We consider the sharp Sobolev-Poincaré constant for the embedding of W1,20(Ω) into Lq(Ω). We show that such a constant exhibits an unexpected dual variational formulation, in the range 1<q<2. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to q=1) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to q=2).
Citation: Lorenzo Brasco. Convex duality for principal frequencies[J]. Mathematics in Engineering, 2022, 4(4): 1-28. doi: 10.3934/mine.2022032
[1] | Yaning Li, Mengjun Wang . Well-posedness and blow-up results for a time-space fractional diffusion-wave equation. Electronic Research Archive, 2024, 32(5): 3522-3542. doi: 10.3934/era.2024162 |
[2] | Shaoqiang Shang, Yunan Cui . Weak approximative compactness of hyperplane and Asplund property in Musielak-Orlicz-Bochner function spaces. Electronic Research Archive, 2020, 28(1): 327-346. doi: 10.3934/era.2020019 |
[3] | Eteri Gordadze, Alexander Meskhi, Maria Alessandra Ragusa . On some extrapolation in generalized grand Morrey spaces with applications to PDEs. Electronic Research Archive, 2024, 32(1): 551-564. doi: 10.3934/era.2024027 |
[4] | Yangrong Li, Shuang Yang, Qiangheng Zhang . Odd random attractors for stochastic non-autonomous Kuramoto-Sivashinsky equations without dissipation. Electronic Research Archive, 2020, 28(4): 1529-1544. doi: 10.3934/era.2020080 |
[5] | Huali Wang, Ping Li . Fractional integral associated with the Schrödinger operators on variable exponent space. Electronic Research Archive, 2023, 31(11): 6833-6843. doi: 10.3934/era.2023345 |
[6] | Peng Gao, Pengyu Chen . Blowup and MLUH stability of time-space fractional reaction-diffusion equations. Electronic Research Archive, 2022, 30(9): 3351-3361. doi: 10.3934/era.2022170 |
[7] | Ling-Xiong Han, Wen-Hui Li, Feng Qi . Approximation by multivariate Baskakov–Kantorovich operators in Orlicz spaces. Electronic Research Archive, 2020, 28(2): 721-738. doi: 10.3934/era.2020037 |
[8] | Shuguan Ji, Yanshuo Li . Quasi-periodic solutions for the incompressible Navier-Stokes equations with nonlocal diffusion. Electronic Research Archive, 2023, 31(12): 7182-7194. doi: 10.3934/era.2023363 |
[9] | Kun Cheng, Yong Zeng . On regularity criteria for MHD system in anisotropic Lebesgue spaces. Electronic Research Archive, 2023, 31(8): 4669-4682. doi: 10.3934/era.2023239 |
[10] | Francisco Javier García-Pacheco, María de los Ángeles Moreno-Frías, Marina Murillo-Arcila . On absolutely invertibles. Electronic Research Archive, 2024, 32(12): 6578-6592. doi: 10.3934/era.2024307 |
We consider the sharp Sobolev-Poincaré constant for the embedding of W1,20(Ω) into Lq(Ω). We show that such a constant exhibits an unexpected dual variational formulation, in the range 1<q<2. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to q=1) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to q=2).
In this article, we study the following anisotropic singular →p(⋅)-Laplace equation
{−N∑i=1∂xi(|∂xiu|pi(x)−2∂xiu)=f(x)u−β(x)+g(x)uq(x) in Ω,u>0 in Ω,u=0 on ∂Ω, | (1.1) |
where Ω is a bounded domain in RN (N≥3) with smooth boundary ∂Ω; f∈L1(Ω) is a positive function; g∈L∞(Ω) is a nonnegative function; β∈C(¯Ω) such that 1<β(x)<∞ for any x∈¯Ω; q∈C(¯Ω) such that 0<q(x)<1 for any x∈¯Ω; pi∈C(¯Ω) such that 2≤pi(x)<N for any x∈¯Ω, i∈{1,...,N}.
The differential operator
N∑i=1∂xi(|∂xiu|pi(x)−2∂xiu), |
that appears in problem (1.1) is an anisotropic variable exponent →p(⋅)-Laplace operator, which represents an extension of the p(⋅)-Laplace operator
N∑i=1∂xi(|∂xiu|p(x)−2∂xiu), |
obtained in the case for each i∈{1,...,N}, pi(⋅)=p(⋅).
In the variable exponent case, p(⋅), the integrability condition changes with each point in the domain. This makes variable exponent Sobolev spaces very useful in modeling materials with spatially varying properties and in studying partial differential equations with non-standard growth conditions [1,2,3,4,5,6,7,8].
Anisotropy, on the other hand, adds another layer of complexity, providing a robust mathematical framework for modeling and solving problems that involve complex materials and phenomena exhibiting non-uniform and direction-dependent properties. This is represented mathematically by having different exponents for different partial derivatives. We refer to the papers [9,10,11,12,13,14,15,16,17,18,19,20,21] and references for further reading.
The progress in researching anisotropic singular problems with →p(⋅)-growth, however, has been relatively slow. There are only a limited number of studies available on this topic in academic literature. We could only refer to the papers [22,23,24] that were published recently. In [22], the author studied an anisotropic singular problems with constant case p(⋅)=p but with a variable singularity, where existence and regularity of positive solutions was obtained via the approximation methods. In [23], the author obtained the existence and regularity results of positive solutions by using the regularity theory and approximation methods. In [24], the authors showed the existence of positive solutions using the regularity theory and maximum principle. However, none of these papers studied combined effects of variable singular and sublinear nonlinearities.
We would also like to mention that the singular problems of the type
{−Δu=f(x)u−β in Ω,u>0 in Ω,u=0 on ∂Ω, | (1.2) |
have been intensively studied because of their wide applications to physical models in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogenous catalysts, glacial advance, etc. (see, e.g., [25,26,27,28,29,30]).
These studies, however, have mainly focused on the case 0<β<1, i.e., the weak singularity (see, e.g. [31,32,33,34,35,36]), and in this case, the corresponding energy functional is continuous.
When β>1 (the strong singularity), on the other hand, the situation changes dramatically, and numerous challenges emerge in the analysis of differential equations of the type (1.2), where the primary challenge encountered is due to the lack of integrability of u−β for u∈H10(Ω) [37,38,39,40,41].
To overcome these challenges, as an alternative approach, the so-called "compatibility relation" between f(x) and β has been introduced in the recent studies [37,40,42]. This method, used along with a constrained minimization and the Ekeland's variational principle [43], suggests a practical approach to obtain solutions to the problems of the type (1.2). In the present paper, we generalize these results to nonstandard p(⋅)-growth.
The paper is organized as follows. In Section 2, we provide some fundamental information for the theory of variable Sobolev spaces since it is our work space. In Section 3, first we obtain the auxiliary results. Then, we present our main result and obtain a positive solution to problem (1.1). In Section 4, we provide an example to illustrate our results in a concrete way.
We start with some basic concepts of variable Lebesgue-Sobolev spaces. For more details, and the proof of the following propositions, we refer the reader to [1,2,44,45].
C+(¯Ω)={p;p∈C(¯Ω),infp(x)>1, for all x∈¯Ω}. |
For p∈C+(¯Ω) denote
p−:=infx∈¯Ωp(x)≤p(x)≤p+:=supx∈¯Ωp(x)<∞. |
For any p∈C+(¯Ω), we define the variable exponent Lebesgue space by
Lp(⋅)(Ω)={u∣u:Ω→R is measurable,∫Ω|u(x)|p(x)dx<∞}, |
then, Lp(⋅)(Ω) endowed with the norm
|u|p(⋅)=inf{λ>0:∫Ω|u(x)λ|p(x)dx≤1}, |
becomes a Banach space.
Proposition 2.1. For any u∈Lp(⋅)(Ω) and v∈Lp′(⋅)(Ω), we have
∫Ω|uv|dx≤C(p−,(p−)′)|u|p(⋅)|v|p′(⋅) |
where Lp′(x)(Ω) is the conjugate space of Lp(⋅)(Ω) such that 1p(x)+1p′(x)=1.
The convex functional Λ:Lp(⋅)(Ω)→R defined by
Λ(u)=∫Ω|u(x)|p(x)dx, |
is called modular on Lp(⋅)(Ω).
Proposition 2.2. If u,un∈Lp(⋅)(Ω) (n=1,2,...), we have
(i) |u|p(⋅)<1(=1;>1)⇔Λ(u)<1(=1;>1);
(ii) |u|p(⋅)>1⟹|u|p−p(⋅)≤Λ(u)≤|u|p+p(⋅);
(iii) |u|p(⋅)≤1⟹|u|p+p(⋅)≤Λ(u)≤|u|p−p(⋅);
(iv) limn→∞|un|p(⋅)=0⇔limn→∞Λ(un)=0;limn→∞|un|p(⋅)=∞⇔limn→∞Λ(un)=∞.
Proposition 2.3. If u,un∈Lp(⋅)(Ω) (n=1,2,...), then the following statements are equivalent:
(i) limn→∞|un−u|p(⋅)=0;
(ii) limn→∞Λ(un−u)=0;
(iii) un→u in measure in Ω and limn→∞Λ(un)=Λ(u).
The variable exponent Sobolev space W1,p(⋅)(Ω) is defined by
W1,p(⋅)(Ω)={u∈Lp(⋅)(Ω):|∇u|∈Lp(⋅)(Ω)}, |
with the norm
‖u‖1,p(⋅)=|u|p(⋅)+|∇u|p(⋅), |
or equivalently
‖u‖1,p(⋅)=inf{λ>0:∫Ω(|∇u(x)λ|p(x)+|u(x)λ|p(x))dx,≤1} |
for all u∈W1,p(⋅)(Ω).
As shown in [46], the smooth functions are in general not dense in W1,p(⋅)(Ω), but if the variable exponent p∈C+(¯Ω) is logarithmic Hölder continuous, that is
|p(x)−p(y)|≤−Mlog(|x−y|),for allx,y∈Ω such that|x−y|≤12, | (2.1) |
then the smooth functions are dense in W1,p(⋅)(Ω) and so the Sobolev space with zero boundary values, denoted by W1,p(⋅)0(Ω), as the closure of C∞0(Ω) does make sense. Therefore, the space W1,p(⋅)0(Ω) can be defined as ¯C∞0(Ω)‖⋅‖1,p(⋅)=W1,p(⋅)0(Ω), and hence, u∈W1,p(⋅)0(Ω) iff there exists a sequence (un) of C∞0(Ω) such that ‖un−u‖1,p(⋅)→0.
As a consequence of Poincaré inequality, ‖u‖1,p(⋅) and |∇u|p(⋅) are equivalent norms on W1,p(⋅)0(Ω) when p∈C+(¯Ω) is logarithmic Hölder continuous. Therefore, for any u∈W1,p(⋅)0(Ω), we can define an equivalent norm ‖u‖ such that
‖u‖=|∇u|p(⋅). |
Proposition 2.4. If 1<p−≤p+<∞, then the spaces Lp(⋅)(Ω) and W1,p(⋅)(Ω) are separable and reflexive Banach spaces.
Proposition 2.5. Let q∈C(¯Ω). If 1≤q(x)<p∗(x) for all x∈¯Ω, then the embedding W1,p(⋅)(Ω)↪Lq(⋅)(Ω) is compact and continuous, where
p∗(x)={Np(x)N−p(x),ifp(x)<N,+∞,ifp(x)≥N. |
Finally, we introduce the anisotropic variable exponent Sobolev spaces.
Let us denote by →p:¯Ω→RN the vectorial function →p(⋅)=(p1(⋅),...,pN(⋅)) with pi∈C+(¯Ω), i∈{1,...,N}. We will use the following notations.
Define →P+,→P−∈RN as
→P+=(p+1,...,p+N), →P−=(p−1,...,p−N), |
and P++,P+−,P−−∈R+ as
P++=max{p+1,...,p+N},P+−=max{p−1,...,p−N}, P−−=min{p−1,...,p−N}, |
Below, we use the definitions of the anisotropic variable exponent Sobolev spaces as given in [12] and assume that the domain Ω⊂RN satisfies all the necessary assumptions given in there.
The anisotropic variable exponent Sobolev space is defined by
W1,→p(⋅)(Ω)={u∈LP++(Ω):∂xiu∈Lpi(⋅)(Ω), i∈{1,...,N}}, |
which is associated with the norm
‖u‖W1,→p(⋅)(Ω)=|u|P++(⋅)+N∑i=1|∂xiu|pi(⋅). |
W1,→p(⋅)(Ω) is a reflexive Banach space under this norm.
The subspace W1,→p(⋅)0(Ω)⊂W1,→p(⋅)(Ω) consists of the functions that are vanishing on the boundary, that is,
W1,→p(⋅)0(Ω)={u∈W1,→p(⋅)(Ω):u=0on∂Ω}, |
We can define the following equivalent norm on W1,→p(⋅)0(Ω)
‖u‖→p(⋅)=N∑i=1|∂xiu|pi(⋅). |
since the smooth functions are dense in W1,→p(⋅)0(Ω), as the variable exponent pi∈C+(¯Ω), i∈{1,...,N} is logarithmic Hölder continuous.
The space W1,→p(⋅)0(Ω) is also a reflexive Banach space (for the theory of the anisotropic Sobolev spaces see, e.g., the monographs [2,47,48] and the papers [12,15]).
Throughout this article, we assume that
N∑i=11p−i>1, | (2.2) |
and define P∗−∈R+ and P−,∞∈R+ by
P∗−=N∑Ni=11p−i−1, P−,∞=max{P+−,P∗−}. |
Proposition 2.6. [[15], Theorem 1] Suppose that Ω⊂RN(N≥3) is a bounded domain with smooth boundary and relation (2.2) is fulfilled. For any q∈C(¯Ω) verifying
1<q(x)<P−,∞forallx∈¯Ω, |
the embedding
W1,→p(⋅)0(Ω)↪Lq(⋅)(Ω), |
is continuous and compact.
