Research article Special Issues

Sharp Strichartz estimates for some variable coefficient Schrödinger operators on $ \mathbb{R}\times\mathbb{T}^2 $

  • Received: 28 June 2021 Accepted: 28 August 2021 Published: 18 September 2021
  • In the first part of the paper we continue the study of solutions to Schrödinger equations with a time singularity in the dispersive relation and in the periodic setting. In the second we show that if the Schrödinger operator involves a Laplace operator with variable coefficients with a particular dependence on the space variables, then one can prove Strichartz estimates at the same regularity as that needed for constant coefficients. Our work presents a two dimensional analysis, but we expect that with the obvious adjustments similar results are available in higher dimensions.

    Citation: Serena Federico, Gigliola Staffilani. Sharp Strichartz estimates for some variable coefficient Schrödinger operators on $ \mathbb{R}\times\mathbb{T}^2 $[J]. Mathematics in Engineering, 2022, 4(4): 1-23. doi: 10.3934/mine.2022033

    Related Papers:

  • In the first part of the paper we continue the study of solutions to Schrödinger equations with a time singularity in the dispersive relation and in the periodic setting. In the second we show that if the Schrödinger operator involves a Laplace operator with variable coefficients with a particular dependence on the space variables, then one can prove Strichartz estimates at the same regularity as that needed for constant coefficients. Our work presents a two dimensional analysis, but we expect that with the obvious adjustments similar results are available in higher dimensions.



    加载中


    [1] J. Bourgain, Fourier transform restriction phenomena for certain lattice subsets and applications to nonlinear evolution equations I. Schrödinger equations, Geom. Funct. Anal., 3 (1993), 107–156. doi: 10.1007/BF01896020
    [2] J. Bourgain, Problems in Hamiltonian PDE's, In: Visions in Mathematics, Birkhäuser Basel, 2000, 32–56.
    [3] J. Bourgain, C. Demeter, The proof of the $\ell^2$ decoupling conjecture, Ann. Math., 182 (2015), 351–389.
    [4] N. Burq, P. Gérard, N. Tzvetkov, Strichartz inequalities and the nonlinear Schrödinger equation on compact manifolds, Am. J. Math., 126 (2004), 569–605. doi: 10.1353/ajm.2004.0016
    [5] Y. M. Chen, S. H. Ma, Z. Y. Ma, Solitons for the cubic-quintic nonlinear Schrödinger equation with varying coefficients, Chinese Phys. B, 21 (2012), 050510. doi: 10.1088/1674-1056/21/5/050510
    [6] M. Cicognani, M. Reissig, Well-posedness for degenerate Schrödinger equations, Evol. Equ. Control The., 3 (2014), 15–33. doi: 10.3934/eect.2014.3.15
    [7] C. Fan, Y. Ou, G. Staffilani, H. Wang, 2D-defocusing nonlinear Schrödinger equation with random data on irrational tori, Stoch. Partial Differ., 9 (2021), 142–206.
    [8] S. Federico, M. Ruzhansky, Smoothing and strichartz estimates for degenerate Schrödinger-type equations, 2020, arXiv: 2005.01622.
    [9] S. Federico, G. Staffilani, Smoothing effect for time-degenerate Schrödinger operators, J. Differ. Equations, 298 (2021), 205–247. doi: 10.1016/j.jde.2021.07.006
    [10] Z. Hani, A bilinear oscillatory integral estimate and bilinear refinements to Strichartz estimates on closed manifolds, Anal. PDE, 5 (2012), 339–363. doi: 10.2140/apde.2012.5.339
    [11] C. E. Kenig, G. Ponce, C. Rolvung, L. Vega, Variable coefficient Schrödinger flows for ultrahyperbolic operators, Adv. Math., 196 (2005), 373–486. doi: 10.1016/j.aim.2004.02.002
    [12] C. E. Kenig, G. Ponce, L. Vega, The Cauchy problem for the Korteweg-de Vries equation in Sobolev spaces of negative indices, Duke Math. J., 71 (1993), 1–21.
    [13] C. E. Kenig, G. Ponce, L. Vega, A bilinear estimate with applications to the KdV equation, J. Am. Math. Soc., 9 (1996), 573–603. doi: 10.1090/S0894-0347-96-00200-7
    [14] B. Li, X. F. Zhang, Y. Q. Li, W. M. Liu, Propagation and interaction of matter-wave solitons in Bose-Einstein condensates with time-dependent scattering length and varying potentials, J. Phys. B At. Mol. Opt., 44 (2011), 175301. doi: 10.1088/0953-4075/44/17/175301
    [15] J. Marzuola, J. Metcalfe, D. Tataru, Strichartz estimates and local smoothing estimates for asymptotically flat Schrödinger equations, J. Funct. Anal., 255 (2008), 1497–1553. doi: 10.1016/j.jfa.2008.05.022
    [16] H. Mizutani, N. Tzvetkov, Strichartz estimates for non-elliptic Schrödinger equations on compact manifolds, Commun. Part. Diff. Eq., 40 (2015), 1182–1195. doi: 10.1080/03605302.2015.1010211
    [17] D. Salort, The Schrödinger equation type with a nonelliptic operator, Commun. Part. Diff. Eq., 32 (2007), 209–228. doi: 10.1080/03605300601128074
    [18] G. Staffilani, D. Tataru, Strichartz estimates for a Schrödinger operator with nonsmooth coefficients, Commun. Part. Diff. Eq., 27 (2002), 1337–1372. doi: 10.1081/PDE-120005841
    [19] H. Wang, B. Li, Solitons for a generalized variable-coefficient nonlinear Schrödinger equation, Chinese Phys. B, 20 (2011), 040203. doi: 10.1088/1674-1056/20/4/040203
    [20] C. L. Zheng, Y. Li, Exact projective solutions of a generalized nonlinear Schrödinger system with variable parameters, Chinese Phys. B, 21 (2012), 70305. doi: 10.1088/1674-1056/21/7/070305
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1901) PDF downloads(115) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog