
k(S +1−n)−S−1, ‖pvk‖n,∞ ≤ Cnε

k(2S +2−n)−2S−2, (2.4)

for some constant Cn > 0 independent of ε ∈ (0, 1) and k ∈ N. We remark that, as soon as n > S + 1,
the seminorms ‖vk‖n,∞ start to diverge with respect to k → ∞ as ε−(n−S−1)k for ε ∈ (0, 1), whereas the
seminorms ‖pvk‖n,∞ start to diverge when n > 2S + 2.

Moreover, for ε ∈ (0, 1) small enough and independent of k ∈ N, we define the periodicized versions

vk(x) :=
∑
q∈Zd

vk(x + 2πq), pvk(x) :=
∑
q∈Zd

pvk(x + 2πq), x ∈ Td. (2.5)

We recall the sequence (Nk)k∈N ∈ `
∞(N,N) in (1.3) is determined by a fixed m ∈ {1, ..., d − 1} and a

fixed sequence (Jk)k∈N ∈ `
∞(N,N). The choice of m ∈ {1, ..., d−1} induces the splitting Td = Tm×Td−m

and we write
Td 3 x = (x′, x′′) ∈ Tm × Td−m, ∇ = (∇′,∇′′) := (∇x′ ,∇x′′). (2.6)

We select a sequence of points (yk, j)k∈N, j=1,..,Jk ⊂ T
m with the properties that:

(A) For any k1, k2 ∈ N, j1 = 1, ..., Jk1 , j2 = 1, ..., Jk2 , with (k1, j1) , (k2, j2), we have

Bm,2εk1 (yk1, j1) ∩ Bm,2εk2 (yk2, j2) = ∅; (2.7)

(B) We have ∣∣∣Tm \
(⋃

k∈N

Jk⋃
j=1

Bm,2εk(yk, j)
)∣∣∣ ≥ 2

3
|Tm| > 0.

The existence of such sequence of points with these desired properties is proved in the following
lemma:

Lemma 2.3. There exist ε0 = ε0
(
m, ‖(Jk)‖`∞

)
∈ (0, 1) small enough and a choice of infinitely many

distinct points (yk, j)k∈N, j=1,..,Jk ⊂ T
m, such that the following holds. For ε > 0, we define iteratively the

sets

E0 := ∅, Ek := Ek−1 ∪

Jk⋃
j=1

Bm,2εk(yk, j), k ∈ N. (2.8)

Then, for any ε ∈ (0, ε0) and for any k ∈ N, we have:
(i) Ek−1 ∩

⋃Jk
j=1 Bm,2εk(yk, j) = ∅;
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(ii) Bm,2εk(yk1, j1) ∩ Bm,2εk(yk2, j2) = ∅ for any j1, j2 = 1, ..., Jk;

(iii) Tm \ Ek is open and |Tm \ Ek| ≥
(
1 −

∑k
n=1 4−n

)
|Tm|.

As a consequence, conditions (A) and (B) are satisfied.

Proof. In the following, we use that |Bm,2r(y)| = Cmrm|Tm|, where the explicit constant

Cm :=
(
πm/2Γ(m

2 + 1)
)−1
∈ (0, 1)

depends only on the dimension m ∈ N, where Γ is the Euler Gamma function.
We argue by induction. Let k = 1. We pick an arbitrary choice of distinct points y1,1, ..., y1,J1 ∈ T

m

and, for ε > 0, we define the set E1 :=
⋃J1

j=1 Bm,2ε(y1, j). By (2.8), item (i) is automatically satisfied for
k = 1. We define

ε1,1 := 1
4 min{|y1, j1 − y1, j2 | : 1 ≤ j1 < j2 ≤ J1}.

Then, for any ε ∈ (0, ε1,1), the closed balls
(
Bm,2ε(y1, j)

)
j=1,...,J1

are pairwise disjoint, that is, item (ii) is
satisfied when k = 1. Clearly, we also have that Tm \ E1 is open, since E1 is a finite union of closed
sets. Moreover, using that Cm ∈ (0, 1), we compute

|Tm \ E1| = (1 −CmJ1ε
m)|Tm| ≥ (1 − J1ε

m)|Tm| ≥ 3
4 |T

m|, (2.9)

as soon as ε < ε1,2 :=
(
4J1

)−1/m. Therefore, choosing ε0 ≤ min{ε1,1, ε1,2}, we conclude that (i)–(iii) are
satisfied for k = 1.

