We consider the sharp Sobolev-Poincaré constant for the embedding of $ W^{1, 2}_0(\Omega) $ into $ L^q(\Omega) $. We show that such a constant exhibits an unexpected dual variational formulation, in the range $ 1 < q < 2 $. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to $ q = 1 $) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to $ q = 2 $).
Citation: Lorenzo Brasco. Convex duality for principal frequencies[J]. Mathematics in Engineering, 2022, 4(4): 1-28. doi: 10.3934/mine.2022032
We consider the sharp Sobolev-Poincaré constant for the embedding of $ W^{1, 2}_0(\Omega) $ into $ L^q(\Omega) $. We show that such a constant exhibits an unexpected dual variational formulation, in the range $ 1 < q < 2 $. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to $ q = 1 $) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to $ q = 2 $).
[1] | G. Anello, F. Faraci, A. Iannizzotto, On a problem of Huang concerning best constants in Sobolev embeddings, Annali di Matematica, 194 (2015), 767–779. doi: 10.1007/s10231-013-0397-8 |
[2] | R. Benguria, The von Weizsäcker and exchange corrections in the Thomas-Fermi theory, Ph. D. thesis of Princeton University, 1979. |
[3] | R. Benguria, H. Brézis, E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79 (1981), 167–180. doi: 10.1007/BF01942059 |
[4] | M. van den Berg, Estimates for the torsion function and Sobolev constants, Potential Anal., 36 (2012), 607–616. doi: 10.1007/s11118-011-9246-9 |
[5] | M. S. Berger, M. Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, T. Am. Math. Soc., 172 (1972), 261–278. doi: 10.1090/S0002-9947-1972-0312241-X |
[6] | L. Brasco, On principal frequencies and isoperimetric ratios in convex sets, Ann. Fac. Sci. Toulouse Math., 29 (2020), 977–1005. doi: 10.5802/afst.1653 |
[7] | L. Brasco, G. Franzina, B. Ruffini, Schrödinger operators with negative potentials and Lane-Emden densities, J. Funct. Anal., 274 (2018), 1825–1863. doi: 10.1016/j.jfa.2017.10.005 |
[8] | L. Brasco, D. Mazzoleni, On principal frequencies, volume and inradius in convex sets, Nonlinear Differ. Equ. Appl., 27 (2020), 12. doi: 10.1007/s00030-019-0614-2 |
[9] | H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64. doi: 10.1016/0362-546X(86)90011-8 |
[10] | D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Boston, MA: Birkhäuser Boston, Inc., 2005. |
[11] | H. Bueno, G. Ercole, Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., 381 (2011), 263–279. doi: 10.1016/j.jmaa.2011.03.002 |
[12] | G. Buttazzo, S. Guarino Lo Bianco, M. Marini, Sharp estimates for the anisotropic torsional rigidity and the principal frequency, J. Math. Anal. Appl., 457 (2018), 1153–1172. doi: 10.1016/j.jmaa.2017.03.055 |
[13] | T. Carroll, J. Ratzkin, Interpolating between torsional rigidity and principal frequency, J. Math. Anal. Appl., 379 (2011), 818–826. doi: 10.1016/j.jmaa.2011.02.004 |
[14] | J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Proceedings of the Princeton conference in honor of Professor S. Bochner, Princeton University Press, 1970,195–199. |
[15] | F. Della Pietra, G. di Blasio, N. Gavitone, Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle, Adv. Nonlinear Anal., 9 (2020), 278–291. |
[16] | J. B. Diaz, A. Weinstein, The torsional rigidity and variational methods, Am. J. Math., 70 (1948), 107–116. doi: 10.2307/2371935 |
[17] | G. Ercole, Absolute continuity of the best Sobolev constant of a bounded domain, J. Math. Anal. Appl., 404 (2013), 420–428. doi: 10.1016/j.jmaa.2013.03.044 |
[18] | M. Fleeman, E. Lundberg, The Bergman analytic content of planar domains, Comput. Meth. Funct. Th., 17 (2017), 369–379. doi: 10.1007/s40315-016-0189-4 |
[19] | M. Fleeman, B. Simanek, Torsional rigidity and Bergman analytic content of simply connected regions, Comput. Meth. Funct. Th., 19 (2019), 37–63. doi: 10.1007/s40315-018-0252-4 |
[20] | I. Ftouhi, On the Cheeger inequality for convex sets, J. Math. Anal. Appl., 504 (2021), 125443. doi: 10.1016/j.jmaa.2021.125443 |
[21] | J. Hersch, Physical interpretation and strengthing of M. Protter's method for vibrating nonhomogeneous membranes; its analogue for Schrödinger's equation, Pacific J. Math., 11 (1961), 971–980. doi: 10.2140/pjm.1961.11.971 |
[22] | J. Hersch, Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys., 11 (1960), 387–413. doi: 10.1007/BF01604498 |
[23] | R. Kajikiya, A priori estimate for the first eigenvalue of the $p-$Laplacian, Differ. Integral Equ., 28 (2015), 1011–1028. |
[24] | R. Kajikiya, A priori estimates of positive solutions for sublinear elliptic equations, T. Am. Math. Soc., 361 (2009), 3793–3815. doi: 10.1090/S0002-9947-09-04875-2 |
[25] | B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, DCDS, 6 (2000), 683–690. doi: 10.3934/dcds.2000.6.683 |
[26] | M. T. Kohler-Jobin, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal., 13 (1982), 153–161. doi: 10.1137/0513011 |
[27] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 2001. |
[28] | E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, In: Studies in math. analysis and related topics, Stanford: Stanford Univ. Press, 1962,227–231. |
[29] | A. I. Nazarov, On the symmetry of extremals in the weight embedding theorem. Function theory and mathematical analysis, J. Math. Sci., 107 (2001), 3841–3859. doi: 10.1023/A:1012336127123 |
[30] | F. Santambrogio, Optimal transport for applied mathematicians, Basel: Birkhäuser, 2015. |
[31] | G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc., 24 (1960), 413–419. |
[32] | R. T. Rockafellar, Convex analysis, Princeton, N.J.: Princeton University Press, 1970. |
[33] | G. Strang, $L^1$ and $L^\infty$ approximation of vector fields in the plane, In: North-Holland Mathematics Studies, 81 (1983), 273–288. |
[34] | P. Takáč, L. Tello, M. Ulm, Variational problems with a $p-$homogeneous energy, Positivity, 6 (2002), 75–94. doi: 10.1023/A:1012088127719 |
[35] | D. Zucco, Dirichlet conditions in Poincaré-Sobolev inequalities: the sub-homogeneous case, Calc. Var., 58 (2019), 89. doi: 10.1007/s00526-019-1547-7 |