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Abstract: With the help of heat equation, we first construct an example of a graphical solution to
the curve shortening flow. This solution y (x, t) has the interesting property that it converges to a log-
periodic function of the form

A sin
(
log t

)
+ B cos

(
log t

)
as t → ∞, where A, B are constants. Moreover, for any two numbers α < β, we are also able to
construct a solution satisfying the oscillation limits

lim inf
t→∞

y (x, t) = α, lim sup
t→∞

y (x, t) = β, x ∈ K

on any compact subset K ⊂ R.

Keywords: curve shortening flow; heat equation; geometric heat equation; log-periodic function;
prescribing oscillation values

1. Introduction

The goal of this paper is to make a comparison between the geometric heat equation (graphical
curve shortening flow equation) and the Euclidean heat equation (the usual heat equation on R). Based
on a nice result due to Nara-Taniguchi [9] (see Theorem 1.1), which says that under some suitable
assumption on the initial condition u0 (x) , x ∈ R, the solutions of both equations give rise to the
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same asymptotic behavior, we can construct a solution y (x, t) of the graphical curve shortening flow
equation so that it is asymptotically log-periodic (i.e., functions which are periodic in log t) as t →
∞. Moreover, for any two numbers α < β, we can construct another solution y (x, t) prescribing the
oscillation behavior lim inft→∞ y (x, t) = α, lim supt→∞ y (x, t) = β on any compact subset x ∈ K ⊂ R
(see Theorem 2.1, Theorem 2.7, Corollary 2.9).

1.1. The geometric heat equation and the Euclidean heat equation

The curve shortening flow (CSF) is a geometric heat equation which can be used to deform curves
in the plane. This flow arises naturally in phase transitions and plays an important role in the
thermomechanics of evolving phase boundaries in the plane; see [8]. Mathematically, CSF is also an
interesting topic on its own with fundamental importance. Since 1986, it has been studied thoroughly
by Gage-Hamilton [7], Grayson [6], Angenent [1] and many others. See the bibliography in the book
by Chou-Zhu [3] for literature.

A family of smooth embedded curves γ (ϕ, t) : I × [0,T ) → R2 (I ⊂ R is some interval) is said to
evolve under CSF if it satisfies the equation

∂γ

∂t
(ϕ, t) = κ (ϕ, t) N (ϕ, t) , (ϕ, t) ∈ I × [0,T ), (CSF) , (1.1)

where κ (ϕ, t) is the curvature of γ (ϕ, t) and N (ϕ, t) is its unit normal vector. We use the convention
that for a parametrized curve γ ⊂ R2 its Frenet frame {T,N} , T = dγ/ds, has positive orientation and
its curvature κ is defined according to the identity κ = 〈dT/ds,N〉 , where s is the arc length parameter
of γ. By the identity dT/ds = κN, one can write (1.1) as

∂γ

∂t
= κN =

∂T
∂s

=
∂2γ

∂s2 . (1.2)

Since Eq (1.2) resembles the familiar classical heat equation ut (x, t) = uxx (x, t) and the second
derivative operator ∂2/∂s2 involves the geometry of the evolving curve γ (·, t) , we call it a “geometric
heat equation”. As a contrast, the classical heat equation ut = uxx is called an “Euclidean heat
equation”.

Denote the tangent angle of the curve γ (ϕ, t) as θ (ϕ, t) . Then we have

T (ϕ, t) = (cos θ (ϕ, t) , sin θ (ϕ, t)) , N (ϕ, t) = (− sin θ (ϕ, t) , cos θ (ϕ, t)) (1.3)

and Eq (1.1) has the form (in the following, “angle” means “tangent angle”)

∂γ

∂t
= κN =

∂θ

∂s
N =

∂
(
angle

)
∂s

N, κ =
∂θ

∂s
, (CSF) . (1.4)

It is also known that if γ (ϕ, t) ⊂ R2 is a family of graphical curves∗ evolving under CSF and is
represented by the graphs of some function y (x, t) over some interval J of the x-axis, then on its
domain (in general the interval J on which y (x, t) is defined may also depend on time) the function
y (x, t) will satisfy the equation

yt (x, t) =
yxx (x, t)

1 + y2
x (x, t)

=
∂

∂x

(
tan−1 (yx (x, t))

)
=
∂
(
angle

)
∂x

, x ∈ J, t > 0, (CSF) , (1.5)

∗Our convention on the orientation of a graphical curve γ is that its tangent vector is pointing in the positive direction of x-axis.
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where y2
x (x, t) means (yx (x, t))2. Note that the right hand side of (1.5) is the derivative of the tangent

angle θ (x, t) of the graph (we have tan θ (x, t) = yx (x, t)). In terms of the curvature
κ = yxx

(
1 + y2

x

)−3/2
for a graph, (1.5) can also be written as

yt (x, t) =

√
1 + y2

x (x, t)κ (x, t) , (CSF) , (1.6)

where κ (x, t) is the curvature of the graph at the point (x, y (x, t)) . By (1.5), if y (x, t) is a solution of
(1.5), so are −y (x, t) , y (−x, t) and λy

(
λ−1x, λ−2t

)
(for any constant λ > 0).

On the other hand, for the Euclidean heat equation ut = uxx, x ∈ J, we can interpret it geometrically
as

ut (x, t) = uxx (x, t) =
∂

∂x
(ux (x, t)) =

∂ tan θ
∂x

=
∂
(
slope

)
∂x

, x ∈ J, t > 0 (1.7)

and similar to (1.6), we have

ut (x, t) = uxx (x, t) =

(√
1 + u2

x (x, t)
)3

κ =

√
1 + u2

x (x, t)
(
sec2 θ

)
κ. (1.8)

Similar to the equivalent relation between the flow Eq (1.1) and the graph Eq (1.6), one can verify that
if γ (ϕ, t) ⊂ R2 is a family of graphical curves (represented by the graph of some function u (x, t) over
some interval J of the x-axis) evolving under the anisotropic curve shortening flow (ACSF) of the form

∂γ

∂t
(ϕ, t) =

(
sec2 θ (ϕ, t)

)
κ (ϕ, t) N (ϕ, t) , (ϕ, t) ∈ I × [0,T ), (ACSF) , (1.9)

where θ (ϕ, t) is the tangent angle of γ (ϕ, t) , then the graph function u (x, t) , x ∈ J, will satisfy the
equation (1.7). Moreover, the converse is also true.

Note that the flow (1.9) is defined only for graphical curves with angle θ ∈ (−π/2, π/2) . On the
other hand, the classical curve shortening flow (1.1) can be defined for rather general curves, say
simple closed curves in the plane. However, here we are confining the curve shortening flow to graphs
and Eq (1.5) is not defined at points where the gradient blows up or equivalently the angle is vertical.
Similar to (1.4), one can rewrite (1.9) as

∂γ

∂t
=
∂ (tan θ)
∂s

N =
∂
(
slope

)
∂s

N, (ACSF) . (1.10)

1.2. The result of Nara-Taniguchi

A major important connection between the two Eqs (1.5) and (1.7) (or between the two flows (1.1)
and (1.9)) is the following equivalence result due to Nara-Taniguchi [9]:

Theorem 1.1. ( [9]) Let γ ∈ (0, 1) be a constant. Assume that y0 (x) , x ∈ R, is a bounded function
lying in the space C2+γ (R) . Then there exists a classical solution y (x, t) to Eq (1.5) (with
y (x, 0) = y0 (x) , x ∈ R) on the domain R × [0,∞). Moreover the solution y (x, t) is smooth on
R × (0,∞) , continuous on R × [0,∞), and satisfies

sup
x∈R

∣∣∣∣∣y (x, t) −
∫
R

Γ (x − ξ, t) y0 (ξ) dξ
∣∣∣∣∣ ≤ C
√

t
, t > 0 (1.11)

for some constant C > 0 depending only on y0. Here Γ (ξ, t) is the heat kernel given by Γ (ξ, t) =(
1/
√

4πt
)

exp
(
−ξ2/ (4t)

)
.
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In the following we give an interesting example of bounded y0 (x) , lying in the space
C2+γ (R) , which gives explicit y (x, t) . Therefore, we can check property (1.11) directly.

Example 1.2. Let

y0 (x) = sinh−1 (sin x) = log
(
sin x +

√
sin2 x + 1

)
, x ∈ R, (1.12)

which is an odd 2π-periodic smooth function on R. Since there exists a constant M > 0 such that∣∣∣y0 (x) , y′0 (x) , y′′0 (x) , y′′′0 (x)
∣∣∣ ≤ M, ∀ x ∈ R, (1.13)

we have y0 (x) ∈ C2+γ (R) for any γ ∈ (0, 1) . Under the evolution of Eq (1.5), one can verify that the
solution y (x, t) is given explicitly by

y (x, t) = sinh−1 (
e−t sin x

)
= log

[(
e−t sin x

)
+

√
(e−t sin x)2 + 1

]
, x ∈ R, t ∈ [0,∞), (1.14)

which decays to 0 uniformly on x ∈ R with exponential rate e−t as t → ∞. On the other hand,
since y0 (x) is an odd 2π-periodic smooth function on R, Fourier series theory also implies that the
convolution solution

∫
R

Γ (x − ξ, t) y0 (ξ) dξ converges uniformly to the constant
1

2π

∫ π

−π
y0 (x) dx = 0 uniformly on x ∈ R with exponential rate e−t as t → ∞. Hence (1.11) is verified.

Remark 1.3. The solution (1.14) is known as the hairclip solution of the curve shortening flow. It is
a graphical entire solution defined on x ∈ R. It has been derived in Broadbridge-Vassiliou [2] and
Doyle-Vassiliou [5] using symmetry and separation method. Also see Tsai-Wang [10] for a simple
ODE method to derive it.

2. The main result of the paper: an example converging to log-periodic function asymptotically

With the help of Theorem 1.1, one can find some interesting solution y (x, t) of the graphical curve
shortening flow. The upshot is that, as t → ∞, the solution y (x, t) approaches a non-constant bounded
function Y (t) which satisfies Y (λt) = Y (t) for some constant λ > 1 for all t ∈ (0,∞) . The function
Y (t) will be periodic in log t.

The theorem below is motivated by the initial condition (1.12) in the hairclip solution in
Example 1.2. Roughly speaking, we switch the role of sine function and logarithmic function, and in
order for log x to be defined on (−∞,∞) , we change it as log

(
x2 + 1

)
. More precisely, we have:

Theorem 2.1. Let y0 (x) be given by

y0 (x) = sin
(
log

(
x2 + 1

))
, x ∈ (−∞,∞) (2.1)

and consider Eq (1.5) with the above initial condition. Then the solution y (x, t) of this Cauchy
problem is defined on R× [0,∞), which is smooth on R× (0,∞) and continuous up to t = 0. Moreover,
y (x, t) satisfies the following two properties:

(1). (Asymptotic behavior as t → ∞.) There exist two positive constants A, B such that

lim
t→∞

sup
x∈K

∣∣∣y (x, t) −
(
A sin

(
log t

)
+ B cos

(
log t

))∣∣∣ = 0 (2.2)

for any compact set K ⊂ R.
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(2). (Asymptotic behavior as |x| → ∞.) For fixed t > 0 we have

lim sup
|x|→∞

∣∣∣∣y (x, t) − sin
(
log

(
x2 + 1

))∣∣∣∣ ≤ C
√

t
(2.3)

for some constant C > 0 depending only on y0.

Remark 2.2. The limit function Y (t) := A sin
(
log t

)
+ B cos

(
log t

)
, t ∈ (0,∞) , is not periodic in time

t ∈ (0,∞) . Instead, it satisfies Y
(
e2πt

)
= Y (t) for all t ∈ (0,∞) .One can see that a function Y (t) defined

on (0,∞) satisfying the identity Y
(
e2πt

)
= Y (t) for all t ∈ (0,∞) if and only if the function F (s) = Y (es)

is defined on (−∞,∞) and satisfies the identity F (s + 2π) = F (s) for all s ∈ (−∞,∞) . Since we have
Y (t) = F

(
log t

)
, t ∈ (0,∞) , we can say that Y (t) is 2π-periodic in log t, or for simplicity, just log-

periodic.

Proof. (1). We first note that y0 (x) ∈ C2+γ (R) for any γ ∈ (0, 1) since there exists a constant M > 0 such
that (1.13) holds for y0 (x). Hence Theorem 1.1 is applicable and to look at the asymptotic behavior of
y (x, t) , it suffices to look at that of y0 (x) under the heat equation ut = uxx. We have for t > 0 that

u (0, t) =
1
√

4πt

∫ ∞

−∞

e−
x2
4t y0 (x) dx =

1
√

4π

∫ ∞

−∞

e−
z2
4 y0

(√
tz
)

dz

=
1
√

4π

∫ ∞

−∞

e−
z2
4 sin

[
log t + log

(
z2 +

1
t

)]
dz = A (t) sin

(
log t

)
+ B (t) cos

(
log t

)
, (2.4)

where 
A (t) = 1

√
4π

∫ ∞
−∞

e−
z2
4 cos

[
log

(
z2 + 1

t

)]
dz,

B (t) = 1
√

4π

∫ ∞
−∞

e−
z2
4 sin

[
log

(
z2 + 1

t

)]
dz,

(2.5)

and we note that 
limt→∞ A (t) = 1

√
4π

∫ ∞
−∞

e−
z2
4 cos

(
log

(
z2

))
dz = A ≈ 0.26682

limt→∞ B (t) = 1
√

4π

∫ ∞
−∞

e−
z2
4 sin

(
log

(
z2

))
dz = B ≈ 0.12278.

(2.6)

Thus we conclude
lim
t→∞

∣∣∣u (0, t) −
(
A sin

(
log t

)
+ B cos

(
log t

))∣∣∣ = 0, (2.7)

where the constants A, B are from (2.6).
Since |y0 (x)| ≤ 1 for all x ∈ R, we have the following gradient estimate for the convolution solution

of the heat equation with initial data y0 (x) :

|ux (x, t)| ≤
1
√
πt
, ∀ (x, t) ∈ R × (0,∞) , (2.8)

which, for each fixed x, implies

lim
t→∞

∣∣∣u (x, t) −
(
A sin

(
log t

)
+ B cos

(
log t

))∣∣∣
Mathematics in Engineering Volume 4, Issue 3, 1–14.
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≤ lim
t→∞

{
|u (x, t) − u (0, t)| +

∣∣∣u (0, t) −
(
A sin

(
log t

)
+ B cos

(
log t

))∣∣∣} = 0. (2.9)

Thus for each fixed x, u (x, t) also approaches to the same function as t → ∞. Moreover, the above
convergence is uniform in x ∈ K for any compact set K ⊂ R. This fact, together with Theorem 1.1,
gives the proof of (2.2).

(2). By (2.12) below and letting x =
√

ty, we have

u (x, t) = u
(√

ty, t
)

= A (y, t) sin
(
log t

)
+ B (y, t) cos

(
log t

)
, (2.10)

where now 
A (y, t) = 1

√
4π

∫ ∞
−∞

e−
z2
4 cos

(
log

(
(z + y)2 + 1

t

))
dz

B (y, t) = 1
√

4π

∫ ∞
−∞

e−
z2
4 sin

(
log

(
(z + y)2 + 1

t

))
dz, y = x

√
t
.

For fixed z ∈ (−∞,∞) and fixed t > 0, we have
lim|y|→∞

∣∣∣∣e− z2
4 cos

(
log

(
(z + y)2 + 1

t

))
− e−

z2
4 cos

(
log

(
y2 + 1

t

))∣∣∣∣ = 0

lim|y|→∞
∣∣∣∣e− z2

4 sin
(
log

(
(z + y)2 + 1

t

))
− e−

z2
4 sin

(
log

(
y2 + 1

t

))∣∣∣∣ = 0

and the Lebesgue Dominated Convergence Theorem implies, for fixed t > 0, the limits
lim|y|→∞

∣∣∣∣A (y, t) − 1
√

4π

∫ ∞
−∞

e−
z2
4 cos

(
log

(
y2 + 1

t

))
dz

∣∣∣∣ = 0

lim|y|→∞
∣∣∣∣B (y, t) − 1

√
4π

∫ ∞
−∞

e−
z2
4 sin

(
log

(
y2 + 1

t

))
dz

∣∣∣∣ = 0.

Since
(√

4π
)−1 ∫ ∞

−∞
e−z2/4dz = 1, we conclude

lim|y|→∞
∣∣∣∣A (y, t) − cos

(
log

(
y2 + 1

t

))∣∣∣∣ = 0

lim|y|→∞
∣∣∣∣B (y, t) − sin

(
log

(
y2 + 1

t

))∣∣∣∣ = 0

and so

lim
|y|→∞

∣∣∣∣∣∣u (√
ty, t

)
−

[
cos

(
log

(
y2 +

1
t

))
sin

(
log t

)
+ sin

(
log

(
y2 +

1
t

))
cos

(
log t

)]∣∣∣∣∣∣
= lim
|y|→∞

∣∣∣∣u (√
ty, t

)
− sin

(
log

(
ty2 + 1

))∣∣∣∣ = lim
|x|→∞

∣∣∣∣u (x, t) − sin
(
log

(
x2 + 1

))∣∣∣∣ = 0, (2.11)

which, together with (1.11), implies

lim sup
|x|→∞

∣∣∣∣y (x, t) − sin
(
log

(
x2 + 1

))∣∣∣∣
≤ lim sup

|x|→∞

{
|y (x, t) − u (x, t)| +

∣∣∣∣u (x, t) − sin
(
log

(
x2 + 1

))∣∣∣∣} ≤ C
√

t
.

Hence (2.3) follows. �
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Remark 2.3. Note that the convergence in (2.2) cannot be uniform in the whole space x ∈ (−∞,∞) . If
we choose x =

√
t, t > 0, in the identity

u (x, t) =
1
√

4π

∫ ∞

−∞

e−
z2
4 y0

(
x +
√

tz
)

dz

=
1
√

4π

∫ ∞

−∞

e−
z2
4 sin

[
log t + log

(
x2

t
+

2xz
√

t
+ z2 +

1
t

)]
dz, (2.12)

then the function u
(√

t, t
)

will converge to Ã sin
(
log t

)
+ B̃ cos

(
log t

)
as t → ∞, where Ã, B̃ are

constants different from the A, B in (2.6), given by
Ã = 1

√
4π

∫ ∞
−∞

e−
z2
4 cos

(
log (z + 1)2

)
dz ≈ 0.2003

B̃ = 1
√

4π

∫ ∞
−∞

e−
z2
4 sin

(
log (z + 1)2

)
dz ≈ 0.24081.

The following says that it is impossible to find an initial data y0 (x) ∈ C2+γ (R) for some γ ∈ (0, 1)
so that we have convergence to a periodic function.

Lemma 2.4. There does not exist y0 (x) ∈ C2+γ (R) for some γ ∈ (0, 1) such that under the graphical
curve shortening flow Eq (1.5) we have

lim
t→∞
|y (0, t) − P (t)| = 0, (2.13)

where P (t) is a non-constant periodic function.

Proof. Assume (2.13) holds for some P (t). Then by Theorem 1.1 we will have

lim
t→∞

∣∣∣∣∣∣ 1
√

4π

∫ ∞

−∞

e−
z2
4 y0

(√
tz
)

dz − P (t)

∣∣∣∣∣∣ = 0, (2.14)

which will give a contradiction due to

d
dt

(
1
√

4π

∫ ∞

−∞

e−
z2
4 y0

(√
tz
)

dz
)

=
1
√

4π

∫ ∞

−∞

e−
z2
4 y′0

(√
tz
) z

2
√

t
dz = O

(
1
√

t

)
→ 0 as t → ∞. (2.15)

�

Remark 2.5. In view of Lemma 2.4, it seems reasonable to see that for y0 (x) ∈ C2+γ (R) , instead of
converging to A sin t + B cos t, we get convergence to A sin

(
log t

)
+ B cos

(
log t

)
, which is the result of

Theorem 2.1. The proof of Lemma 2.4 also says that for heat equation with initial data in C2+γ (R) , the
solution u (x, t) , for fixed x, cannot converge to a periodic function as t → ∞. On the other hand, it is
possible if we allow the initial data to be unbounded. Let

u0 (x) = λ + Ae
x√
2 cos

(
x
√

2

)
+ Be

x√
2 sin

(
x
√

2

)
, x ∈ R,

Mathematics in Engineering Volume 4, Issue 3, 1–14.
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where λ, A, B are arbitrary constants. Then the function

u (x, t) = λ + Ae
x√
2 cos

(
t +

x
√

2

)
+ Be

x√
2 sin

(
t +

x
√

2

)
, (x, t) ∈ R2,

is a solution of the heat equation with u (x, 0) = u0 (x) , x ∈ R. For each fixed x, u (x, t) is a non-
constant 2π-periodic function in time. However, as seen in Section 3, for unbounded initial data,
solutions to equation (1.5) and solutions to the heat equation (1.7) may not have the same asymptotic
behavior as t → ∞.

Remark 2.6. This is for comparison. Let M > 0 be a constant and y0 (x) ∈ C2+γ (R) be such that for
|x| ≥ M it is equal to sin (|x|α) for some constant α ∈ (0, 1] (if α > 1, the function will not lie in the
space C2+γ (R)). Then as |x| → ∞, sin (|x|α) oscillates faster than sin

(
log

(
x2 + 1

))
. Evolving y0 (x)

under the heat equation, we have

u (0, t) =
1
√

4πt

∫
|x|<M

e−
x2
4t y0 (x) dx +

1
√

4π

∫
|z|≥M/

√
t
e−

z2
4 sin

((√
t
)α
|z|α

)
dz

=
1
√

4πt

∫
|x|<M

e−
x2
4t y0 (x) dx +

1
α
√
π

∫ ∞

(M/
√

t)α
θ

1
α−1e−

θ2/α
4 sin

((√
t
)α
θ
)

dθ,

where, similar to the Riemann-Lebesgue lemma, we can prove that limt→∞ u (0, t) = 0. Hence by
Theorem 1.1, under Eq (1.5), we have limt→∞ y (x, t) = 0 uniformly on compact set K ⊂ R if we choose
the above initial data. Thus the moral is: a bounded slow-oscillation function, under either the heat
Eq (1.7) or (1.5), has more chance to preserve its profile as t → ∞. In the extreme case that when
y0 (x) ≡ c is a constant (which has no oscillation at all), we have y (x, t) ≡ c and the profile is
unchanged at all. See Remark 2.8 also.

Finally, we note that if we take the initial data of the heat equation as

p sin
(
λ log

(
x2 + 1

))
+ q cos

(
λ log

(
x2 + 1

))
, x ∈ (−∞,∞) , (2.16)

where p, q, λ > 0 are constants, then in the limit we have

lim
t→∞

∣∣∣u (x, t) −
[
(pAλ − qBλ) sin

(
λ log t

)
+ (pBλ + qAλ) cos

(
λ log t

)]∣∣∣ = 0, ∀ x ∈ (−∞,∞) , (2.17)

where

Aλ =
1
√

4π

∫ ∞

−∞

e−
z2
4 cos

(
λ log

(
z2

))
dz, Bλ =

1
√

4π

∫ ∞

−∞

e−
z2
4 sin

(
λ log

(
z2

))
dz (2.18)

with
lim
λ→0+

Aλ = 1, lim
λ→0+

Bλ = 0, lim
λ→∞

Aλ = lim
λ→∞

Bλ = 0. (2.19)

Thus in the limit λ→ ∞, the solution u (x, t) will converge to zero since the two functions in (2.16) are
no longer of slow-oscillation. This matches with the moral stated in Remark 2.6. By Theorem 1.1, the
solution y (x, t) of Eq (1.5) with initial data (2.16) also satisfies (2.17), uniformly on any compact set
K ⊂ R of x.

Another result similar to Theorem 2.1 is the following:
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Theorem 2.7. Let r0 (x) be given by

r0 (x) = sin
(
log

(
log

(
x2 + 2

)))
, x ∈ (−∞,∞) (2.20)

and consider Eq (1.5) with the above initial condition. Then the solution y (x, t) of this Cauchy
problem is defined on R× [0,∞), which is smooth on R× (0,∞) and continuous up to t = 0. Moreover,
y (x, t) satisfies the following two properties:

(1). (Asymptotic behavior as t → ∞.) On any compact set K ⊂ R we have

lim
t→∞

sup
x∈K

∣∣∣y (x, t) − sin
(
log

(
log t

))∣∣∣ = 0. (2.21)

(2). (Asymptotic behavior as |x| → ∞.) For fixed t > 0 we have

lim sup
|x|→∞

∣∣∣∣y (x, t) − sin
(
log

(
log

(
x2 + 2

)))∣∣∣∣ ≤ C
√

t
, (2.22)

for some constant C > 0 depending only on r0.