We now assume that the claims (i)–(iii) are satisfied for some k ∈ N and we prove them for k + 1.
We set

ε0 := min{ε1,1, (4‖(Jk)‖`∞)−1/m} ≤ min{ε1,1, ε1,2}. (2.10)

By (2.10), there exist Jk+1 distinct points

yk+1,1, ..., yk+1,Jk+1 ∈ T
m \ Ek, with Jk+1 ≤ ‖(Jk)‖`∞ ,

such that, for any ε ∈ (0, ε0) we have that the Jk+1 balls Bm,2εk+1(yk+1,1), ..., Bm,2εk+1(yk+1,Jk+1) are contained
in Tm \ Ek and they are disjoint, namely they satisfy items (i) and (ii) at the step k + 1. This follows
from the fact that, by the induction assumption on (iii), we have that Tm \ Ek is open with measure
|Tm \ Ek| >

2
3 |T

m|, whereas the measure of the finite union of closed disjoint balls is estimated, for any
ε ∈ (0, ε0) with ε0 as in (2.10), by∣∣∣∣ Jk+1⋃

j=1

Bm,2εk+1(yk+1, j)
∣∣∣∣ = CmJk+1ε

(k+1)m|Tm|

≤
1

4k+1

Jk+1

‖(Jk)‖k+1
`∞

|Tm| ≤
1

4k+1 |T
m| <

2
3
|Tm|,

(2.11)

which implies the existence of the Jk+1 points yk+1,1, ..., yk+1,Jk+1 in the open and bounded set Tm \ Ek

with the desired properties. Therefore, let Ek+1 be defined as in (2.8). Clearly, Ek+1 is closed, which
also implies that Tm \ Ek+1 is open. By (2.11) and item (ii) at the step k + 1, we also deduce that,

|Tm \ Ek+1| = |T
m \ Ek| −

∣∣∣∣ Jk+1⋃
j=1

Bm,2εk+1(yk+1, j)
∣∣∣∣ ≥ (

1 −
k∑

n=1

4−n − 4−(k+1)
)
|Tm|, (2.12)
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which is indeed the estimate in item (iii) at the step k + 1. This closes the induction argument and
concludes the proof. �

As a last preliminary, we take a sequence of frequency vectors ν = (νk)k∈N ∈ (RNk)k∈N, where
νk = (νk,1, ..., νk,Jk) ∈ R

Nk , with νk, j ∈ R
d−m, recalling (1.3). We now define the vector field

u(t, x) :=
∞∑

k=1

uk(t, x), uk(t, x) :=
Jk∑
j=1

vk, j(t, x) + wk(x) (2.13)

with pressure

pu(t, x) :=
∞∑

k=1

puk(t, x), puk(t, x) :=
Jk∑
j=1

pk, j(t, x), (2.14)

where
vk, j(t, x) := vk(x′ − yk, j, x′′ − νk, jt),
pk, j(t, x) := pvk(x′ − yk, j, x′′ − νk, jt),

(2.15)

and
wk(x) = (0, Fk(x′)), Fk : Tm → Rd−m. (2.16)

Note that, no matter the choice of Fk(x′) sufficiently smooth is, the vector field wk(x) is a stationary
solution with constant pressure of the Euler equation (1.1), namely we have

wk · ∇wk = 0, div wk = 0. (2.17)

To make sure that u(t, x) is indeed a solution of (1.1), we need to specify the functions Fk(x′). In
particular, we choose

Fk(x′) :=
Jk∑
j=1

νk, j χk(|x′ − yk, j|), (2.18)

where χk(r) ∈ C∞(R) is an even cut-off function satisfying

χk(r) = 1 when |r| < εk, χk(r) = 0 when |r| > 2εk, χk ∈ [0, 1],
|∂n

rχk(r)| ≤ Cnε
−kn, ∀ r ∈ R, n ∈ N ∪ {0},

(2.19)

for some constant Cn > 0. For each k ∈ N, we have that Fk ∈ C
∞(Tm,Rd−m) and that the vector

field wk(x) is locally equal to (0, νk, j) when x ∈ spt(vk, j). Note that each pair (uk(t, x), puk(t, x)) defined
above by (2.13)–(2.18) has actually the form of a quasi-periodic solution of the Euler equation (1.1) as
provided in [17], which has been reproduced here on supports of scale εk. Moreover, by construction
and by (A), the support in space of (uk(t, x), puk(t, x)) is in

(⋃Jk
j=1 Bm,2εk(yk, j)

)
× Td−m and it is disjoint

from the one of (uk′(t, x), puk′ (t, x)) for any k′ , k. We use these properties to check that the pair
(u(t, x), pu(t, x)) in (2.13) and (2.14) is indeed a solution of (1.1) as well.

First, we prove that each pair (uk(t, x), puk(t, x)) is a solution of (1.1) and we provide estimates on
the seminorms.
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Lemma 2.4. Assume that ν = (νk)k∈N satisfies (1.8). For each k ∈ N, the vector field uk(t, x) is in
C∞div(Td,Rd), with pressure puk(t, x) in C∞(Td), is a solution of the Euler equation (1.1), namely

∂tuk + uk · ∇uk + ∇puk = 0, div uk = 0, (2.20)

compactly supported in space in
⋃Jk

j=1 Bm,2εk(yk, j) × Td−m. Moreover, we have the estimates, for any
integer n ≥ 0,

sup
t∈R
‖uk(t, · )‖n,∞ ≤ Cnε

k(S +1−n)−S−1,

sup
t∈R
‖∂tuk(t, · )‖n,∞ ≤ Cnε

k(2S +2−(n+1))−2S−2,

sup
t∈R
‖puk(t, · )‖n,∞ ≤ Cnε

k(2S +2−n)−2S−2,

(2.21)

for some constant Cn > 0 independent of ε ∈ (0, 1) and of k ∈ N.

Proof. By (2.13)–(2.18), Proposition 2.1 and by (A), we compute

∂tuk = −

Jk∑
j=1

νk, j · ∇
′′vk(x′ − yk, j, x′′ − νk, jt), (2.22)

and, using (2.22),

uk · ∇uk =
( Jk∑

j=1

vk, j + wk

)
·
( Jk∑

j=1

∇vk, j + ∇wk

)
=

Jk∑
j=1

vk, j · ∇vk, j +

Jk∑
j=1

(
vk, j · ∇wk + wk · ∇vk, j

)
+ wk · ∇wk

= −

Jk∑
j=1

∇pk, j +

Jk∑
j=1

(
0 + νk, j · ∇

′′vk(x′ − yk, j, x′′ − ν̃k, jt)
)

+ 0

= −∇puk − ∂tuk.

(2.23)

This, together with the fact that div vk, j = 0 for any j = 1, ..., Jk by (2.15) and Proposition 2.1, concludes
the proof of (2.20).

To prove the estimates (2.21), we first note that, by (2.19), we have ‖χk‖n,∞ ≤ Cnε
−nk for any integer

n ≥ 0. Moreover, by (1.8), we have that |νk| ≤ Cε(S +1)(k−1), for some constant C > 0 independent
of k ∈ N. Therefore, we deduce, that wk(x) in (2.16)–(2.18) satisfies ‖wk‖n,∞ ≤ Cnε

(S +1−k)n−S−1 for
any integer n ≥ 0, recalling that (Jk)k∈N ∈ `

∞(N,N). Furthermore, by (2.22) and using the fact that
each vk, j(t, x) is supported in space on the cylinder Bm,2εk(yk, j) × Td−m, disjoint for any j′ , j from the
cylinder Bm,2εk(yk, j′) × Td−m supporting vk, j′(t, x), we estimate, for any integer n ≥ 0 and uniformly in
t ∈ R,

‖∂tuk(t, ·)‖n+1,∞ sup
j=1,...,Jk

|νk, j|‖∇
′′vk(x′ − yk, j, x′′ − ν̃k, jt)‖n,∞

. ε(S +1)(k−1)‖vk‖n+1,∞

.n ε
(S +1)(k−1)εk(S +1−(n+1))−S−1.

(2.24)

Collecting together (2.13), (2.14), (2.16) and estimates (2.4), (2.24), we obtain the estimates (2.21) and
the proof is concluded. �
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We now show that u(t, x) in (2.13) solves the Euler system (1.1) and that it has the desired regularity
and estimates.

Proposition 2.5. The vector field u(t, x) in (2.13), with pressure pu(t, x) as in (2.14), is a solution
of the Euler equation (1.1). Moreover, assuming that ν = (νk)k∈N satisfies (1.8), we have u(t, · ) ∈
CS +1

div (Td,Rd), ∂tu(t, ·) ∈ C2S +1
div (Td,Rd) and pu(t, ·) ∈ C2S +2(Td), with estimates,

sup
t∈R
‖u(t, · )‖n,∞ ≤ Cnε

−S−1, ∀ n = 0, 1, ..., S + 1,

sup
t∈R
‖∂tu(t, · )‖n,∞ ≤ Cnε

−2S−2, ∀ n = 0, 1, ..., 2S + 1,

sup
t∈R
‖pu(t, · )‖n,∞ ≤ Cnε

−2S−2, ∀ n = 0, 1, ..., 2S + 2.

(2.25)

Proof. By Lemma 2.4 and by (A), each vector field of the sequence (uk(t, x))k∈N is compactly supported
in space and all these supports are pairwise disjoint. We use this properties and the fact that each uk(t, x)
in solves (2.20) to compute, with u(t, x) and pu(t, x) as in (2.13), (2.14),

u · ∇u =

∞∑
k=1

uk ·

∞∑
k=1

∇uk =

∞∑
k=1

uk · ∇uk =

∞∑
k=1

(
− ∇puk − ∂tuk

)
= −∇pu − ∂tu,

div u =

∞∑
k=1

div uk = 0,

(2.26)

which indeed proves (1.1). It remains to prove the finite regularity of the solution. By (2.13), (2.21),
since the support in space are pairwise disjoint, we have that, for any n = 0, 1, ..., S + 1,

sup
t∈R
‖u(t, · )‖n,∞ = sup

t∈R
sup
k∈N
‖uk(t, · )‖n,∞ ≤ Cnε

−S−1 sup
k∈N

εk(S +1−n) ≤ Cnε
−S−1. (2.27)

The estimates for ∂tu(t, ·), pu(t, ·) can be proved similarly and we omit them. Hence (2.25) follows.
This concludes the proof. �

In order to conclude the proof of Theorem 1.3, it remains to show the existence of the embedding
U : (TNk)k∈N → C

S
div(Td,Rd). We define the claimed family of (almost-periodic) solutions as θ →

U(θ + νt), where the embedding U : (TNk)k∈N → C
S
div(Td,Rd) is given by

u(t, x) := U(θ + νt)(x) =
∑
k∈N

uk(t, x) =
∑
k∈N

Uk(θk + νkt)(x), (2.28)

with each
Uk : TNk → C∞div(Td,Rd) ⊂ CS

div(Td,Rd)

for k ∈ N, given by

Uk(θk + νkt)(x) :=
Jk∑
j=1

vk
(
x′ − yk, j, x′′ − θk, j − νk, jt

)
+

Jk∑
j=1

(
0, νk, j χk(|x′ − yk, j|)

)
,

θk = (θk, j) j=1,...,Jk ∈ T
Nn , θk, j ∈ T

d−m, ∀ k ∈ N, j = 1, . . . , Jk,

(2.29)
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(recall that Nk = (d − m)Jk, see (1.3)) and with initial data

uθ(x) := U(θ)(x) =
∑
k∈N

uθk(x) =
∑
k∈N

Uk(θk)(x), (2.30)

Uk(θk)(x) :=
Jk∑
j=1

vk
(
x′ − yk, j, x′′ − θk, j

)
+

Jk∑
j=1

(
0, νk, j χk(|x′ − yk, j|)

)
. (2.31)

As last step, we prove the estimate on the continuity and the differentiability of the embedding U.

Proposition 2.6. Assume that ν = (νk)k∈N satisfies (1.8). Then the embedding U : (TNk)k∈N →

CS
div(Td,Rd) is C1

b according to Definition 1.2, with estimates

sup
ϑ∈(TNk )k∈N

‖U(ϑ)‖n,∞ ≤ Cnε
−S−1, 0 ≤ n ≤ S , (2.32)

sup
ϑ∈(TNk )k∈N

‖dϑU(ϑ)[ϑ̂]‖n,∞ ≤ Cnε
−S−1|ϑ̂|∞ ∀ ϑ̂ ∈ (RNk)k∈N, 0 ≤ n ≤ S . (2.33)

Proof. The first estimate in (2.32) follows by (2.30) and (2.25). We now prove the second estimate
in (2.32). By (2.30), we compute, for any ϑ ∈ (TNk)k∈N and ϑ̂ ∈ (RNk)k∈N,

dϑU(ϑ)[ϑ̂] = −
∑
k∈N

Jk∑
j=1

ϑ̂k · ∇
′′vk(x′ − yk, j, x′′ − ϑk, j). (2.34)

Therefore, by (2.4), using the fact that each term in the series in (2.34) is supported in space on the
cylinder Bm,2εk(yk, j)×Td−m, that these supports are disjoint one from the other, and that |ϑ̂k| ≤ |ϑ̂|∞ , we
obtain, for any ϑ ∈ (TNk)k∈N, ϑ̂ ∈ (RNk)k∈N and for any n = 0, 1, ..., S ,

‖dϑU(ϑ)[ϑ̂]‖n,∞ ≤ sup
k∈N

sup
j=1,...,Jk

‖∇′′vk( · − yk, j, · − ϑk, j)‖n,∞|ϑ̂|∞

≤ sup
k∈N

sup
j=1,...,Jk

‖vk( · − yk, j, · − ϑk, j)‖n+1,∞|ϑ̂|∞

≤ Cn sup
k∈N

εk(S +1−(n+1))−S−1|ϑ̂|∞ ≤ Cnε
−S−1|ϑ̂|∞.

(2.35)

This implies the claimed estimate and concludes the proof. �

3. Conclusions

In Section 2, we succeeded in proving Theorem 1.3. An interesting and challenging question
is the analysis of the stability both for the quasi-periodic solutions in [16, 17] and for the almost-
periodic solutions in Theorem 1.3 for long times, or in general for invariant motions in fluids.
Further perspectives include the adaptation of this construction of quasi-periodic and almost-periodic
solutions to other non-forced models in Fluid Dynamics, for instance for the equations of the magneto-
hydrodynamics.
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