The aim of this note is to study the Cauchy problem for the 2D Euler equations under very low regularity assumptions on the initial datum. We prove propagation of regularity of logarithmic order in the class of weak solutions with $ L^p $ initial vorticity, provided that $ p\geq 4 $. We also study the inviscid limit from the 2D Navier-Stokes equations for vorticity with logarithmic regularity in the Yudovich class, showing a rate of convergence of order $ |\log\nu|^{-\alpha/2} $ with $ \alpha > 0 $.
Citation: Gennaro Ciampa, Gianluca Crippa, Stefano Spirito. Propagation of logarithmic regularity and inviscid limit for the 2D Euler equations[J]. Mathematics in Engineering, 2024, 6(4): 494-509. doi: 10.3934/mine.2024020
The aim of this note is to study the Cauchy problem for the 2D Euler equations under very low regularity assumptions on the initial datum. We prove propagation of regularity of logarithmic order in the class of weak solutions with $ L^p $ initial vorticity, provided that $ p\geq 4 $. We also study the inviscid limit from the 2D Navier-Stokes equations for vorticity with logarithmic regularity in the Yudovich class, showing a rate of convergence of order $ |\log\nu|^{-\alpha/2} $ with $ \alpha > 0 $.
[1] | G. Alberti, G. Crippa, A. L. Mazzucato, Loss of regularity for the continuity equation with non-Lipschitz velocity field, Ann. PDE, 5 (2019), 9. https://doi.org/10.1007/s40818-019-0066-3 doi: 10.1007/s40818-019-0066-3 |
[2] | H. Bahouri, J. Y. Chemin, Equations de transport relatives à des champs de vecteurs non-lipschitziens et mécanique des fluides, Arch. Rational Mech. Anal., 127 (1994), 159–181. https://doi.org/10.1007/BF00377659 doi: 10.1007/BF00377659 |
[3] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Grundlehren der mathematischen Wissenschaften, Vol. 343, Springer Berlin, Heidelberg, 2011. https://doi.org/10.1007/978-3-642-16830-7 |
[4] | H. Beir ao da Veiga, On the solutions in the large of the two-dimensional flow of a nonviscous incompressible fluid, J. Differ. Equations, 54 (1984), 373–389. https://doi.org/10.1016/0022-0396(84)90149-9 doi: 10.1016/0022-0396(84)90149-9 |
[5] | F. Ben Belgacem, P. E. Jabin, Compactness for nonlinear continuity equations, J. Funct. Anal., 264 (2013), 139–168. https://doi.org/10.1016/j.jfa.2012.10.005 doi: 10.1016/j.jfa.2012.10.005 |
[6] | F. Ben Belgacem, P. E. Jabin, Convergence of numerical approximations to non-linear continuity equations with rough force fields, Arch. Rational Mech. Anal., 234 (2019), 509–547. https://doi.org/10.1007/s00205-019-01396-3 doi: 10.1007/s00205-019-01396-3 |
[7] | P. Bonicatto, G. Ciampa, G. Crippa, On the advection-diffusion equation with rough coefficients: weak solutions and vanishing viscosity, J. Math. Pures Appl., 167 (2022), 204–224. https://doi.org/10.1016/j.matpur.2022.09.005 doi: 10.1016/j.matpur.2022.09.005 |
[8] | D. Bresch, P. E. Jabin, Global existence of weak solutions for compressible Navier-Stokes equations: thermodynamically unstable pressure and anisotropic viscous stress tensor, Ann. Math., 188 (2018), 577–684. https://doi.org/10.4007/annals.2018.188.2.4 doi: 10.4007/annals.2018.188.2.4 |
