A passive scalar equation for the heat diffusion and transport in an infinite channel is studied. The velocity field is white noise in time, modelling phenomenologically a turbulent fluid. Under the driving effect of a heat source, the phenomenon of eddy dissipation is investigated: the solution is close, in a weak sense, to the stationary deterministic solution of the heat equation with augmented diffusion coefficients.
Citation: Franco Flandoli, Eliseo Luongo. Heat diffusion in a channel under white noise modeling of turbulence[J]. Mathematics in Engineering, 2022, 4(4): 1-21. doi: 10.3934/mine.2022034
A passive scalar equation for the heat diffusion and transport in an infinite channel is studied. The velocity field is white noise in time, modelling phenomenologically a turbulent fluid. Under the driving effect of a heat source, the phenomenon of eddy dissipation is investigated: the solution is close, in a weak sense, to the stationary deterministic solution of the heat equation with augmented diffusion coefficients.
[1] | S. A. Agmon, Lectures on elliptic boundary value problems, Van Nostrand, 1965. |
[2] | A. Agresti, M. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces Part I. Stochastic maximal regularity and local existence, Nonlinearity, To appear. |
[3] | A. Agresti, M. Veraar, Nonlinear parabolic stochastic evolution equations in critical spaces Part II. Blow-up criteria and instantaneous regularization, arXiv: 2012.04448. |
[4] | Z. Brzeźniak, M. Capinski, F. Flandoli, Approximation for diffusion in random fields, Stoch. Anal. Appl., 8 (1990), 293–313. doi: 10.1080/07362999008809210 |
[5] | Z. Brzeźniak, F. Flandoli, Almost sure approximation of Wong-Zakai type for stochastic partial differential equations, Stoch. Proc. Appl., 55 (1995), 329–358. doi: 10.1016/0304-4149(94)00037-T |
[6] | M. Chertkov, G. Falkovich, Anomalous scaling exponents of a White-Advected passive scalar, Phys. Rev. Lett., 76 (1996), 2706–2709. doi: 10.1103/PhysRevLett.76.2706 |
[7] | G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Cambridge university press, 1992. |
[8] | F. Flandoli, Regularity theory and stochastic flows for parabolic SPDEs, Singapone: Gordon and Breach Publ., 1995. |
[9] | F. Flandoli, L. Galeati, D. Luo, Scaling limit of stochastic 2D Euler equations with transport noises to the deterministic Navier-Stokes equations, J. Evol. Equ., 21 (2021), 567–600. doi: 10.1007/s00028-020-00592-z |
[10] | F. Flandoli, L. Galeati, D. Luo, Delayed blow-up by transport noise, Commun. Part. Diff. Eq., 46 (2021), 1–39. doi: 10.1080/03605302.2020.1817072 |
[11] | F. Flandoli, L. Galeati, D. Luo, Eddy heat exchange at the boundary under white noise turbulence, arXiv: 2103.08098. |
[12] | F. Flandoli, L. Galeati, D. Luo, Mixing, dissipation enhancement and convergence rates for scaling limit of SPDEs with transport noise, arXiv: 2104.01740. |
[13] | F. Flandoli, D. Luo, High mode transport noise improves vorticity blow-up control in 3D Navier-Stokes equations, Probab. Theory Rel., 180 (2021), 309–363. doi: 10.1007/s00440-021-01037-5 |
[14] | F. Flandoli, U. Pappalettera, 2D Euler equations with Stratonovich transport noise as a large scale stochastic model reduction, J. Nonlinear Sci., 31 (2021), 1–38. doi: 10.1007/s00332-020-09667-0 |
[15] | U. Frisch, A. Mazzino, M. Vergassola, Intermittency in Passive scalar advection, Phys. Rev. Lett., 80 (1998), 5532–5535. doi: 10.1103/PhysRevLett.80.5532 |
[16] | L. Galeati, On the convergence of stochastic transport equations to a deterministic parabolic one, Stoch. Partial Differ., 8 (2020), 833–868. |
[17] | K. Gawedzki, A. Kupiainen, Anomalous scaling of the passive scalar, Phys. Rev. Lett., 75 (1995), 3834–3837. doi: 10.1103/PhysRevLett.75.3834 |
[18] | P. Grisvard, Commutativité de deux foncteurs d'interpolation et applications, J. Math. Pure. Appl., 45 (1966), 143–290. |
[19] | I. Gyongy, On the approximation of stochastic partial differential equations i, Stochastics, 25 (1988), 59–85. doi: 10.1080/17442508808833533 |
[20] | I. Gyongy, On the approximation of stochastic partial differential equations ii, Stochastics, 26 (1989), 129–164. |
[21] | M. Hofmanova, J. Leahy, T. Nilssen, On the N avier-Stokes equations perturbed by rough transport noise J. Evol. Eq., 19 (2019), 203–247. doi: 10.1007/s00028-018-0473-z |
[22] | M. Hofmanova, J. Leahy, T. Nilssen, On a rough perturbation of the Navier-Stokes system and its vorticity formulation, arXiv: 1902.09348. |
[23] | D. D. Holm, Variational principles for stochastic fluid dynamics, Proc. R. Soc. A., 471 (2015), 1–19. |
[24] | R. H. Kraichnan, Inertial ranges in two-dimensional turbulence, Phys. Fluids, 10 (1967), 1417–1423. doi: 10.1063/1.1762301 |
[25] | R. H. Kraichnan, Anomalous scaling of a randomly advected passive scalar, Phys. Rev. Lett., 72 (1994), 1016–1019. doi: 10.1103/PhysRevLett.72.1016 |
[26] | D. Luo, Convergence of stochastic 2D inviscid Boussinesq equations with transport noise to a deterministic viscous system, arXiv: 2008.01434. |
[27] | D. Luo, M. Saal, A scaling limit for the stochastic mSQG equations with multiplicative transport noises, Stoch. Dynam., 20 (2020), 2040001. doi: 10.1142/S0219493720400018 |
[28] | A. J. Majda, P. R. Kramer, Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Physics Reports, 314 (1999), 237–574. doi: 10.1016/S0370-1573(98)00083-0 |
[29] | J. M. A. M. van Neerven, M. C. Veraar, L. W. Weis, Stochastic maximal $L^p$-regularity, Ann. Probab., 40 (2012), 788–812. |
[30] | U. Pappalettera, Quantitative mixing and dissipation enhancement property of Ornstein-Uhlenbeck flow, arXiv: 2104.03732. |
[31] | A. Pazy, Semigroups of linear operators and applications to partial differential equations, New York: Springer-Verlag, 1983. |
[32] | D. Ruelle, Characteristic exponents and invariant manifolds in Hilbert space, Ann. Math., 115 (1982), 243–290. doi: 10.2307/1971392 |
[33] | K. R. Sreenivasan, Turbulent mixing: A perspective, PNAS, 116 (2019), 18175–18183. doi: 10.1073/pnas.1800463115 |
[34] | G. Tessitore, J. Zabczyk, Wong-Zakai approximations of stochastic evolution equations, J. Evol. Eq., 6 (2006), 621–655. doi: 10.1007/s00028-006-0280-9 |
[35] | K. Twardowska, Approximation theorems of Wong-Zakai type for stochastic differential equations in infinite dimensions, Rozprawy Matematyczne tom/nr w serii: 325, 1993. |
[36] | E. Wong, M. Zakai, On the convergence of ordinary integrals to stochastic integrals, The Annals of Mathematical Statistics, 36 (1965), 1560–1564. |