Research article Special Issues

Numerical spectral analysis of standing waves in quantum hydrodynamics with viscosity

  • §Current address: Department of Mathematics, University of Surrey, Guildford, United Kingdom
  • Received: 31 January 2024 Revised: 14 May 2024 Accepted: 17 May 2024 Published: 28 May 2024
  • We study the spectrum of the linearization around standing wave profiles for two quantum hydrodynamics systems with linear and nonlinear viscosity. The essential spectrum for such profiles is stable; we investigate the point spectrum using an Evans function technique. For both systems we show numerically that there exists a real unstable eigenvalue, thus providing numerical evidence for spectral instability.

    Citation: Delyan Zhelyazov. Numerical spectral analysis of standing waves in quantum hydrodynamics with viscosity[J]. Mathematics in Engineering, 2024, 6(3): 407-424. doi: 10.3934/mine.2024017

    Related Papers:

  • We study the spectrum of the linearization around standing wave profiles for two quantum hydrodynamics systems with linear and nonlinear viscosity. The essential spectrum for such profiles is stable; we investigate the point spectrum using an Evans function technique. For both systems we show numerically that there exists a real unstable eigenvalue, thus providing numerical evidence for spectral instability.



    加载中


    [1] P. Antonelli, P. Marcati, On the finite energy weak solutions to a system in quantum fluid dynamics, Commun. Math. Phys., 287 (2009), 657–686. https://doi.org/10.1007/s00220-008-0632-0 doi: 10.1007/s00220-008-0632-0
    [2] P. Antonelli, P. Marcati, H. Zheng, Genuine hydrodynamic analysis to the 1-D QHD system: existence, dispersion and stability, Commun. Math. Phys., 383 (2021), 2113–2161. https://doi.org/10.1007/s00220-021-03998-z doi: 10.1007/s00220-021-03998-z
    [3] P. Antonelli, P. Marcati, H. Zheng, An intrinsically hydrodynamic approach to multidimensional QHD systems, Arch. Ration. Mech. Anal., 247 (2023), 24. https://doi.org/10.1007/s00205-023-01856-x doi: 10.1007/s00205-023-01856-x
    [4] D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. I, Phys. Rev., 85 (1952), 166–179. https://doi.org/10.1103/PhysRev.85.166 doi: 10.1103/PhysRev.85.166
    [5] D. Bohm, A suggested interpretation of the quantum theory in terms of "hidden" variables. II, Phys. Rev., 85 (1952), 180–193. https://doi.org/10.1103/PhysRev.85.180 doi: 10.1103/PhysRev.85.180
    [6] D. Bohm, B. J. Hiley, P. N. Kaloyerou, An ontological basis for the quantum theory, Phys. Rep., 144 (1987), 321–375. https://doi.org/10.1016/0370-1573(87)90024-X doi: 10.1016/0370-1573(87)90024-X
    [7] S. Burger, K. Bongs, S. Dettmer, W. Ertmer, K. Sengstock, A. Sanpera, et al., Dark solitons in Bose-Einstein condensates, Phys. Rev. Lett., 83 (1999), 5198–5201. https://doi.org/10.1103/PhysRevLett.83.5198 doi: 10.1103/PhysRevLett.83.5198
    [8] R. Folino, R. G. Plaza, D. Zhelyazov, Spectral stability of small-amplitude dispersive shocks in quantum hydrodynamics with viscosity, Commun. Pure Appl. Anal., 21 (2022), 4019–4040. https://doi.org/10.3934/cpaa.2022133 doi: 10.3934/cpaa.2022133
    [9] R. Folino, R. G. Plaza, D. Zhelyazov, Spectral stability of weak dispersive shock profiles for quantum hydrodynamics with nonlinear viscosity, J. Differ. Equations, 359 (2023), 330–364. https://doi.org/10.1016/j.jde.2023.02.038 doi: 10.1016/j.jde.2023.02.038