[9] | A. Bressan, R. Murray, On self-similar solutions to the incompressible Euler equations, J. Differ. Equations, 269 (2020), 5142–5203. https://doi.org/10.1016/j.jde.2020.04.005 doi: 10.1016/j.jde.2020.04.005 |
[10] | A. Bressan, W. Shen, A posteriori error estimates for self-similar solutions to the Euler equations, Discrete Cont. Dyn. Syst., 41 (2021), 113–130. https://doi.org/10.3934/dcds.2020168 doi: 10.3934/dcds.2020168 |
[11] | E. Bruè, M. Colombo, Nonuniqueness of solutions to the Euler equations with vorticity in a Lorentz space, Commun. Math. Phys., 403 (2023), 1171–1192. https://doi.org/10.1007/s00220-023-04816-4 doi: 10.1007/s00220-023-04816-4 |
[12] | E. Bruè, Q. H. Nguyen, Advection diffusion equations with Sobolev velocity field, Commun. Math. Phys., 383 (2021), 465–487. https://doi.org/10.1007/s00220-021-03993-4 doi: 10.1007/s00220-021-03993-4 |
[13] | E. Bruè, Q. H. Nguyen, On the Sobolev space of functions with derivative of logarithmic order, Adv. Nonlinear Anal., 9 (2020), 836–849. https://doi.org/10.1515/anona-2020-0027 doi: 10.1515/anona-2020-0027 |
[14] | E. Bruè, Q. H. Nguyen, Sobolev estimates for solutions of the transport equation and ODE flows associated to non-Lipschitz drifts, Math. Ann., 380 (2021), 855–883. https://doi.org/10.1007/s00208-020-01988-5 doi: 10.1007/s00208-020-01988-5 |
[15] | D. Chae, I. J. Jeong, Preservation of log-Hölder coefficients of the vorticity in the transport equation, J. Differ. Equations, 343 (2023), 910–918. https://doi.org/10.1016/j.jde.2022.11.017 doi: 10.1016/j.jde.2022.11.017 |
[16] | J. Y. Chemin, A remark on the inviscid limit for two-dimensional incompressible fluids, Commun. Part. Diff. Eq., 21 (1996), 1771–1779. https://doi.org/10.1080/03605309608821245 doi: 10.1080/03605309608821245 |
[17] | G. Ciampa, G. Crippa, S. Spirito, Strong convergence of the vorticity for the 2D Euler equations in the inviscid limit, Arch. Rational Mech. Anal., 240 (2021), 295–326. https://doi.org/10.1007/s00205-021-01612-z doi: 10.1007/s00205-021-01612-z |
[18] | P. Constantin, T. D. Drivas, T. M. Elgindi, Inviscid limit of vorticity distributions in the Yudovich class, Commun. Pure Appl. Math., 75 (2022), 60–82. https://doi.org/10.1002/cpa.21940 doi: 10.1002/cpa.21940 |
[19] | E. Cozzi, An initial value problem for two-dimensional ideal incompressible fluids with continuous vorticity, Math. Res. Lett., 14 (2007), 573–587. https://doi.org/10.4310/MRL.2007.v14.n4.a3 doi: 10.4310/MRL.2007.v14.n4.a3 |
[20] | G. Crippa, G. Stefani, An elementary proof of existence and uniqueness for the Euler flow in localized Yudovich spaces, arXiv, 2023. https://doi.org/10.48550/arXiv.2110.15648 |
[21] | J. M. Delort, Existence de nappes de tourbillon en dimension deux, J. Amer. Math. Soc., 4 (1991), 553–586. https://doi.org/10.2307/2939269 doi: 10.2307/2939269 |
[22] | R. J. DiPerna, P. L. Lions, Ordinary differential equations, transport theory and Sobolev spaces, Invent. Math., 98 (1989), 511–547. https://doi.org/10.1007/BF01393835 doi: 10.1007/BF01393835 |
[23] | R. J. DiPerna, A. Majda, Concentrations in regularizations for 2-D incompressible flow, Comm. Pure Appl. Math., 40 (1987), 301–345. https://doi.org/10.1002/cpa.3160400304 doi: 10.1002/cpa.3160400304 |
[24] | Ó. Domínguez, S. Tikhonov, Function spaces of logarithmic smoothness: embeddings and characterizations, Mem. Amer. Math. Soc., 1393 (2023), 1393. https://doi.org/10.1090/memo/1393 doi: 10.1090/memo/1393 |
[25] | L. Franzoi, R. Montalto, A KAM approach to the inviscid limit for the 2D Navier-Stokes equations, Ann. Henri Poincaré, 2024. https://doi.org/10.1007/s00023-023-01408-9 |
[26] | I. J. Jeong, Loss of regularity for the 2D Euler equations, J. Math. Fluid Mech., 23 (2021), 95. https://doi.org/10.1007/s00021-021-00621-y doi: 10.1007/s00021-021-00621-y |
[27] | H. Koch, Transport and instability for perfect fluids, Math. Ann., 323 (2002), 491–523. https://doi.org/10.1007/s002080200312 doi: 10.1007/s002080200312 |
[28] | H. Kunita, Stochastic differential equations and stochastic flows of diffeomorphisms, In: P. L. Hennequin, École d'été de probabilités de Saint-Flour XII - 1982, Lecture Notes in Mathematics, Springer, Berlin, Heidelberg, 1097 (1984), 143–303. https://doi.org/10.1007/BFb0099433 |
[29] | C. Le Bris, P. L. Lions, Parabolic equations with irregular data and related issues: applications to stochastic differential equations, De Gruyter Series in Applied and Numerical Mathematics, Vol. 4, Boston: De Gruyter, 2019. https://doi.org/10.1515/9783110635508 |
[30] | M. C. Lopes Filho, A. L. Mazzucato, H. J. Nussenzveig Lopes, Weak solutions, renormalized solutions and enstrophy defects in 2D turbulence, Arch. Rational Mech. Anal., 179 (2006), 353–387. https://doi.org/10.1007/s00205-005-0390-5 doi: 10.1007/s00205-005-0390-5 |
[31] | A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Vol. 27, Cambridge: Cambridge University Press, 2002. |
[32] | N. Masmoudi, Remarks about the inviscid limit of the Navier-Stokes system, Commun. Math. Phys., 270 (2007), 777–788. https://doi.org/10.1007/s00220-006-0171-5 doi: 10.1007/s00220-006-0171-5 |
[33] | F. Mengual, L. Szèkelyhidi Jr, Dissipative Euler flows for vortex sheet initial data without distinguished sign, Commun. Pure Appl. Math., 76 (2023), 163–221. https://doi.org/10.1002/cpa.22038 doi: 10.1002/cpa.22038 |
[34] | D. Meyer, C. Seis, Propagation of regularity for transport equations. A Littlewood-Paley approach, arXiv, 2024. https://doi.org/10.48550/arXiv.2203.10860 |
[35] | C. Seis, A note on the vanishing viscosity limit in the Yudovich class, Can. Math. Bull., 64 (2021), 112–122. https://doi.org/10.4153/S0008439520000296 doi: 10.4153/S0008439520000296 |
[36] | I. Vecchi, S. J. Wu, On $L^1$-vorticity for 2-D incompressible flow, Manuscripta Math., 78 (1993), 403–412. https://doi.org/10.1007/BF02599322 doi: 10.1007/BF02599322 |
[37] | M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part I, arXiv, 2018. https://doi.org/10.48550/arXiv.1805.09426 |
[38] | M. Vishik, Instability and non-uniqueness in the Cauchy problem for the Euler equations of an ideal incompressible fluid. Part II, arXiv, 2018. https://doi.org/10.48550/arXiv.1805.09440 |
[39] | V. I. Yudovich, Non-stationary flows of an ideal incompressible fluid, Zh. Vychisl. Mat. Mat. Fiz., 3 (1963), 1032–1066. |
[40] | V. I. Yudovich, Uniqueness theorem for the basic nonstationary problem in the dynamics of an ideal incompressible fluid, Math. Res. Lett., 2 (1995), 27–38. https://doi.org/10.4310/MRL.1995.v2.n1.a4 doi: 10.4310/MRL.1995.v2.n1.a4 |