Proof. (1). We have r0 (x) ∈ C2+γ (R) for any γ ∈ (0, 1) ; hence Theorem 1.1 is applicable. The solution
u (x, t) of the heat equation with initial data r0 (x) satisfies

u (0, t) =
1
√

4π

∫ ∞

−∞

e−
z2
4 sin

{
log

[
log t + log

(
z2 +

2
t

)]}
dz, t ∈ (0,∞) .

For convenience, let β be the quantity β = log
[
1 + 1

log t log
(
z2 + 2

t

)]
. Then the above becomes

u (0, t) =
1
√

4π

∫ ∞

−∞

e−
z2
4 sin

[
log

(
log t

)
+ β

]
dz = A (t) sin

(
log

(
log t

))
+ B (t) cos

(
log

(
log t

))
,

where 
A (t) = 1

√
4π

∫ ∞
−∞

e−
z2
4 cos βdz, limt→∞ A (t) = 1

B (t) = 1
√

4π

∫ ∞
−∞

e−
z2
4 sin βdz, limt→∞ B (t) = 0.

(2.23)

Thus we have limt→∞

∣∣∣u (0, t) − sin
(
log

(
log t

))∣∣∣ = 0 and (2.21) follows from the gradient estimate (2.8).

(2). Similar to (2.10), if we let x =
√

ty, we have

u (x, t) = u
(√

ty, t
)

= A (y, t) sin
(
log

(
log t

))
+ B (y, t) cos

(
log

(
log t

))
,

where now

A (y, t) =
1
√

4π

∫ ∞

−∞

e−
z2
4 cosσdz, B (y, t) =

1
√

4π

∫ ∞

−∞

e−
z2
4 sinσdz,

with

σ = log
[
1 +

1
log t

log
(
(y + z)2 +

2
t

)]
, y =

x
√

t
.
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For fixed z ∈ (−∞,∞) and fixed t > 0, by the limit

lim
|y|→∞

[
log

(
(y + z)2 +

2
t

)
− log

(
y2 +

2
t

)]
= 0,

we have
lim
|y|→∞

|cosσ − cos ρ| = 0, lim
|y|→∞

|sinσ − sin ρ| = 0,

where

ρ = log
[
1 +

1
log t

log
(
y2 +

2
t

)]
, y =

x
√

t
.

The Lebesgue Dominated Convergence Theorem implies, for fixed t > 0, the limits

lim
|y|→∞

|A (y, t) − cos ρ| = 0, lim
|y|→∞

|B (y, t) − sin ρ| = 0

and so

lim
|y|→∞

∣∣∣∣u (√
ty, t

)
− sin

[
log

(
log t

)
+ ρ

]∣∣∣∣ = lim
|y|→∞

∣∣∣∣u (√
ty, t

)
− sin

[
log

(
log

(
ty2 + 2

))]∣∣∣∣ = 0. (2.24)

Hence we have
lim
|x|→∞

∣∣∣∣u (x, t) − sin
(
log

(
log

(
x2 + 2

)))∣∣∣∣ = 0,

which, together with (1.11), implies the following estimate for fixed t > 0 :

lim sup
|x|→∞

∣∣∣∣y (x, t) − sin
(
log

(
log

(
x2 + 2

)))∣∣∣∣
≤ lim sup

|x|→∞

{
|y (x, t) − u (x, t)| +

∣∣∣∣u (x, t) − sin
(
log

(
log

(
x2 + 2

)))∣∣∣∣} ≤ C
√

t
.

Hence (2.22) follows. The proof is done.

Remark 2.8. The function sin
(
log

(
log

(
x2 + 2

)))
oscillates even more slowly than sin

(
log

(
x2 + 1

))
as |x| → ∞. Under the heat equation, its profile is totally unchanged as t → ∞. On the other hand, as
t → ∞ the profile of sin

(
log

(
x2 + 1

))
is slightly changed into a linear combination

of sin
(
log t

)
and cos

(
log t

)
. Similarly, if r0 (x) is given by r0 (x) = cos

(
log

(
log

(
x2 + 2

)))
, we have

lim
t→∞

sup
x∈K

∣∣∣y (x, t) − cos
(
log

(
log t

))∣∣∣ = 0 (2.25)

for any compact set K ⊂ R. By analogy, if we take the initial condition in the space C2+γ (R) as

sin
{
log

[
· · · log

(
log

(
x2 + m

))]}
(k copies of log, k ≥ 3),

where m > 0 is some constant so that the function is defined on x ∈ (−∞,∞) , then the limit of u (0, t) ,
as t → ∞, is sin

{
log

[
· · · log

(
log t

)]}
. The same result holds if we replace the sine function by cosine

function.

As a consequence of Theorem 1.1 and Theorem 2.7, we can prescribe the oscillation limits of y (x, t)
as t → ∞.
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Corollary 2.9. For any two numbers α < β, if we choose the initial data as

r0 (x) =
β − α

2
sin

[
log

(
log

(
x2 + 2

))]
+
β + α

2
∈ C2+γ (R) , x ∈ (−∞,∞) (2.26)

and consider Eq (1.5) with the above initial condition, then on any compact set K ⊂ R we have

lim
t→∞

sup
x∈K

∣∣∣∣∣y (x, t) −
(
β − α

2
sin

(
log

(
log t

))
+
β + α

2

)∣∣∣∣∣ = 0. (2.27)

In particular, for any fixed x0 ∈ (−∞,∞) , we have

α = lim inf
x→∞

r0 (x) = lim inf
t→∞

y (x0, t) < lim sup
t→∞

y (x0, t) = lim sup
x→∞

r0 (x) = β. (2.28)

Thus, in the limit, the oscillation of y (x0, t) can attain any two arbitrary numbers α < β.

Proof. This is because the solution of the heat equation with initial data (2.26) satisfies (2.27). The
result follows due to Theorem 1.1. �

3. Theorem 1.1 fails if the initial data is not in the space C2+γ (R)

Theorem 1.1 fails if the initial condition y0 (x) is not in the space C2+γ (R) . This is not discussed in
the paper [9]. In the following we give one example of unbounded y0 (x) , x ∈ (−∞,∞) to demonstrate
this. This example is related to a travelling wave solution for the heat equation (1.7) along the y-
direction.

We choose the initial data to be unbounded, with y0 (x) = x2/2, x ∈ (−∞,∞) . It is not in the
space C2+γ (R) for any γ ∈ (0, 1). Under the heat equation the solution is given by u (x, t) = t +

x2/2, which is a travelling wave solution translating in the positive y-direction. On the other hand, the
curve y0 (x) = x2/2 divides the plane into two regions, each with infinite area. By the main theorem in
p. 472 of [4], if we evolve y0 (x) = x2/2 under equation (1.5), the solution y (x, t) is defined for all time
t > 0, i.e., defined on R × (0,∞) , which is smooth in R × (0,∞) and continuous on R × [0,∞).

It seems quite obvious that the initial curve y0 (x) = x2/2, under the evolution of (1.7) and (1.5)
respectively, will reveal different behavior as t → ∞. Nonetheless, a simple analysis on the angle
function θ (x, t) is useful in general and can provide us a rigorous proof of the above claim. Moreover,
as soon as the evolution of θ (x, t) is known, the evolution of the curvature κ (x, t) will come out
immediately. See equations (3.7) and (3.8) below.

In the following we evolve y0 (x) = x2/2 under Eq (1.5). The angle
function θ (x, t) = tan−1 (yx (x, t)) ∈ (−π/2, π/2) of the evolving curve y (x, t) satisfies the equation

∂tθ (x, t) = ∂t

(
tan−1 (yx (x, t))

)
=

∂tyx (x, t)
1 + y2

x (x, t)
=

(
cos2 θ (x, t)

)
θxx (x, t) , (3.1)

where we have used the identity yt (x, t) = θx (x, t) from (1.5) in (3.1). As a consequence, letting
v (x, t) = θx (x, t) , we have

∂tv (x, t) = (∂tθ)x (x, t) =
(
cos2 θ (x, t)

)
vxx (x, t) − (sin 2θ (x, t)) v (x, t) vx (x, t) (3.2)
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and for w (x, t) = θxx (x, t) = vx (x, t) we have the equation

∂tw (x, t) =


(
cos2 θ (x, t)

)
wxx (x, t) − 2 (sin 2θ (x, t)) v (x, t) wx (x, t)

− (sin 2θ (x, t)) w2 (x, t) − 2 (cos 2θ (x, t)) v2 (x, t) w (x, t) .
(3.3)

For the initial data y (x, 0) = x2/2, we have and θ (x, 0) = tan−1 yx (x, 0) = tan−1 x and so v (x, 0) =

θx (x, 0) = 1/
(
1 + x2

)
> 0 on R. We also have

w (x, 0) = θxx (x, 0) =
−2x(

1 + x2)2 =


< 0, x ∈ (0,∞) ,

= 0, x = 0,

> 0, x ∈ (−∞, 0) .

(3.4)

In particular, we see that v (x, 0) is an even positive function in x ∈ (−∞,∞) and w (x, 0) is an odd
function in x ∈ (−∞,∞) with a simple zero at x = 0. By the symmetry of y0 (x) = x2/2 and its
curvature κ0 (x) (both are even functions) and the geometry of equation (1.6), θ (x, t) and w (x, t) must
remain odd functions in x ∈ (−∞,∞) as long as the solution exists. Also v (x, t) must remain an even
function in x ∈ (−∞,∞).

Note that the initial data w (x, 0) , over x ∈ (−∞,∞) , has only one simple zero at x = 0. Since we
know that the number of zeros (counted with multiplicity) for solutions to Eq (3.3) cannot increase
with time (see Angenent [1], p. 607), we must have

w (x, t) = θxx (x, t) =


< 0, x ∈ (0,∞) , t ∈ (0,∞) ,

= 0, x = 0, t ∈ (0,∞) ,

> 0, x ∈ (−∞, 0) , t ∈ (0,∞) ,

(3.5)

which implies

∂tθ (x, t) =
(
cos2 θ (x, t)

)
w (x, t) =


< 0, x ∈ (0,∞) , t ∈ (0,∞) ,

= 0, x = 0, t ∈ (0,∞) ,

> 0, x ∈ (−∞, 0) , t ∈ (0,∞) .

(3.6)

The above says that, if we evolve y0 (x) = x2/2 under (1.5), the angle function θ (x, t) (with θ (x, 0) =

tan−1 x) is decreasing in time for x ∈ (0,∞) and increasing in time for x ∈ (−∞, 0). Thus the asymptotic
behavior for y0 (x) = x2/2, evolving by (1.7) and (1.5) respectively, will be different as time goes on.

To end this section, we point out that, in terms of the angle function θ (x, t) and its evolution equation
(3.1), one can compute the evolution equation of the curvature κ as follows:

Lemma 3.1. (The evolution equation of the curvature for CSF and ACSF.) Assume
y (x, t) ∈ C∞ (R × (0,Tmax))

⋂
C0 (R × [0,Tmax)) is a solution to Eq (1.5) on the domain

R × [0,Tmax). Then the curvature κ (x, t) of the graph y (·, t) satisfies the equation

∂tκ =
(
cos2 θ

)
κxx + κ3, κ = κ (x, t) , (x, t) ∈ R × (0,Tmax) . (3.7)
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Similarly, if u (x, t) ∈ C∞ (R × (0,Tmax))
⋂

C0 (R × [0,Tmax)) satisfies the heat Eq (1.7) on R× [0,Tmax),
then its curvature κ (x, t) satisfies

∂tκ = κxx + 6 (tan θ) θxκx +

(
6

cos4 θ
−

3
cos2 θ

)
κ3, κ = κ (x, t) , (x, t) ∈ R × (0,Tmax) . (3.8)

Remark 3.2. Since Eq (1.5) is a geometric equation, we see that Eq (3.7) looks better than Eq (3.8).

Proof. For (3.7), by (1.6) we can express the curvature as

κ (x, t) =
θx (x, t)√

1 + y2
x (x, t)

=
θx

√
1 + tan2 θ

= (cos θ) θx = (sin θ)x , (3.9)

and get  κx = (cos θ) θxx − (sin θ) θ2
x

κxx = (cos θ) θxxx − 3 (sin θ) θxθxx − (cos θ) θ3
x.

(3.10)

By the second identity in (3.10) and (3.1), we conclude

∂tκ = − (sin θ) θtθx + (cos θ) (θt)x

= − (sin θ)
(
cos2 θ

)
θxxθx + (cos θ)

[(
cos2 θ

)
θxxx − (sin 2θ) θxθxx

]
= − (sin θ)

(
cos2 θ

)
θxθxx +

(
cos2 θ

) [
κxx + 3 (sin θ) θxθxx + (cos θ) θ3

x

]
− (cos θ) (sin 2θ) θxθxx

=
(
cos2 θ

)
κxx +

(
cos3 θ

)
θ3

x =
(
cos2 θ

)
κxx + κ3, (3.11)

which gives (3.7).
For (3.8), we first have ut = uxx = (tan θ)x and κ = (cos θ) θx. Similar to the derivation of (3.11), we

need to compute ∂tθ and ∂tθx first. We have

∂tθ = ∂t

(
tan−1 ux

)
=

(∂tu)x

1 + u2
x

=
(
cos2 θ

)
(tan θ)xx

=
(
cos2 θ

) ((
sec2 θ

)
θx

)
x

= θxx + 2 (tan θ) θ2
x (3.12)

and
∂tθx = (∂tθ)x = θxxx + 2

(
sec2 θ

)
θ3

x + 4 (tan θ) θxθxx (3.13)

and similar to (3.11), together with (3.10), we get

∂tκ = − (sin θ)
[
θxx + 2 (tan θ) (θx)2

]
θx + (cos θ)

[
θxxx + 2

(
sec2 θ

)
θ3

x + 4 (tan θ) θxθxx

]
= − (sin θ) θx

[
θxx + 2 (tan θ) (θx)2

]
+ (cos θ)


κxx

cos θ + 3 sin θ
cos θθxθxx + θ3

x

+2
(
sec2 θ

)
θ3

x + 4 (tan θ) θxθxx


= κxx + 6 (sin θ) θxθxx +

(
−2

sin2 θ

cos θ
+ cos θ + 2 sec θ

)
θ3

x

= κxx + 6 (sin θ) θx

(
κx

cos θ
+

sin θ
cos θ

θ2
x

)
+

(
−2

sin2 θ

cos θ
+ cos θ + 2 sec θ

)
θ3

x

= κxx + 6 (tan θ) θxκx +

(
6

cos4 θ
−

3
cos2 θ

)
κ3,

which gives (3.8). �
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