    [10] I. Gasser, Traveling wave solutions for a quantum hydrodynamic model, Appl. Math. Lett., 14 (2001), 279–283. https://doi.org/10.1016/S0893-9659(00)00149-X doi: 10.1016/S0893-9659(00)00149-X
    [11] A. V. Gurevich, A. P. Meshcherkin, Expanding self-similar discontinuities and shock waves in dispersive hydrodynamics, Sov. Phys. JETP, 60 (1984), 732–740.
    [12] A. V. Gurevich, L. P. Pitaevskii, Nonstationary structure of a collisionless shock wave, Sov. Phys. JETP, 38 (1974), 291–297.
    [13] M. A. Hoefer, M. J. Ablowitz, I. Coddington, E. A. Cornell, P. Engels, V. Schweikhard, Dispersive and classical shock waves in Bose-Einstein condensates and gas dynamics, Phys. Rev. A, 74 (2006), 023623. https://doi.org/10.1103/PhysRevA.74.023623 doi: 10.1103/PhysRevA.74.023623
    [14] J. Humpherys, On the shock wave spectrum for isentropic gas dynamics with capillarity, J. Differ. Equations, 246 (2009), 2938–2957. https://doi.org/10.1016/j.jde.2008.07.028 doi: 10.1016/j.jde.2008.07.028
    [15] I. M. Khalatnikov, An introduction to the theory of superfluidity, CRC Press, 2000. https://doi.org/10.1201/9780429502897
    [16] C. Lattanzio, P. Marcati, D. Zhelyazov, Dispersive shocks in quantum hydrodynamics with viscosity, Phys. D, 402 (2020), 132222. https://doi.org/10.1016/j.physd.2019.132222 doi: 10.1016/j.physd.2019.132222
    [17] C. Lattanzio, P. Marcati, D. Zhelyazov, Numerical investigations of dispersive shocks and spectral analysis for linearized quantum hydrodynamics, Appl. Math. Comput., 385 (2020), 125450. https://doi.org/10.1016/j.amc.2020.125450 doi: 10.1016/j.amc.2020.125450
    [18] C. Lattanzio, D. Zhelyazov, Spectral analysis of dispersive shocks for quantum hydrodynamics with nonlinear viscosity, Math. Mod. Meth. Appl. Sci., 31 (2021), 1719–1747. https://doi.org/10.1142/S0218202521500378 doi: 10.1142/S0218202521500378
    [19] C. Lattanzio, D. Zhelyazov, Traveling waves for quantum hydrodynamics with nonlinear viscosity, J. Math. Anal. Appl., 493 (2021), 124503. https://doi.org/10.1016/j.jmaa.2020.124503 doi: 10.1016/j.jmaa.2020.124503
    [20] S. Novikov, S. V. Manakov, L. P. Pitaevskii, V. E. Zakharov, Theory of solitons: the inverse scattering method, New York: Springer, 1984.
    [21] R. G. Plaza, D. Zhelyazov, Well-posedness and decay structure of a quantum hydrodynamics system with Bohm potential and linear viscosity, preprint, arXiv, 2023. https://doi.org/10.48550/arXiv.2309.00175
    [22] S. R. Z. Sagdeev, Kollektivnye protsessy i udarnye volny v razrezhennol plazme (Collective processes and shock waves in a tenuous plasma), Voprosy teorii plazmy (Problems of plasma theory), Vol. 5, Atomizdat, 1964.
    [23] B. Sandstede, Chapter 18–Stability of travelling waves, Handbook of dynamical systems, Elsevier, 2 (2002), 983–1055. https://doi.org/10.1016/S1874-575X(02)80039-X
    [24] D. Zhelyazov, Existence of standing and traveling waves in quantum hydrodynamics with viscosity, Z. Anal. Anwend., 42 (2023), 65–89. https://doi.org/10.4171/zaa/1723 doi: 10.4171/zaa/1723
    [25] K. Zumbrun, A local greedy algorithm and higher order extensions for global numerical continuation of analytically varying subspaces, Quart. Appl. Math., 68 (2010), 557–561. https://doi.org/10.1090/S0033-569X-2010-01209-1 doi: 10.1090/S0033-569X-2010-01209-1
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(780) PDF downloads(142) Cited by(1)

Article outline

Figures and Tables

Figures(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog