We study the spectrum of the linearization around standing wave profiles for two quantum hydrodynamics systems with linear and nonlinear viscosity. The essential spectrum for such profiles is stable; we investigate the point spectrum using an Evans function technique. For both systems we show numerically that there exists a real unstable eigenvalue, thus providing numerical evidence for spectral instability.
Citation: Delyan Zhelyazov. Numerical spectral analysis of standing waves in quantum hydrodynamics with viscosity[J]. Mathematics in Engineering, 2024, 6(3): 407-424. doi: 10.3934/mine.2024017
We study the spectrum of the linearization around standing wave profiles for two quantum hydrodynamics systems with linear and nonlinear viscosity. The essential spectrum for such profiles is stable; we investigate the point spectrum using an Evans function technique. For both systems we show numerically that there exists a real unstable eigenvalue, thus providing numerical evidence for spectral instability.
[1] | P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657–686. https://doi.org/10.1007/s00220-008-0632-0 doi: 10.1007/s00220-008-0632-0 |
[2] | P. Antonelli, P. Marcati, H. Zheng, Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Commun. Math. Phys., 383 (2021), 2113–2161. https://doi.org/10.1007/s00220-021-03998-z doi: 10.1007/s00220-021-03998-z |
[3] | P. Antonelli, P. Marcati, H. Zheng, An intrinsically hydrodynamic approach to multidimensional QHD systems, Arch. Ration. Mech. Anal., 247 (2023), 24. https://doi.org/10.1007/s00205-023-01856-x doi: 10.1007/s00205-023-01856-x |
[4] | D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. I, Phys. Rev., 85 (1952), 166–179. https://doi.org/10.1103/PhysRev.85.166 doi: 10.1103/PhysRev.85.166 |
[5] | D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. II, Phys. Rev., 85 (1952), 180–193. https://doi.org/10.1103/PhysRev.85.180 doi: 10.1103/PhysRev.85.180 |
[6] | D. Bohm, B. J. Hiley, P. N. Kaloyerou, An ontological basis for the quantum theory, Phys. Rep., 144 (1987), 321–375. https://doi.org/10.1016/0370-1573(87)90024-X doi: 10.1016/0370-1573(87)90024-X |
[7] | S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, et al., Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), 5198–5201. https://doi.org/10.1103/PhysRevLett.83.5198 doi: 10.1103/PhysRevLett.83.5198 |
[8] | R. Folino, R. G. Plaza, D. Zhelyazov, Spectral stability of small-amplitude dispersive shocks in quantum hydrodynamics with viscosity, Commun. Pure Appl. Anal., 21 (2022), 4019–4040. https://doi.org/10.3934/cpaa.2022133 doi: 10.3934/cpaa.2022133 |
[9] | R. Folino, R. G. Plaza, D. Zhelyazov, Spectral stability of weak dispersive shock profiles for quantum hydrodynamics with nonlinear viscosity, J. Differ. Equations, 359 (2023), 330–364. https://doi.org/10.1016/j.jde.2023.02.038 doi: 10.1016/j.jde.2023.02.038 |
[10] | I. Gasser, Traveling wave solutions for a quantum hydrodynamic model, Appl. Math. Lett., 14 (2001), 279–283. https://doi.org/10.1016/S0893-9659(00)00149-X doi: 10.1016/S0893-9659(00)00149-X |
[11] | A. V. Gurevich, A. P. Meshcherkin, Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics, Sov. Phys. JETP, 60 (1984), 732–740. |
[12] | A. V. Gurevich, L. P. Pitaevskii, Nonstationary structure of a collisionless shock wave, Sov. Phys. JETP, 38 (1974), 291–297. |
[13] | M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, V. Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics, Phys. Rev. A, 74 (2006), 023623. https://doi.org/10.1103/PhysRevA.74.023623 doi: 10.1103/PhysRevA.74.023623 |
[14] | J. Humpherys, On the shock wave spectrum for isentropic gas dynamics with capillarity, J. Differ. Equations, 246 (2009), 2938–2957. https://doi.org/10.1016/j.jde.2008.07.028 doi: 10.1016/j.jde.2008.07.028 |
[15] | I. M. Khalatnikov, An introduction to the theory of superfluidity, CRC Press, 2000. https://doi.org/10.1201/9780429502897 |
[16] | C. Lattanzio, P. Marcati, D. Zhelyazov, Dispersive shocks in quantum hydrodynamics with viscosity, Phys. D, 402 (2020), 132222. https://doi.org/10.1016/j.physd.2019.132222 doi: 10.1016/j.physd.2019.132222 |
[17] | C. Lattanzio, P. Marcati, D. Zhelyazov, Numerical investigations of dispersive shocks and spectral analysis for linearized quantum hydrodynamics, Appl. Math. Comput., 385 (2020), 125450. https://doi.org/10.1016/j.amc.2020.125450 doi: 10.1016/j.amc.2020.125450 |
[18] | C. Lattanzio, D. Zhelyazov, Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity, Math. Mod. Meth. Appl. Sci., 31 (2021), 1719–1747. https://doi.org/10.1142/S0218202521500378 doi: 10.1142/S0218202521500378 |
[19] | C. Lattanzio, D. Zhelyazov, Traveling waves for quantum hydrodynamics with nonlinear viscosity, J. Math. Anal. Appl., 493 (2021), 124503. https://doi.org/10.1016/j.jmaa.2020.124503 doi: 10.1016/j.jmaa.2020.124503 |
[20] | S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons: the inverse scattering method, New York: Springer, 1984. |
[21] | R. G. Plaza, D. Zhelyazov, Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity, preprint, arXiv, 2023. https://doi.org/10.48550/arXiv.2309.00175 |
[22] | S. R. Z. Sagdeev, Kollektivnye protsessy i udarnye volny v razrezhennol plazme (Collective processes and shock waves in a tenuous plasma), Voprosy teorii plazmy (Problems of plasma theory), Vol. 5, Atomizdat, 1964. |
[23] | B. Sandstede, Chapter 18–Stability of travelling waves, Handbook of dynamical systems, Elsevier, 2 (2002), 983–1055. https://doi.org/10.1016/S1874-575X(02)80039-X |
[24] | D. Zhelyazov, Existence of standing and traveling waves in quantum hydrodynamics with viscosity, Z. Anal. Anwend., 42 (2023), 65–89. https://doi.org/10.4171/zaa/1723 doi: 10.4171/zaa/1723 |
[25] | K. Zumbrun, A local greedy algorithm and higher order extensions for global numerical continuation of analytically varying subspaces, Quart. Appl. Math., 68 (2010), 557–561. https://doi.org/10.1090/S0033-569X-2010-01209-1 doi: 10.1090/S0033-569X-2010-01209-1 |