Research article Special Issues

On an asymptotically log-periodic solution to the graphical curve shortening flow equation

  • Received: 15 February 2020 Accepted: 26 July 2021 Published: 30 July 2021
  • With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form

    $ A\sin \left( \log t\right) +B\cos \left( \log t\right) $

    as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha < \beta, \ $we are also able to construct a solution satisfying the oscillation limits

    $ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $

    on any compact subset$ \ K\subset \mathbb{R}. $

    Citation: Dong-Ho Tsai, Xiao-Liu Wang. On an asymptotically log-periodic solution to the graphical curve shortening flow equation[J]. Mathematics in Engineering, 2022, 4(3): 1-14. doi: 10.3934/mine.2022019

    Related Papers:

  • With the help of heat equation, we first construct an example of a graphical solution to the curve shortening flow. This solution $ y\left(x, t\right) \ $has the interesting property that it converges to a log-periodic function of the form

    $ A\sin \left( \log t\right) +B\cos \left( \log t\right) $

    as$ \ t\rightarrow \infty, \ $where $ A, \ B $ are constants. Moreover, for any two numbers $ \alpha < \beta, \ $we are also able to construct a solution satisfying the oscillation limits

    $ \liminf\limits_{t\rightarrow \infty}y\left( x,t\right) = \alpha,\ \ \ \limsup\limits _{t\rightarrow \infty}y\left( x,t\right) = \beta,\ \ \ x\in K $

    on any compact subset$ \ K\subset \mathbb{R}. $



    加载中


    [1] S. Angenent, On the formation of singularities in the curve shortening flow, J. Diff. Geom., 33 (1991), 601–633.
    [2] P. Broadbridge, P. J. Vassiliouz, The role of symmetry and separation in surface evolution and curve shortening, SIGMA, 7 (2011), 1–19.
    [3] K. S. Chou, X. P. Zhu, The curve shortening problem, Chapman: Hall/CRC, 2001.
    [4] K. S. Chou, X. P. Zhu, Shortening complete plane curves, J. Diff. Geom., 50 (1998), 471–504.
    [5] P. W. Doyle, P. J. Vassiliou, Separation of variables for the 1-dimensional non-linear diffusion equation, Int. J. Non-Linear Mech., 33 (1998), 315–326. doi: 10.1016/S0020-7462(97)00013-9
    [6] M. A. Grayson, The heat equation shrinks embedded plane curves to round points, J. Diff. Geom., 26 (1987), 285–314.
    [7] M. E. Gage, R. Hamilton, The heat equation shrinking convex plane curves, J. Diff. Geom., 23 (1986), 69–96.
    [8] M. E. Gurtin, Thermomechanics of evolving phase boundaries in the plane, New York: The Clarendon Press, 1993.
    [9] M. Nara, M. Taniguchi, The condition on the stability of stationary lines in a curvature flow in the whole plane, J. Diff. Eq., 237 (2007), 61–76. doi: 10.1016/j.jde.2007.02.012
    [10] D. H. Tsai, X. L. Wang, On some simple methods to derive the hairclip and paperclip solutions of the curve shortening flow, Acta Math. Sci., 39 (2019), 1674–1694. doi: 10.1007/s10473-019-0616-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1647) PDF downloads(108) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog