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Abstract: We study the spectrum of the linearization around standing wave profiles for two quantum
hydrodynamics systems with linear and nonlinear viscosity. The essential spectrum for such profiles
is stable; we investigate the point spectrum using an Evans function technique. For both systems we
show numerically that there exists a real unstable eigenvalue, thus providing numerical evidence for
spectral instability.
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1. Introduction

In this paper, we consider two quantum hydrodynamics (QHD) systems for which we investigate
the spectrum of the linearized operator about standing wave profiles. The system with a linear viscosity
term reads ρt + mx = 0,

mt +
(

m2

ρ
+ p(ρ)

)
x

= µmxx + k2ρ
(

(
√
ρ)xx
√
ρ

)
x
,

(1.1)

where ρ ≥ 0 is the density, m = ρu is the momentum, where u is the fluid velocity, p(ρ) = ργ

with γ ≥ 1 is the pressure, t ≥ 0 and x ∈ R. Moreover, µ, k > 0 are viscosity and dispersive
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coefficients, respectively. The function (
√
ρ)xx/

√
ρ is known as the Bohm potential, providing the

model with a nonlinear third order dispersive term. These systems are used for instance in the
theory of superfluidity [15] or to model semiconductor devices. In the case of nonlinear viscosity
(see (3.1)) the term µmxx is replaced with µρ(mx/ρ)x. The latter describes the interaction between the
superfluid and a normal fluid, or it can be interpreted as describing the interaction of the fluid with a
background. Systems (1.1) and (3.1) can be viewed as mean-field limits of the de Broglie-Bohm pilot
wave theory [4–6] with added viscosity terms of superfluid type.

Standing waves for (1.1) are solutions of the form

ρ(t, x) = P(x), m(t, x) = J(x),

such that
lim

x→±∞
P(x) = P± > 0, lim

x→±∞
J(x) = J±.

The first studies of models with dispersive terms were [12, 22]; see also [11, 13, 20]. Moreover,
existence of weak solutions for QHD systems has been considered in [1–3]. The spectral stability
of traveling wave profiles for the p-system has been discussed in [14]. Concerning viscous QHD
models, existence of traveling wave profiles for the system (1.1) was shown in [16] provided that the
viscosity is sufficiently strong. The result was improved in [24] where global existence of dispersive
shocks was proved without any restriction on the viscosity and dispersive coefficients and for arbitrary
shock amplitude. A similar result about a related QHD system with nonlinear viscosity (see (3.1)) was
obtained in [19]. Moreover, stability of traveling waves was established numerically in [17, 18] in the
case of non-monotone shocks, and analytically in [8, 9] for small-amplitude profiles. These studies
were complemented in [21] with a proof of local well-posedness and nonlinear decay of perturbations
of subsonic constant states for (1.1).

The aim of this paper is to study the spectrum of the linearization around standing waves for (1.1)
and (3.2). Existence theory for such solutions was established in [24]. There, it was shown that the
standing waves admited by the system (1.1) are pulses, i.e., P+ = P− and J+ = J−. Here below we
recall the existence result [24, Theorem 4.1]. Let us denote by cs(ρ) =

√
γργ−1 the speed of sound and

by U+ = J+/P+ the velocity at the end state.

Theorem 1.1 (existence of standing waves). There exists a non-constant standing wave solution
of (1.1) with limx→±∞[P(x), J(x)] = [P+, J+], if and only if 0 < |U+| < cs(P+).

This result shows, in particular, that there exist no standing waves with supersonic or sonic end
states.

The spectrum of the linearization around standing wave profiles for systems (1.1) and (3.2) consists
of two parts: the essential spectrum and the point spectrum. It can be proved that the essential spectrum
of such profiles is always stable (see Theorem 2.2 below). In the present paper, we carry out a
numerical study of the point spectrum by using the Evans function method. We show that there exists
an unstable real simple eigenvalue for both QHD systems with linear and nonlinear viscosity. Thereby,
we provide numerical evidence for spectral instability of standing waves. This result is in contrast
with the analytical and numerical results about spectral stability of traveling waves in [8, 9, 17, 18]. A
possible cause of the instability is the presence of a supersonic region along the standing wave profiles
(see Section 4 and Conjecture 4.1 below).
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The paper is organized as follows. In Section 2 we consider the QHD system with linear
viscosity (1.1). We introduce the equation solved by standing wave profiles and discuss their numerical
computation. Then, we derive the linearization around such profiles, describe its essential spectrum,
and recast the system in integrated variables. Section 2.6 contains the numerical result about point
spectrum instability. In Section 3 we discuss the QHD system with nonlinear viscosity (see Eq (3.2)
below) following the steps for the linear viscosity case. Finally, we conclude the paper with a
discussion of the numerical results.

Remark 1.2. The linearizations in Sections 2.3 and 3.2 can be obtained by setting s = 0 in the
corresponding linearizations in [16, 18] which hold also for s = 0. We provide them here for
completeness.

2. Quantum hydrodynamics with linear viscosity

2.1. Profile equation

In this section we shall derive the equation satisfied by a standing wave profile for system (1.1). The
Bohm potential can be rewritten in conservative form

ρ

(
(
√
ρ)xx
√
ρ

)
x

=
1
2

(ρ(ln ρ)xx)x.

Substituting the standing wave profiles P and J we get the following system of ODEs

J′ = 0, (2.1)(
J2

P
+ Pγ

)′
= µJ′′ +

k2

2
(P(ln P)′′)′. (2.2)

From (2.1) it follows that the momentum is conserved along the profile

J(x) = A, (2.3)

where A = J+. Since J is constant we have J′′ = 0, hence the term coming from the viscosity in
Eq (2.2) vanishes. Susbstituting Eq (2.3) in Eq (2.2) and proceeding as in [16, Section 2], we conclude
that the density profile P solves the ODE

P′′ =
2
k2 f (P) +

P′2

P
, (2.4)

where f (P) = Pγ − B + A2

P , with B =
(

m2

ρ
+ ργ

)+
.

2.2. Numerical computation of standing wave profiles

We shall compute numerically standing waves whose existence is guaranteed by Theorem 1.1. They
correspond to homoclinic loops for the profile ODE (2.4). Since the steady-state for this dynamical
system to which the profile converges is a saddle, the method to compute the profile from [17] cannot
be used because it relies on one of the steady-states being stable. Instead, the profile will be computed
by solving a nonlinear boundary value problem.
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To compute standing wave profiles we choose P+ > 0 and U+ that satisfy the condition of
Theorem 1.1. Then, we choose a sufficiently large domain size L1 > 0 and integrate numerically (2.4)
on the domain [−L1, L1] subject to the boundary conditions P(−L1) = P(L1) = P+, with the boundary
value solver bvp4c in Matlab. As an initial guess we use the function

P0(x) = P+ − c exp(−x2) (2.5)

for −L1 ≤ x ≤ L1, where c > 0 is a parameter to be chosen so that the solver converges. From
the qualitative analysis in [24, Section 4] we know that the profile has a single minimum, hence the
initial guess has an appropriate shape. Using this initial guess the solver will not converge to the trivial
constant solution.

Because of the fact that the momentum is conserved along the profile we have u(x) = J+/P(x).
Hence, the flow is supersonic in the region where the following inequality holds

P(x) <
(
(J+)2

γ

) 1
γ+1

, (2.6)

where the right-hand side is the density corresponding to sonic states. For our computations we use
the parameter values

P+ = 1, J+ = −0.8, γ = 3/2, k =
√

2, µ = 0.1. (2.7)

We have |U+| = 0.8 < 1.22 ≈ cs(P+), therefore the condition of Theorem 1.1 is satisfied. Moreover,
we set L1 = 20 and c = 0.8. For parameters (2.7) the right hand side of (2.6) is 0.71 and the flow is
supersonic in the interval |x| < 1.93 (see Figure 1). This type of reduced density pulse is known as
dark soliton (see, for instance [7]).
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Figure 1. Standing wave profile for parameters P+ = 1, J+ = −0.8, γ = 3/2, k =
√

2, µ =

0.1. The solid line is the density profile, while the dashed line corresponds to sonic states. In
the region where P(x) is below the dashed line the flow is supersonic.
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2.3. Linearization

Let us denote by (ρ,m) the deviation from (P, J). We obtain the full linearized operator around the
profile

L

[
ρ

m

]
=

 −m′((
J2

P2 − γPγ−1
)
ρ
)′
−

(
2J
P m

)′
+ µm′′ + LVρ

 , (2.8)

where

LVρ =
k2

2
ρ′′′ − 2k2

(
(
√

P)′
(
ρ
√

P

)′)′
.

The associated eigenvalue problem reads

L

[
ρ

m

]
= λ

[
ρ

m

]
. (2.9)

2.4. Essential spectrum

Since the profile is a pulse, the essential spectrum of (2.8) is obtained by considering the asymptotic
operator at the end state

L∞

[
ρ

m

]
=

[
−m′

α+ρ′ + β+m′ + µm′′ + k2

2 ρ
′′′

]
,

where

α+ =
(J+)2

(P+)2 − γ(P+)γ−1, β+ = −
2J+

P+
.

The associated eigenvalue problem is

L∞

[
ρ

m

]
= λ

[
ρ

m

]
.

Let us rewrite it as a first order system
V ′ = M+V,

where V = [ρ,m, u1, u2]>, with ρ′ = u1, u′1 = u2, and the limit matrix M+ is given by

M+ =


0 0 1 0
−λ 0 0 0
0 0 0 1

2β+λ

k2
2λ
k2

2
k2 (µλ − α+) 0

 . (2.10)

The characteristic equation of M+ is det(νId − M+) = 0. It reads

ν4 +
2
k2 (α+ − λµ)ν2 − 2

β+

k2 λν +
2λ2

k2 = 0. (2.11)

Setting ν = iξ, ξ ∈ R in (2.11) and dividing by 2/k2 we obtain the dispersion relation

λ2 + ξ(µξ − iβ+)λ − ξ2
(
α+ −

k2ξ2

2

)
= 0. (2.12)

Since the profile (P, J) is a pulse, the essential spectrum is given by the union of the two curves Σ j =

{λ = λ j(ξ) ∈ C : ξ ∈ R}, j = 1, 2, where λ j(ξ) are determined by the roots of (2.12). Let us now define
stability of essential spectrum.
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Definition 2.1. The essential spectrum of L is stable, if it is contained in the closed left half-plane,
that is

σess(L) ⊆ {λ ∈ C : Re λ ≤ 0}.

The essential spectum of L is unstable, if it intersects the unstable half-plane:

σess(L) ∩ {λ ∈ C : Re λ > 0} , ∅.

Lemma 3 in [16] and Lemma 3.2 in [21] imply the following description of the stability of the
essential spectrum.

Theorem 2.2 (Stability of essential spectrum).
(i) If |U+| ≤ cs(P+), then the essential spectrum of L is stable. Moreover, it holds that Re λ1,2 < 0,

provided ξ , 0.
(ii) If |U+| > cs(P+), then the essential spectum of L is unstable.

That is, the stability of the essential spectrum is related to the end state (P+, J+) being subsonic or
sonic. Moreover, the existence condition in Theorem 1.1 is also related to stability of the essential
spectrum. Indeeed, a standing wave profile exists if and only if the end state is subsonic with nonzero
velocity. Hence, the essential spectrum of standing waves is always stable. Furthermore, Lemma 3
in [16] implies that we have consistent splitting, that is the limit matrix M+ has 2 eigenvalues with
positive real parts and 2 eigenvalues with negative real parts provided λ is to the right of the curves Σ j.

2.5. System in integrated variables

Following [16, Section 4.2.1], we shall recast the eigenvalue problem (2.9) in terms of integrated
variables

ρ̂(x) =

∫ x

−∞

ρ(y)dy, m̂(x) =

∫ x

−∞

m(y)dy.

This transformation removes the zero eigenvalue without further modifications of the spectrum.
Expressing ρ and m in terms of ρ̂ and m̂ and integrating from −∞ to x we get

λρ̂ = −m̂′, (2.13)

λm̂ = f1ρ̂
′ + f2m̂′ +

k2

2
ρ̂′′′ − 2k2(

√
P)′

(
ρ̂′
√

P

)′
, (2.14)

where

f1(x) =
J(x)2

P(x)2 − γP(x)γ−1, f2(x) = −2
J(x)
P(x)

.

Let us rewrite the system (2.13)-(2.14) as V̂ ′ = M̂(x, λ)V̂ , where V̂ = [ρ̂, m̂, û1, û2]>, ρ̂′ = û1, û′1 = û2,
and

M̂(x, λ) =


0 0 1 0
−λ 0 0 0
0 0 0 1

2λ f2
k2

2λ
k2

2λµ
k2 −

2 f1
k2 −

P′2
P2

2P′
P

 . (2.15)

The limiting matrix of M̂(x, λ) as x→ ±∞ is (2.10).
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2.6. Numerical evaluation of the Evans function

To define the Evans function, let us consider the equation Y ′ = M̂(x, λ)Y with M̂(x, λ) defined
in (2.15). Since the profile (P, J) is a pulse, the limits of M̂(x, λ) at ±∞ coincide and are equal to the
matrix M+ given by (2.10). We assume that M+ is hyperbolic. This is always true for λ to the right
of the curves Σ j. Denote by ν−1 , ν

−
2 and by ν+

1 , ν
+
2 the eigenvalues of M+ with positive and negative

real parts, respectively, and indicate with v±i the corresponding (normalized) eigenvectors. Let Y−i be a
solution of Y ′ = M̂(x, λ)Y , satisfying exp(ν−i x)Y−(x) tends to v−i as x → −∞ and exp(ν+

i x)Y+(x) tends
to v+

i as x→ +∞. Then, the Evans function can be defined by

E(λ) = det(Y−1 (0),Y−2 (0),Y+
1 (0),Y+

2 (0)).

Consequently, λ is in the point spectrum of L if and only if E(λ) = 0.
To numerically compute the Evans function, we use the compound matrix method (see [14,17,18]).

This method is used in order to get a stable numerical procedure, in spite of the fact that the system
Y ′ = M̂(x, λ)Y is numerically stiff. Specifically, the compound matrix B(x, λ) is given by:

B =



m11 + m22 m23 m24 −m13 −m14 0
m32 m11 + m33 m34 m12 0 −m14

m42 m43 m11 + m44 0 m12 m13

−m31 m21 0 m22 + m33 m34 −m24

−m41 0 m21 m43 m22 + m44 m23

0 −m41 m31 −m42 m32 m33 + m44


,

where m jk are the entries of M̂(x, λ) defined in (2.15). We integrate the equation φ′ = (B(x, λ) − µ−)φ
numerically on a sufficiently large interval [−L1, 0], where µ− is the unstable eigenvalue of B at −∞with
maximal (positive) real part. Denote the profile (P(x), J(x)) by ζ(x). Given a numerical approximation
(ζk)N

k=1 of ζ(x) at points (xk)N
k=1 with −L1 = x1 < x2 < ... < xN = L1, let ζ̃(x) be the piecewise linear

interpolant of (x1, ζ1), ..., (xN , ζN). We obtain the matrix B(x, λ) using ζ̃(x). Similarly we integrate the
equation φ′ = (B(x, λ) − µ+)φ on [0, L1] backwards, where this time µ+ is the stable eigenvalue of B
at +∞ with minimal (negative) real part. Then, the coefficients µ± compensate for the growth/decay
at infinity. Finally, the Evans function can be constructed by means of linear combination of the
components of the two solutions φ± = (φ±1 , . . . , φ

±
6 ) as follows:

E(λ) = φ−1φ
+
6 − φ

−
2φ

+
5 + φ−3φ

+
4 + φ−4φ

+
3 − φ

−
5φ

+
2 + φ−6φ

+
1

∣∣∣∣
x=0
.

To compute the initial conditions we integrate the reduced Kato ODE

dr±
dλ

=
dP±
dλ

r±, (2.16)

where P± denotes the spectral projection of B̂± = limx→+∞ B̂(x, λ) corresponding to µ±. This choice of
initial condition provides an analytic Evans function E(λ). To numerically integrate (2.16) we use the
algorithm from [25], that is |r1

±| = 1 eigenvector as before (referring to maximal/minimal decay/growth
rate of B̂±) and for k > 0,

rk+1
± = Pk

±r
k
±.
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Then, provided E(λ) does not vanish on a closed contour Γ which does not intersect the essential
spectrum of L, we can use the winding number