We define the singular energy functional J:W1,→p(⋅)0(Ω)→R corresponding to equation (1.1) by
J(u)=∫ΩN∑i=1|∂xiu|pi(x)pi(x)dx−∫Ωg(x)|u|q(x)+1q(x)+1dx+∫Ωf(x)|u|1−β(x)β(x)−1dx. |
Definition 3.1. A function u is called a weak solution to problem (1.1) if u∈W1,→p(⋅)0(Ω) such that u>0 in Ω and
∫Ω[N∑i=1|∂xiu|pi(x)−2∂xiu⋅∂xiφ−[g(x)uq(x)+f(x)u−β(x)]φ]dx=0, | (3.1) |
for all φ∈W1,→p(⋅)0(Ω).
Definition 3.2. Due to the singularity of J on W1,→p(⋅)0(Ω), we apply a constrained minimization for problem (1.1). As such, we introduce the following constrains:
N1={u∈W1,→p(⋅)0(Ω):∫Ω[N∑i=1|∂xiu|pi(x)−g(x)|u|q(x)+1−f(x)|u|1−β(x)]dx≥0}, |
and
N2={u∈W1,→p(⋅)0(Ω):∫Ω[N∑i=1|∂xiu|pi(x)−g(x)|u|q(x)+1−f(x)|u|1−β(x)]dx=0}. |
Remark 1. N2 can be considered as a Nehari manifold, even though in general it may not be a manifold. Therefore, if we set
c0:=infu∈N2J(u), |
then one might expect that c0 is attained at some u∈N2 (i.e., N2≠∅) and that u is a critical point of J.
Throughout the paper, we assume that the following conditions hold:
(A1) β:¯Ω→(1,∞) is a continuous function such that 1<β−≤β(x)≤β+<∞.
(A2) q:¯Ω→(0,1) is a continuous function such that 0<q−≤q(x)≤q+<1 and q++1≤β−.
(A3) 2≤P−−≤P++<P∗− for almost all x∈¯Ω.
(A4) f∈L1(Ω) is a positive function, that is, f(x)>0 a.e. in Ω.
(A5) g∈L∞(Ω) is a nonnegative function.
Lemma 3.3. For any u∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|u|1−β(x)dx<∞, the functional J is well-defined and coercive on W1,→p(⋅)0(Ω).
Proof. Denote by I1,I2 the indices sets I1={i∈{1,2,...,N}:|∂xiu|pi(⋅)≤1} and I2={i∈{1,2,...,N}:|∂xiu|pi(⋅)>1}. Using Proposition 2.2, it follows
|J(u)|≤1P−−N∑i=1∫Ω|∂xiu|pi(x)dx−|g|∞q++1∫Ω|u|q(x)+1dx+1β−−1∫Ωf(x)|u|1−β(x)dx≤1P−−(∑i∈I1|∂xiu|P−−pi(⋅)+∑i∈I2|∂xiu|P++pi(⋅))−|g|∞q++1min{|u|q++1q(x)+1,|u|q−+1q(x)+1}+1β−−1∫Ωf(x)|u|1−β(x)dx≤1P−−(N∑i=1|∂xiu|P++pi(⋅)+∑i∈I1|∂xiu|P−−pi(⋅))−|g|∞q++1min{|u|q++1q(x)+1,|u|q−+1q(x)+1}+1β−−1∫Ωf(x)|u|1−β(x)dx≤1P−−(N∑i=1|∂xiu|P++pi(⋅)+N)−|g|∞q++1min{|u|q++1q(x)+1,|u|q−+1q(x)+1}+1β−−1∫Ωf(x)|u|1−β(x)dx | (3.2) |
which shows that J is well-defined on W1,→p(⋅)0(Ω).
Applying similar steps and using the generalized mean inequality for ∑Ni=1|∂xiu|P−−pi(⋅) gives
J(u)≥1P++N∑i=1∫Ω|∂xiu|pi(x)dx−|g|∞q−+1∫Ω|u|q(x)+1dx+1β+−1∫Ωf(x)|u|1−β(x)dx≥1P++(∑i∈I1|∂xiu|P++pi(⋅)+∑i∈I2|∂xiu|P−−pi(⋅))−|g|∞q−+1∫Ω|u|q(x)+1dx+1β+−1∫Ωf(x)|u|1−β(x)dx≥NP++(‖u‖P−−→p(⋅)NP−−−1)−|g|∞q−+1‖u‖q++1→p(⋅)+1β+−1∫Ωf(x)|u|1−β(x)dx | (3.3) |
That is, J is coercive (i.e., J(u)→∞ as ‖u‖→p(⋅)→∞), and bounded below on W1,→p(⋅)0(Ω).
Next, we provide a-priori estimate.
Lemma 3.4. Assume that (un)⊂N1 is a nonnegative minimizing sequence for the minimization problem limn→∞J(un)=infN1J. Then, there are positive real numbers δ1,δ2 such that
δ1≤‖un‖→p(⋅)≤δ2 |
Proof. We assume by contradiction that there exists a subsequence (un) (not relabelled) such that un→0 in W1,→p(⋅)0(Ω). Thus, we can assume that ‖un‖→p(⋅)<1 for n large enough, and therefore, |∂xiun|Lpi(⋅)<1. Then, using Proposition 2.2, we have
∫ΩN∑i=1|∂xiun|pi(x)dx≤N∑i=1|∂xiun|p−ipi(⋅)≤N∑i=1|∂xiun|P−−pi(⋅) | (3.4) |
We recall the following elementary inequality: for all r,s>0 and m>0 it holds
rm+sm≤K(r+s)m | (3.5) |
where K:=max{1,21−m}. If we let r=|∂x1un|P−−Lp1(⋅), s=|∂x2un|P−−Lp2(⋅) and m=P−− in (3.5), it reads
|∂x1un|P−−Lp1(⋅)+|∂x2un|P−−Lp2(⋅)≤K(|∂x1un|Lp1(⋅)+|∂x2un|Lp2(⋅))P−− | (3.6) |
where K=max{1,21−P−−}=1. Applying this argument to the following terms in the sum ∑Ni=1|∂xiun|P−−pi(⋅) consecutively leads to
∫ΩN∑i=1|∂xiun|pi(x)dx≤N∑i=1|∂xiun|p−ipi(⋅)≤N∑i=1|∂xiun|P−−pi(⋅)≤(N∑i=1|∂xiun|pi(⋅))P−−≤‖un‖P−−→p(⋅) | (3.7) |
Now, using (3.7) and the reversed Hölder's inequality, we have
(∫Ωf(x)1/β−dx)β−(∫Ω|un|dx)1−β−≤∫Ωf(x)|un|1−β−dx≤∫Ωf(x)|un|1−β(x)dx | (3.8) |
By the assumption, (un)⊂N1. Thus, using (3.8) and Proposition 2.2 leads to
(∫Ωf(x)1/β−dx)β−(∫Ω|un|dx)1−β−≤∫Ωf(x)|un|1−β−dx≤‖un‖P−−→p(⋅)−|g|∞q−+1‖un‖q++1→0 | (3.9) |
Considering the assumption (A2), this can only happen if ∫Ω|un|dx→∞, which is not possible. Therefore, there exists a positive real number δ1 such that ‖un‖→p(⋅)≥δ1.
Now, let's assume, on the contrary, that ‖un‖→p(⋅)>1 for any n. We know, by the coerciveness of J, that the infimum of J is attained, that is, ∞<m:=infu∈W1,→p(⋅)0(Ω)J(u). Moreover, due to the assumption limn→∞J(un)=infN1J, (J(un)) is bounded. Then, applying the same steps as in (3.3), it follows
C‖un‖→p(⋅)+J(un)≥NP++(‖un‖P−−→p(⋅)NP−−−1)−|g|∞q−+1‖un‖q++1→p(⋅)+1β+−1∫Ωf(x)|un|1−β(x)dx |
for some constant C>0. If we drop the nonnegative terms, we obtain
C‖un‖→p(⋅)+J(un)≥1P++(‖un‖P−−→p(⋅)NP−−−1−N)−|g|∞q−+1‖u‖q++1→p(⋅) |
Dividing the both sides of the above inequality by ‖un‖q++1→p(⋅) and passing to the limit as n→∞ leads to a contradiction since we have q−+1<P−−. Therefore, there exists a positive real number δ2 such that ‖un‖→p(⋅)≤δ2.
Lemma 3.5. N1 is closed in W1,→p(⋅)0(Ω).
Proof. Assume that (un)⊂N1 such that un→ˆu(strongly) in W1,→p(⋅)0(Ω). Thus, un(x)→ˆu(x) a.e. in Ω, and ∂xiun→∂xiˆu in Lpi(⋅)(Ω) for i=1,2,...,N. Then, using Fatou's lemma, it reads
∫Ω[N∑i=1|∂xiun|pi(x)−g(x)|un|q(x)+1−f(x)|un|1−β(x)]dx≥0lim infn→∞[∫ΩN∑i=1|∂xiun|pi(x)dx]−∫Ωg(x)|ˆu|q(x)+1dx≥lim infn→∞[∫Ωf(x)|un|1−β(x)dx] |
and hence,
∫Ω[N∑i=1|∂xiˆu|pi(x)−g(x)|ˆu|q(x)+1−f(x)|ˆu|1−β(x)]dx≥0 |
which means ˆu∈N1. N1 is closed in W1,→p(⋅)0(Ω).
Lemma 3.6. For any u∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|u|1−β(x)dx<∞, there exists a unique continuous scaling function u∈W1,→p(⋅)0(Ω)→(0,∞):u⟼t(u) such that t(u)u∈N2, and t(u)u is the minimizer of the functional J along the ray {tu:t>0}, that is, inft>0J(tu)=J(t(u)u).
Proof. Fix u∈W1,→p(⋅)0(Ω) such that ∫Ωf(x)|u|1−β(x)dx<∞. For any t>0, the scaled functional, J(tu), determines a curve that can be characterized by
Φ(t):=J(tu),t∈[0,∞). | (3.10) |
Then, for a t∈[0,∞), tu∈N2 if and only if
Φ′(t)=ddtΦ(t)|t=t(u)=0. | (3.11) |
First, we show that Φ(t) attains its minimum on [0,∞) at some point t=t(u).
Considering the fact 0<∫Ωf(x)|u|1−β(x)dx<∞, we will examine two cases for t.
For 0<t<1:
Φ(t)=J(tu)≥tP++P++N∑i=1∫Ω|∂xiu|pi(x)dx−tq−+1q−+1∫Ωg(x)|u|q(x)+1dx+t1−β−β+−1∫Ωf(x)|u|1−β(x)dx:=Ψ0(t) |
Then, Ψ0:(0,1)→R is continuous. Taking the derivative of Ψ0 gives
Ψ′0(t)=tP++−1N∑i=1∫Ω|∂xiu|pi(x)dx−tq−∫Ωg(x)|u|q(x)+1dx+(1−β−β+−1)t−β−∫Ωf(x)|u|1−β(x)dx | (3.12) |
It is easy to see from (3.12) that Ψ′0(t)<0 when t>0 is small enough. Therefore, Ψ0(t) is decreasing when t>0 is small enough. In the same way,
Φ(t)=J(tu)≤tP−−P−−N∑i=1∫Ω|∂xiu|pi(x)dx−tq++1q++1∫Ωg(x)|u|q(x)+1dx+t1−β+β−−1∫Ωf(x)|u|1−β(x)dx:=Ψ1(t) |
Then, Ψ1:(0,1)→R is continuous. Taking the derivative of Ψ1 gives
Ψ′1(t)=tP−−−1N∑i=1∫Ω|∂xiu|pi(x)dx−tq+∫Ωg(x)|u|q(x)+1dx+(1−β+β+−1)t−β+∫Ωf(x)|u|1−β(x)dx | (3.13) |
But (3.13) also suggests that Ψ′1(t)<0 when t>0 is small enough. Thus, Ψ1(t) is decreasing when t>0 is small enough. Therefore, since Ψ0(t)≤Φ(t)≤Ψ1(t) for 0<t<1, Φ(t) is decreasing when t>0 is small enough.
For t>1: Following the same arguments shows that Ψ′0(t)>0 and Ψ′1(t)>0 when t>1 is large enough, and therefore, both Ψ0(t) and Ψ1(t) are increasing. Thus, Φ(t) is increasing when t>1 is large enough. In conclusion, since Φ(0)=0, Φ(t) attains its minimum on [0,∞) at some point, say t=t(u). That is, ddtΦ(t)|t=t(u)=0. Then, t(u)u∈N2 and inft>0J(tu)=J(t(u)u).
Next, we show that scaling function t(u) is continuous on W1,→p(⋅)0(Ω).
Let un→u in W1,→p(⋅)0(Ω)∖{0}, and tn=t(un). Then, by the definition, tnun∈N2. Defined in this way, the sequence tn is bounded. Assume on the contrary that tn→∞ (up to a subsequence). Then, using the fact tnun∈N2 it follows
∫ΩN∑i=1|∂xitnun|pi(x)dx−∫Ωg(x)|tnun|q(x)+1dx=∫Ωf(x)|tnun|1−β(x)dxtP−−n∫ΩN∑i=1|∂xiun|pi(x)dx−tq−+1n∫Ωg(x)|un|q(x)+1dx≤t1−β−n∫Ωf(x)|un|1−β(x)dx |
which suggests a contradiction when tn→∞. Hence, sequence tn is bounded. Therefore, there exists a subsequence tn (not relabelled) such that tn→t0, t0≥0. On the other hand, from Lemma 3.4, ‖tnun‖→p(⋅)≥δ1>0. Thus, t0>0 and t0u∈N2. By the uniqueness of the map t(u), t0=t(u), which concludes the continuity of t(u). In conclusion, for any ∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|u|1−β(x)dx<∞, the function t(u) scales u∈W1,→p(⋅)0(Ω) continuously to a point such that t(u)u∈N2.
Lemma 3.7. Assume that (un)⊂N1 is the nonnegative minimizing sequence for the minimization problem limn→∞J(un)=infN1J. Then, there exists a subsequence (un) (not relabelled) such that un→u∗ (strongly) in W1,→p(⋅)0(Ω).
Proof. Since (un) is bounded in W1,→p(⋅)0(Ω) and W1,→p(⋅)0(Ω) is reflexive, there exists a subsequence (un), not relabelled, and u∗∈W1,→p(⋅)0(Ω) such that
● un⇀u∗ (weakly) in W1,→p(⋅)0(Ω),
● un→u∗ in Ls(⋅)(Ω), 1<s(x)<P−,∞, for all x∈¯Ω,
● un(x)→u∗(x) a.e. in Ω.
Since the norm ‖⋅‖→p(⋅) is a continuous convex functional, it is weakly lower semicontinuous. Using this fact along with the Fatou's lemma, and Lemma 3.4, it reads
infN1J=limn→∞J(un)≥lim infn→∞[∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx]−∫Ωg(x)|u∗|q(x)+1q(x)+1dx+lim infn→∞[∫Ωf(x)|un|1−β(x)β(x)−1dx]≥∫ΩN∑i=1|∂xiu∗|pi(x)pi(x)dx−∫Ωg(x)|u∗|q(x)+1q(x)+1dx+∫Ωf(x)|u∗|1−β(x)β(x)−1dx=J(u∗)≥J(t(u∗)u∗)≥infN2J≥infN1J | (3.14) |
The above result implies, up to subsequences, that
limn→∞‖un‖→p(⋅)=‖u∗‖→p(⋅). | (3.15) |
Thus, (3.15) along with un⇀u∗ in W1,→p(⋅)0(Ω) show that un→u∗ in W1,→p(⋅)0(Ω).
The following is the main result of the present paper.
Theorem 3.8. Assume that the conditions (A1)−(A5) hold. Then, problem (1.1) has at least one positive W1,→p(⋅)0(Ω)-solution if and only if there exists ¯u∈W1,→p(⋅)0(Ω) satisfying ∫Ωf(x)|¯u|1−β(x)dx<∞.
Proof. (⇒): Assume that the function u∈W1,→p(⋅)0(Ω) is a weak solution to problem (1.1). Then, letting u=φ in Definition (3.1) gives
∫Ωf(x)|u|1−β(x)dx=∫ΩN∑i=1|∂xiu|pi(x)dx−∫Ωg(x)|u|q(x)+1dx≤‖u‖PM→p(⋅)−|g|∞|u|qMq(x)+1≤‖u‖PM→p(⋅)<∞, |
where PM:=max{P−−,P++} and qM:=max{q−,q+}, changing according to the base.
(⇐): Assume that there exists ¯u∈W1,→p(⋅)0(Ω) such that ∫Ωf(x)|¯u|1−β(x)dx<∞. Then, by Lemma 3.6, there exists a unique number t(¯u)>0 such that t(¯u)¯u∈N2.
The information we have had about J so far and the closeness of N1 allow us to apply Ekeland's variational principle to the problem infN1J. That is, it suggests the existence of a corresponding minimizing sequence (un)⊂N1 satisfying the following:
(E1) J(un)−infN1J≤1n,
(E2) J(un)−J(ν)≤1n‖un−ν‖→p(⋅),∀ν∈N1.
Due to the fact J(|un|)=J(un), it is not wrong to assume that un≥0 a.e. in Ω. Additionally, considering that (un)⊂N1 and following the same approach as it is done in the (⇒) part, we can obtain that ∫Ωf(x)|un|1−β(x)dx<∞. If all this information and the assumptions (A1), (A2) are taken into consideration, it follows that un(x)>0 a.e. in Ω.
The rest of the proof is split into two cases.
Case Ⅰ: (un)⊂N1∖N2 for n large.
For a function φ∈W1,→p(⋅)0(Ω) with φ≥0, and t>0, we have
0<(un(x)+tφ(x))1−β(x)≤un(x)1−β(x)a.e. inΩ. |
Therefore, using (A1), (A2) gives
∫Ωf(x)(un+tφ)1−β(x)dx≤∫Ωf(x)u1−β(x)ndx≤∫ΩN∑i=1|∂xiun|pi(x)dx−∫Ωg(x)uq(x)+1ndx<∞ | (3.16) |
Then, when t>0 is small enough in (3.16), we obtain
∫Ωf(x)(un+tφ)1−β(x)dx≤∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx−∫Ωg(x)(un+tφ)q(x)+1dx | (3.17) |
which means that ν:=un+tφ∈N1. Now, using (E2), it reads
1n‖tφ‖→p(⋅)≥J(un)−J(ν)=∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫Ωf(x)(un+tφ)1−β(x)β(x)−1dx |
Dividing the above inequality by t and passing to the infimum limit as t→0 gives
lim inft→0‖φ‖→p(⋅)n+lim inft→0[∫ΩN∑i=1[|∂xi(un+tφ)|pi(x)−|∂xiun|pi(x)]tpi(x)dx]⏟:=I1−lim inft→0[∫Ωg(x)[(un+tφ)q(x)+1−uq(x)+1n]t(q(x)+1)dx]⏟:=I2≥lim inft→0[∫Ωf(x)[(un+tφ)1−β(x)−u1−β(x)n]t(1−β(x))dx]⏟:=I3 |
Calculation of I1,I2 gives
I1=ddt(∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx)|t=0=∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx | (3.18) |
and
I2=ddt(∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx)|t=0=∫Ωg(x)uq(x)nφdx. | (3.19) |
For I3: Since for t>0 it holds
u1−β(x)n(x)−(un(x)+tφ(x))1−β(x)≥0,a.e. inΩ |
we can apply Fatou's lemma, that is,
I2=lim inft→0∫Ωf(x)[(un+tφ)1−β(x)−u1−β(x)n]t(1−β(x))dx≥∫Ωlim inft→0f(x)[(un+tφ)1−β(x)−u1−β(x)n]t(1−β(x))dx≥∫Ωf(x)u−β(x)nφdx | (3.20) |
Now, substituting I1,I2,I3 gives
‖φ‖→p(⋅)n+∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx−∫Ωg(x)uq(x)nφdx≥∫Ωf(x)u−β(x)nφdx |
From Lemma 3.7, we know that un→u∗ in W1,→p(⋅)0(Ω). Thus, also considering Fatou's lemma, we obtain
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiφdx−∫Ωg(x)(u∗)q(x)φdx−∫Ωf(x)(u∗)−β(x)φdx≥0, | (3.21) |
for any φ∈W1,→p(⋅)0(Ω) with φ≥0. Letting φ=u∗ in (3.21) shows clearly that u∗∈N1.
Lastly, from Lemma 3.7, we can conclude that
limn→∞J(un)=J(u∗)=infN2J, |
which means
u∗∈N2,(witht(u∗)=1) | (3.22) |
Case Ⅱ: There exists a subsequence of (un) (not relabelled) contained in N2.
For a function φ∈W1,p(x)0(Ω) with φ≥0, t>0, and un∈N2, we have
∫Ωf(x)(un+tφ)1−β(x)dx≤∫Ωf(x)u1−β(x)ndx=∫ΩN∑i=1|∂xiu|pi(x)dx−∫Ωg(x)uq(x)+1ndx<∞, | (3.23) |
and hence, there exists a unique continuous scaling function, denoted by θn(t):=t(un+tφ)>0, corresponding to (un+tφ) so that θn(t)(un+tφ)∈N2 for n=1,2,.... Obviously, θn(0)=1. Since θn(t)(un+tφ)∈N2, we have
0=∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx−∫Ωg(x)(θn(t)(un+tφ))q(x)+1dx−∫Ωf(x)(θn(t)(un+tφ))1−β(x)dx≥∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx−θqM+1n(t)∫Ωg(x)(un+tφ)q(x)+1dx−θ1−βmn(t)∫Ωf(x)(un+tφ)1−β(x)dx, | (3.24) |
and
0=∫ΩN∑i=1|∂xiun|pi(x)dx−∫Ωg(x)uq(x)+1ndx−∫Ωf(x)u1−β(x)ndx. | (3.25) |
where βm:=min{β−,β+}. Then, using (3.24) and (3.25) together gives
0≥[−(q++1)[θn(0)+τ1(θn(t)−θn(0))]qm∫Ωg(x)(un+tφ)q(x)+1dx−(1−βm)[θn(0)+τ2(θn(t)−θn(0))]−βm∫Ωf(x)(un+tφ)1−β(x)dx](θn(t)−θn(0))+∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx−∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx+∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx−∫ΩN∑i=1|∂xiun|pi(x)dx−[∫Ωg(x)(un+tφ)q(x)+1dx−∫Ωg(x)uq(x)+1ndx]−[∫Ωf(x)(un+tφ)1−β(x)dx−∫Ωf(x)u1−β(x)ndx] | (3.26) |
for some constants τ1,τ2∈(0,1). To proceed, we assume that θ′n(0)=ddtθn(t)|t=0∈[−∞,∞]. In case this limit does not exist, we can consider a subsequence tk>0 of t such that tk→0 as k→∞.
Next, we show that θ′n(0)≠∞.
Dividing the both sides of (3.26) by t and passing to the limit as t→0 leads to
0≥[P−−∫ΩN∑i=1|∂xiun|pi(x)dx+(βm−1)∫Ωf(x)u1−β(x)ndx−(q++1)∫Ωg(x)uq(x)+1ndx]θ′n(0)+P−−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx−(q++1)∫Ωg(x)uq(x)nφdx+(βm−1)∫Ωf(x)u−β(x)nφdx | (3.27) |
or
0≥[(P−−−q+−1)∫ΩN∑i=1|∂xiun|pi(x)dx+(βm+q+)∫Ωf(x)u1−β(x)ndx]θ′n(0)+P−−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx−(q++1)∫Ωg(x)uq(x)nφdx+(βm−1)∫Ωf(x)u−β(x)nφdx | (3.28) |
which, along with Lemma 3.4, concludes that −∞≤θ′n(0)<∞, and hence, θ′n(0)≤¯c, uniformly in all large n.
Next, we show that θ′n(0)≠−∞.
First, we apply Ekeland's variational principle to the minimizing sequence (un)⊂N2(⊂N1). Thus, letting ν:=θn(t)(un+tφ) in (E2) gives
1n[|θn(t)−1|‖un‖→p(⋅)+tθn(t)‖φ‖→p(⋅)]≥J(un)−J(θn(t)(un+tφ))=∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx+∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−∫Ωf(x)[θn(t)(un+tφ)]1−β(x)β(x)−1dx≥∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−1β−−1∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx | (3.29) |
If we use Lemma 3.4 to manipulate the norm ‖u+tφ‖→p(⋅), the integral in the last line of (3.29) can be written as follows
1β−−1∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)dx≤θPMn(t)β−−1∫ΩN∑i=1|∂xi(un+tφ)|pi(x)dx≤θPMn(t)β−−1‖un+tφ‖PM→p(⋅)≤2P++−1θPMn(t)CPM(δ2)‖φ‖PM→p(⋅)β−−1t | (3.30) |
Then,
1n[|θn(t)−1|‖un‖→p(⋅)+tθn(t)‖φ‖→p(⋅)]+∫ΩN∑i=1[|∂xi(un+tφ)|pi(x)−|∂xiun|pi(x)]pi(x)dx+2P++−1θPMn(t)CPM(δ2)‖φ‖PM→p(⋅)β−−1t≥[(1q−+1)[θn(0)+τ1(θn(t)−θn(0))]qm∫Ωg(x)(un+tφ)q(x)+1dx](θn(t)−θn(0))≥−∫ΩN∑i=1[|∂xiθn(t)(un+tφ)|pi(x)−|∂xi(un+tφ)|pi(x)]pi(x)dx+1q−+1∫Ωg(x)[(un+tφ)q(x)+1−uq(x)+1n]dx | (3.31) |
Dividing by t and passing to the limit as t→0 gives
1n‖φ‖→p(⋅)+2P++−1θPMn(t)CPM(δ2)‖φ‖PM→p(⋅)β−−1≥[(−1+1q−+1)∫ΩN∑i=1|∂xiun|pi(x)dx−1q−+1∫Ωf(x)u1−β(x)ndx−‖un‖→p(⋅)nsgn[θn(t)−1]]θ′n(0)−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx+∫Ωg(x)uq(x)ndx | (3.32) |
which concludes that θ′n(0)≠−∞. Thus, θ′n(0)≥c_ uniformly in large n.
In conclusion, there exists a constant, C0>0 such that |θ′n(0)|≤C0 when n≥N0,N0∈N.
Next, we show that u∗∈N2.
Using (E2) again, we have
1n[|θn(t)−1|‖un‖→p(⋅)+tθn(t)‖φ‖→p(⋅)]≥J(un)−J(θn(t)(un+tφ))=∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx+∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−∫Ωf(x)[θn(t)(un+tφ)]1−β(x)β(x)−1dx=−∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx+∫ΩN∑i=1|∂xiun|pi(x)pi(x)dx−∫Ωf(x)(un+tφ)1−β(x)β(x)−1dx+∫Ωf(x)u1−β(x)nβ(x)−1dx−∫ΩN∑i=1|∂xiθn(t)(un+tφ)|pi(x)pi(x)dx+∫ΩN∑i=1|∂xi(un+tφ)|pi(x)pi(x)dx−∫Ωf(x)[θn(t)(un+tφ)]1−β(x)β(x)−1dx+∫Ωf(x)(un+tφ)1−β(x)β(x)−1dx∫Ωg(x)[θn(t)(un+tφ)]q(x)+1q(x)+1dx−∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx−∫Ωg(x)uq(x)+1nq(x)+1dx+∫Ωg(x)(un+tφ)q(x)+1q(x)+1dx | (3.33) |
Dividing by t and passing to the limit as t→0 gives
1n[|θ′n(0)|‖un‖→p(⋅)+‖φ‖→p(⋅)]≥−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx+∫Ωf(x)u−β(x)nφdx+∫Ωg(x)uq(x)nφdx[−∫ΩN∑i=1|∂xiun|pi(x)dx+∫Ωg(x)uq(x)+1ndx+∫Ωf(x)u1−β(x)ndx]θ′n(0)=−∫ΩN∑i=1|∂xiun|pi(x)−2∂xiun⋅∂xiφdx+∫Ωg(x)uq(x)nφdx+∫Ωf(x)u−β(x)nφdx | (3.34) |
If we consider that |θ′n(0)|≤C0 uniformly in n, we obtain that ∫Ωf(x)u−β(x)ndx<∞. Therefore, for n→∞ it reads
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiφdx−∫Ωg(x)(u∗)q(x)φdx−∫Ωf(x)(u∗)−β(x)φdx≥0 | (3.35) |
for all φ∈W1,→p(⋅)0(Ω), φ≥0. Letting φ=u∗ in (3.35) shows clearly that u∗∈N1.
This means, as with the Case Ⅰ, that we have
u∗∈N2 | (3.36) |
By taking into consideration the results (3.21), (3.22), (3.35), and (3.36), we infer that u∗∈N2 and (3.35) holds, in the weak sense, for both cases. Additionally, since u∗≥0 and u∗≠0, by the strong maximum principle for weak solutions, we must have u∗(x)>0almost everywhere inΩ.
Next, we show that u∗∈W1,→p(⋅)0(Ω) is a weak solution to problem (1.1).
For a random function ϕ∈W1,→p(⋅)0(Ω), and ε>0, let φ=(u∗+εϕ)+=max{0,u∗+εϕ}. We split Ω into two sets as follows:
Ω≥={x∈Ω:u∗(x)+εϕ(x)≥0}, | (3.37) |
and
Ω<={x∈Ω:u∗(x)+εϕ(x)<0}. | (3.38) |
If we replace φ with (u∗+εϕ) in (3.35), it follows
0≤∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiφdx−∫Ω[g(x)(u∗)q(x)+f(x)(u∗)−β(x)]φdx=∫Ω≥N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xi(u∗+εϕ)dx−∫Ω≥[g(x)(u∗)q(x)(u)∗+f(x)(u∗)−β(x)](u∗+εϕ)dx=∫Ω−∫Ω<[N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xi(u∗+εϕ)−[g(x)(u∗)q(x)+f(x)(u∗)−β(x)](u∗+εϕ)]dx=∫ΩN∑i=1|∂xiu∗|pi(x)dx+ε∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx−∫Ωf(x)(u∗)1−β(x)dx−ε∫Ωf(x)(u∗)−β(x)ϕdx−∫Ωg(x)(u∗)q(x)+1dx−ε∫Ωg(x)(u∗)q(x)ϕdx−∫Ω<[N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xi(u∗+εϕ)−[g(x)(u∗)q(x)+f(x)(u∗)−β(x)](u∗+εϕ)]dx | (3.39) |
Since u∗∈N2, we have
0≤ε[∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕ−[g(x)(u∗)q(x)+f(x)(u∗)−β(x)]ϕ]dx−ε∫Ω<N∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx+ε∫Ω<g(x)(u∗)q(x)ϕdx+ε∫Ω<f(x)(u∗)−β(x)ϕdx | (3.40) |
Dividing by ε and passing to the limit as ε→0, and considering that |Ω<|→0 as ε→0 gives
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx−∫Ωg(x)(u∗)q(x)ϕdx≥∫Ωf(x)(u∗)−β(x)ϕdx,∀ϕ∈W1,→p(⋅)0(Ω) | (3.41) |
However, since the function ϕ∈W1,→p(⋅)0(Ω) is chosen randomly, it follows that
∫ΩN∑i=1|∂xiu∗|pi(x)−2∂xiu∗⋅∂xiϕdx−∫Ωg(x)(u∗)q(x)ϕdx=∫Ωf(x)(u∗)−β(x)ϕdx | (3.42) |
which concludes that u∗∈W1,→p(⋅)0(Ω) is a weak solution to problem (1.1).
Suppose that
{g(x)=ekcos(|x|),andf(x)=(1−|x|)kβ(x),x∈B1(0)⊂RN,k>0. |
Then equation (1.1) becomes
{−N∑i=1∂xi(|∂xiu|pi(x)−2∂xiu)=(1−|x|)kβ(x)u−β(x)+ekcos(|x|)uq(x) in B1(0),u>0 in B1(0),u=0 on ∂B1(0). | (4.1) |
Theorem 4.1. Assume that the conditions (A1)−(A3) hold. If 1<β+<1+k+1α and α>1/2, then, problem (4.1) has at least one positive W1,→p(⋅)0(B1(0))-solution.
Proof. Function f(x)=(1−|x|)kβ(x)≤(1−|x|)kβ− is clearly non-negative and bounded above within the unit ball B1(0) since |x|<1. Hence, f(x)∈L1(B1(0)).
Now, let's choose ¯u=(1−|x|)α. Since ¯u is also non-negative and bounded within B(0,1), it is in ¯u∈LP++(B(0,1)). Indeed,
N∑i=1∫B1(0)((1−|x|)α)pi(x)dx≤N[∫B1(0)((1−|x|)α)P−−dx+∫B1(0)((1−|x|)α)P++dx]<∞. |
Next, we show that ∂xi¯u∈Lpi(⋅)(B1(0)) for i∈{1,...,N}. Fix i∈{1,...,N}. Then
∂xi(1−|x|)α=α(1−|x|)α−1−xi|x| |
Considering that x∈B1(0), we obtain
∫B1(0)|∂xi(1−|x|)α|pi(x)dx≤αPM∫B1(0)(1−|x|)(α−1)P−−dx |
Therefore,
N∑i=1∫B1(0)|∂xi(1−|x|)α|pi(x)dx≤NαPMN∑i=1∫B(0,1)(1−|x|)(α−1)P−−dx<∞ |
if α>P−−−1P−−. Thus, ∂xi¯u∈Lpi(⋅)(B1(0)) for i∈{1,...,N}, and as a result, ¯u∈W1,→p(⋅)0(B1(0)).
Finally, we show that ∫B(0,1)(1−|x|)k(1−|x|)α(1−β(x))β(x)dx<∞. Then,
∫B1(0)(1−|x|)k(1−|x|)α(1−β(x))β(x)dx≤1β−∫B1(0)(1−|x|)k+α(1−β+)dx<∞. |
Thus, by Theorem 3.8, problem (4.1) has at least one positive W1,→p(⋅)0(B1(0))-solution.
The author declares he has not used Artificial Intelligence (AI) tools in the creation of this article.
This work was supported by Athabasca University Research Incentive Account [140111 RIA].
The author declares there is no conflict of interest.
[1] |
G. Anello, F. Faraci, A. Iannizzotto, On a problem of Huang concerning best constants in Sobolev embeddings, Annali di Matematica, 194 (2015), 767–779. doi: 10.1007/s10231-013-0397-8
![]() |
[2] | R. Benguria, The von Weizsäcker and exchange corrections in the Thomas-Fermi theory, Ph. D. thesis of Princeton University, 1979. |
[3] |
R. Benguria, H. Brézis, E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79 (1981), 167–180. doi: 10.1007/BF01942059
![]() |
[4] |
M. van den Berg, Estimates for the torsion function and Sobolev constants, Potential Anal., 36 (2012), 607–616. doi: 10.1007/s11118-011-9246-9
![]() |
[5] |
M. S. Berger, M. Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, T. Am. Math. Soc., 172 (1972), 261–278. doi: 10.1090/S0002-9947-1972-0312241-X
![]() |
[6] |
L. Brasco, On principal frequencies and isoperimetric ratios in convex sets, Ann. Fac. Sci. Toulouse Math., 29 (2020), 977–1005. doi: 10.5802/afst.1653
![]() |
[7] |
L. Brasco, G. Franzina, B. Ruffini, Schrödinger operators with negative potentials and Lane-Emden densities, J. Funct. Anal., 274 (2018), 1825–1863. doi: 10.1016/j.jfa.2017.10.005
![]() |
[8] |
L. Brasco, D. Mazzoleni, On principal frequencies, volume and inradius in convex sets, Nonlinear Differ. Equ. Appl., 27 (2020), 12. doi: 10.1007/s00030-019-0614-2
![]() |
[9] |
H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64. doi: 10.1016/0362-546X(86)90011-8
![]() |
[10] | D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Boston, MA: Birkhäuser Boston, Inc., 2005. |
[11] |
H. Bueno, G. Ercole, Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., 381 (2011), 263–279. doi: 10.1016/j.jmaa.2011.03.002
![]() |
[12] |
G. Buttazzo, S. Guarino Lo Bianco, M. Marini, Sharp estimates for the anisotropic torsional rigidity and the principal frequency, J. Math. Anal. Appl., 457 (2018), 1153–1172. doi: 10.1016/j.jmaa.2017.03.055
![]() |
[13] |
T. Carroll, J. Ratzkin, Interpolating between torsional rigidity and principal frequency, J. Math. Anal. Appl., 379 (2011), 818–826. doi: 10.1016/j.jmaa.2011.02.004
![]() |
[14] | J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Proceedings of the Princeton conference in honor of Professor S. Bochner, Princeton University Press, 1970,195–199. |
[15] | F. Della Pietra, G. di Blasio, N. Gavitone, Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle, Adv. Nonlinear Anal., 9 (2020), 278–291. |
[16] |
J. B. Diaz, A. Weinstein, The torsional rigidity and variational methods, Am. J. Math., 70 (1948), 107–116. doi: 10.2307/2371935
![]() |
[17] |
G. Ercole, Absolute continuity of the best Sobolev constant of a bounded domain, J. Math. Anal. Appl., 404 (2013), 420–428. doi: 10.1016/j.jmaa.2013.03.044
![]() |
[18] |
M. Fleeman, E. Lundberg, The Bergman analytic content of planar domains, Comput. Meth. Funct. Th., 17 (2017), 369–379. doi: 10.1007/s40315-016-0189-4
![]() |
[19] |
M. Fleeman, B. Simanek, Torsional rigidity and Bergman analytic content of simply connected regions, Comput. Meth. Funct. Th., 19 (2019), 37–63. doi: 10.1007/s40315-018-0252-4
![]() |
[20] |
I. Ftouhi, On the Cheeger inequality for convex sets, J. Math. Anal. Appl., 504 (2021), 125443. doi: 10.1016/j.jmaa.2021.125443
![]() |
[21] |
J. Hersch, Physical interpretation and strengthing of M. Protter's method for vibrating nonhomogeneous membranes; its analogue for Schrödinger's equation, Pacific J. Math., 11 (1961), 971–980. doi: 10.2140/pjm.1961.11.971
![]() |
[22] |
J. Hersch, Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys., 11 (1960), 387–413. doi: 10.1007/BF01604498
![]() |
[23] | R. Kajikiya, A priori estimate for the first eigenvalue of the p−Laplacian, Differ. Integral Equ., 28 (2015), 1011–1028. |
[24] |
R. Kajikiya, A priori estimates of positive solutions for sublinear elliptic equations, T. Am. Math. Soc., 361 (2009), 3793–3815. doi: 10.1090/S0002-9947-09-04875-2
![]() |
[25] |
B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, DCDS, 6 (2000), 683–690. doi: 10.3934/dcds.2000.6.683
![]() |
[26] |
M. T. Kohler-Jobin, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal., 13 (1982), 153–161. doi: 10.1137/0513011
![]() |
[27] | E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 2001. |
[28] | E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, In: Studies in math. analysis and related topics, Stanford: Stanford Univ. Press, 1962,227–231. |
[29] |
A. I. Nazarov, On the symmetry of extremals in the weight embedding theorem. Function theory and mathematical analysis, J. Math. Sci., 107 (2001), 3841–3859. doi: 10.1023/A:1012336127123
![]() |
[30] | F. Santambrogio, Optimal transport for applied mathematicians, Basel: Birkhäuser, 2015. |
[31] | G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc., 24 (1960), 413–419. |
[32] | R. T. Rockafellar, Convex analysis, Princeton, N.J.: Princeton University Press, 1970. |
[33] | G. Strang, L1 and L∞ approximation of vector fields in the plane, In: North-Holland Mathematics Studies, 81 (1983), 273–288. |
[34] |
P. Takáč, L. Tello, M. Ulm, Variational problems with a p−homogeneous energy, Positivity, 6 (2002), 75–94. doi: 10.1023/A:1012088127719
![]() |
[35] |
D. Zucco, Dirichlet conditions in Poincaré-Sobolev inequalities: the sub-homogeneous case, Calc. Var., 58 (2019), 89. doi: 10.1007/s00526-019-1547-7
![]() |
1. | Mustafa Avci, On a p(x)-Kirchhoff Problem with Variable Singular and Sublinear Exponents, 2024, -1, 1027-5487, 10.11650/tjm/240904 | |
2. | Mustafa Avci, On a p(x)-Kirchhoff-type Equation with Singular and Superlinear Nonlinearities, 2024, 0971-3514, 10.1007/s12591-024-00702-0 | |
3. | Mustafa Avci, Singular p(x) -Laplacian equation with application to boundary layer theory , 2025, 0003-6811, 1, 10.1080/00036811.2025.2473492 |