1
2πi

∫
Γ

E′(z)
E(z)

dz

to count the number of zeros (taking into account multiplicity) inside the contour (see [23]).
For our calculations we use the set of parameters (2.7). Recall that the associated profile is depicted

in Figure 1. We compute the Evans function on a semi-circular contour with radius 20, center at λ = 0
and vertical segment on the imaginary axis. Furthermore, we do not evaluate the Evans function at 0,
but evaluate it up to ±i10−6. Along the contour we integrate the Kato ODE using 5 · 104 points. Then,
we compute E(λ) with the solver ode45 in Matlab with relative tolerance 10−6 and we set L1 = 40.
Finally, we apply the symmetry of

E(λ) = E(λ). (2.17)

The Evans function E(λ) is plotted in Figure 2. Contrary to the case of traveling waves studied in [17,
18], the winding number of the Evans function is (approximately) 1. This is a numerical evidence for
the presence of an unstable real simple eigenvalue in the interval (0, 20). Indeed, if ν would be a root
of E(λ) = 0 with nonzero imaginary part, then by (2.17) ν would also be a root, and hence the winding
number would be greater than 1. Therefore, there exists a real root with multiplicity 1.

-50 0 50 100 150 200 250

Re 

-150

-100

-50

0

50

100

150

Im
 

Figure 2. The image of a semi-circular contour with radius 20 through the Evans function
E(λ) for the QHD system with linear viscosity. The origin is marked in red.

Let us compute E(λ) on the real line. Equation (2.17) implies that E(λ) ∈ R for λ ∈ R. We initialize
the Kato ODE at λ = 20 and integrate it along the real line until λ = 10−6 using 2 · 104 points. The
result is plotted in Figure 3. The Evans function has a real root λ0 ≈ 0.0496.
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Figure 3. The Evans function E(λ) on the real line for the QHD system with linear viscosity.
It intersects the horizontal axis at λ0 ≈ 0.0496.

The instability possibly is related to the presence of a supersonic region along the profile as will be
discussed in Section 4.

3. Quantum hydrodynamics with nonlinear viscosity

In this section we consider the following quantum hydrodynamics system with nolinear viscosityρt + mx = 0,

mt +
(

m2

ρ
+ p(ρ)

)
x

= µρ
(

mx
ρ

)
x

+ k2ρ
(

(
√
ρ)xx
√
ρ

)
x
.

(3.1)

Let us rewrite system (3.1) in terms of (ρ, u) variables asρt + (ρu)x = 0,

ut +
(u2)x

2 + (h(ρ))x = µ
(

(ρu)x
ρ

)
x

+ k2
(

(
√
ρxx)
√
ρ

)
x
,

(3.2)

where the enthalpy h(ρ) is

h(ρ) =

ln ρ, γ = 1,
γ

γ−1ρ
γ−1, γ > 1,

see [10]. We are searching for standing wave profiles of the form

ρ(t, x) = R(x), u(t, x) = U(x), (3.3)
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such that
lim

x→±∞
R(x) = R+, lim

x→±∞
U(x) = U+.

Substituting (3.3) into (3.2) we obtain

(RU)′ = 0, (3.4)

1
2

(U2)′ + h(R)′ = µ

(
(RU)′

R

)′
+ k2

 (
√

R)′′
√

R

′ . (3.5)

Integrating Eq (3.4) up to ±∞ we get

U =
A
R
, (3.6)

where A = R+U+. Substituting (3.6) into (3.5) and integrating we obtain

R′′ =
2
k2 f (R) +

(R′)2

2R
, (3.7)

where

f (R) = Rh(R) +
A2

2R
− RB,

with

B =
1
2

(U+)2 + h(R+).

Theorem 6.1 in [24] provides a characterization for the existence of homoclinic loops to (3.7). These
homoclinic loops correspond to standing wave profiles for (3.2).

3.1. Numerical computation of profiles

We use the method from Section 2.2, that is we compute the profile numerically using a boundary
value solver. As an initial guess we use a function of the form (2.5) with c = 0.5,

R0(x) = R+ − 0.5 exp(−x2).

We compute the profile for parameters

R+ = 1, U+ = 0.9, γ = 3/2, k =
√

2, µ = 0.08. (3.8)

Since |U+| = 0.9 < 1.22 ≈ cs(R+), the condition for existence of profile of Theorem 6.1 in [24]
is verified; see Figure 4. The flow along the profile is supersonic in the region where the following
inequality holds:

R(x) <
(
(R+U+)2

γ

) 1
γ+1

. (3.9)

For the parameter values (3.8) the right hand side of (3.9) is 0.78 and the flow is supersonic for
|x| < 2.29.
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Figure 4. Standing wave profile for parameters R+ = 1, U+ = 0.9, γ = 3/2, k =
√

2,
µ = 0.08. The solid line corresponds to R(x). In the region where R(x) is below the dashed
line the flow is supersonic.

3.2. Linearization

Here we perform a linearization of (3.2) around a standing wave profile. Denoting by (ρ, u) the
deviation from the profile (R,U), we obtain the following full linearized operator:

L

[
ρ

u

]
:=


−(Ru + Uρ)′

−(Uu)′ −
(

dh
dR

(R)ρ
)′

+µ
(
(R−1(Ru + Uρ)′)′ − (R−2(RU)′ρ)′

)
+ k2LQρ

 ,
where

LQρ =
1
2

(R−1/2(R−1/2ρ)′′)′ −
1
2

(R−3/2(R1/2)′′ρ)′.

The associated eigenvalue problem reads

λ

[
ρ

u

]
= L

[
ρ

u

]
. (3.10)

The asymptotic operator at∞ is given by

L∞

[
ρ

u

]
:=

 −U+ρ′ − R+u′

−U+u′ −
dh
dR

(R+)ρ′ + µ

(
u′′ +

U+

R+
ρ′′

)
+

k2

2
ρ′′′

R

 .
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The eigenvalue problem associated to L∞ is

λ

[
ρ

u

]
= L∞

[
ρ

u

]
.

Let us rewrite it as a first-order system
V ′ = M+V,

where

M+ :=



0 0 1 0

−
λ

R+
0 −

U+

R+
0

0 0 0 1

−
2U+λ

k2

2R+λ

k2

2
k2

(
R+

dh
dR

(R+) − (U+)2 + µλ

)
0


.

3.3. Essential spectrum

The characteristic equation det(νId − M+) = 0 is

ν4 +
2
k2

(
(U+)2 − R+ dh

dR
(R+) − λµ

)
ν2 +

4U+

k2 λν +
2λ2

k2 = 0. (3.11)

Setting ν = iξ, ξ ∈ R, in (3.11) and dividing by 2/k2, we obtain the dispersion relation:

λ2 + (µξ2 + 2U+ξi)λ +

(
R+ dh

dR
(R+) − (U+)2

)
ξ2 +

k2

2
ξ4 = 0.

The stability condition for the essential spectrum is identical to Theorem 2.2. Therefore, standing wave
profiles for the system (3.2) always have stable essential spectrum.

3.4. System in integrated variables

Let us now consider the integrated variables

ρ̂(x) =

∫ x

−∞

ρ(y)dy, û(x) =

∫ x

−∞

u(y)dy.

Expressing ρ and u in terms of ρ̂ and û in (3.10) and integrating from −∞ to x we obtain the system in
integrated variables:

λρ̂ = −Uρ̂′ − Rû′, (3.12)
λû = f (x)ρ′ − Uu′ + µ(R−1(Rû′ + Uρ̂′)′ − R−2(RU)′ρ̂′)

+
k2

2
(R−

1
2 (R−

1
2 ρ̂′)′′ − R−

3
2 (R

1
2 )′′ρ̂′), (3.13)

with
f (x) = −

dh
dR

(R(x)).
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Let us rewrite (3.12)-(3.13) as a first-order system

V̂ ′ = M̂(x, λ)V̂ ,

where V̂ = [ρ̂, û, û1, û2]>, with ρ̂′ = û1, and û′1 = û2, and

M̂(x, λ) :=


0 0 1 0
− λ

R 0 −U
R 0

0 0 0 1
m̂4,1 m̂4,2 m̂4,3 m̂4,4

 , (3.14)

with

m̂4,1 = −
2λU
k2 ,

m̂4,2 =
2λR
k2 ,

m̂4,3 =
2
k2

(
−R f − U2 + µ

(
(RU)′

R
+ λ

))
+

R′′

R
−

(R′)2

R2 ,

m̂4,4 =
R′

R
.

3.5. Numerical evaluation of the Evans function

In this section we compute the Evans function for the QHD system with nonlinear viscosity (3.2).
We use the method from Section 2.6. We integrate the ODE φ′ = (B(x, λ) − µ−)φ on [−L1, 0] and
φ′ = (B(x, λ) − µ+)φ on [0, L1] backwards, where L1 = 40 as before, however here B(x, λ) is the
compound matrix of M̂(x, λ) defined in (3.14) and µ± is the stable (unstable) eigenvalue of B at +∞

with minimal (maximal) real part.
We evaluate the Evans function on the contour surrounding a semi-annular region with radii 20 and

10−6 with center at the origin and vertical segment on the imaginary axis. We integrate the reduced Kato
ODE using 106 points, then we compute E(λ) with the solver ode15s in Matlab with relative tolerances
10−8 and 10−10, the latter being used if E(λ) is evaluated wtih λ close to 0. The Evans function E(λ) is
ploted in Figure 5, and in Figures 6 and 7 with enlargement of a region around the origin. Notice that
the Evans function E(λ) is small in absolute value for λ ≈ 0 along the contour, hence a higher accuracy
is required for its numerical computation than the one used for the QHD system with linear viscosity
(cf. Section 2.6). The winding number of the Evans function is (approximately) 1. As before, this is
numerical evidence for the presence of a simple real eigenvalue in the interval (0, 20).

Now, let us evaluate E(λ) on the real line. We initialize the Kato ODE at λ = 20 and integrate
it along the real line until λ = 10−6 using 4 · 105 points. The result is depicted in Figure 8. The
Evans function E(λ) has a real root λ0 ≈ 0.0026. Notice that both the viscosity coefficient and the
unstable eigenvalue are smaller in the nonlinear viscosity case, compared to their counterparts in case
with the linear viscosity (cf. the parameter set (2.7)), even though increasing the viscosity tends to
stabilize the system. Therefore, our numerics suggests that the nonlinear viscosity has stabilizing
effect, corroborating the analytical result in [9, Remark 4.7].
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Figure 5. The image of a semi-annular region with radii 20 and 10−6 through the Evans
function E(λ) for the QHD system with nonlinear viscosity. The origin is marked in red.
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Figure 6. Same as Figure 5 with enlargement of a region around the origin.
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Figure 7. Same as Figures 5 and 6 with further enlargement of a region around the origin.
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Figure 8. The Evans function E(λ) computed on a segment of the real line for the QHD
system with nonlinear viscosity. It has a zero at λ0 ≈ 0.0026.
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4. Discussion and conclusions

It was shown numerically in Sections 2.6 and 3.5 that the standing wave profiles considered for the
QHD systems (1.1) and (3.2) with linear and nonlinear viscosity are spectrally unstable. The essential
spectrum is stable, however there is a simple real unstable eigenvalue. This numerical result is in
contrast with the numerical stability results for traveling wave profiles in [17, 18] where it was shown
that non-monotone traveling wave profiles are spectrally stable. We notice that in both cases there
exists a supersonic region, where the velocity along the profile is larger than the speed of sound (see
Figures 1 and 4). On the other hand, one can show numerically that the velocity along the profiles is
subsonic everywhere for the cases considered in [17, 18]. Therefore, we make the following:

Conjecture 4.1. A standing or traveling wave profile for the QHD systems with linear or nonlinear
viscosity (1.1) and (3.2) is spectrally stable if and only if the velocity is subsonic or sonic along the
profile.

In other words, the conjecture states that a profile (R,U) is spectrally stable if and only if

|U(x)| ≤ cs(R(x)), x ∈ R.

If this inequality holds, then taking limits as x → ±∞ we obtain |U±| ≤ cs(R±), that is the end states
are subsonic or sonic, in accordance with the necessary and sufficient condition in Theorem 2.2 for
stability of the essential spectrum. Let us now compare the numerical results for the QHD systems with
linear and nonlinear viscosity. The unstable eigenvalue is larger for the former system even though the
viscosity coefficient is smaller for the latter (cf. the parameter sets (2.7) and (3.8)). Therefore, our
numerical results suggest that the nonlinear viscosity has stabilizing effect.
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