Research article Special Issues

Convex duality for principal frequencies

  • Received: 10 June 2021 Accepted: 30 August 2021 Published: 17 September 2021
  • We consider the sharp Sobolev-Poincaré constant for the embedding of $ W^{1, 2}_0(\Omega) $ into $ L^q(\Omega) $. We show that such a constant exhibits an unexpected dual variational formulation, in the range $ 1 < q < 2 $. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to $ q = 1 $) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to $ q = 2 $).

    Citation: Lorenzo Brasco. Convex duality for principal frequencies[J]. Mathematics in Engineering, 2022, 4(4): 1-28. doi: 10.3934/mine.2022032

    Related Papers:

  • We consider the sharp Sobolev-Poincaré constant for the embedding of $ W^{1, 2}_0(\Omega) $ into $ L^q(\Omega) $. We show that such a constant exhibits an unexpected dual variational formulation, in the range $ 1 < q < 2 $. Namely, this can be written as a convex minimization problem, under a divergence–type constraint. This is particularly useful in order to prove lower bounds. The result generalizes what happens for the torsional rigidity (corresponding to $ q = 1 $) and extends up to the case of the first eigenvalue of the Dirichlet-Laplacian (i.e., to $ q = 2 $).



    加载中


    [1] G. Anello, F. Faraci, A. Iannizzotto, On a problem of Huang concerning best constants in Sobolev embeddings, Annali di Matematica, 194 (2015), 767–779. doi: 10.1007/s10231-013-0397-8
    [2] R. Benguria, The von Weizsäcker and exchange corrections in the Thomas-Fermi theory, Ph. D. thesis of Princeton University, 1979.
    [3] R. Benguria, H. Brézis, E. H. Lieb, The Thomas-Fermi-von Weizsäcker theory of atoms and molecules, Commun. Math. Phys., 79 (1981), 167–180. doi: 10.1007/BF01942059
    [4] M. van den Berg, Estimates for the torsion function and Sobolev constants, Potential Anal., 36 (2012), 607–616. doi: 10.1007/s11118-011-9246-9
    [5] M. S. Berger, M. Schechter, Embedding theorems and quasi-linear elliptic boundary value problems for unbounded domains, T. Am. Math. Soc., 172 (1972), 261–278. doi: 10.1090/S0002-9947-1972-0312241-X
    [6] L. Brasco, On principal frequencies and isoperimetric ratios in convex sets, Ann. Fac. Sci. Toulouse Math., 29 (2020), 977–1005. doi: 10.5802/afst.1653
    [7] L. Brasco, G. Franzina, B. Ruffini, Schrödinger operators with negative potentials and Lane-Emden densities, J. Funct. Anal., 274 (2018), 1825–1863. doi: 10.1016/j.jfa.2017.10.005
    [8] L. Brasco, D. Mazzoleni, On principal frequencies, volume and inradius in convex sets, Nonlinear Differ. Equ. Appl., 27 (2020), 12. doi: 10.1007/s00030-019-0614-2
    [9] H. Brezis, L. Oswald, Remarks on sublinear elliptic equations, Nonlinear Anal., 10 (1986), 55–64. doi: 10.1016/0362-546X(86)90011-8
    [10] D. Bucur, G. Buttazzo, Variational Methods in Shape Optimization Problems, Boston, MA: Birkhäuser Boston, Inc., 2005.
    [11] H. Bueno, G. Ercole, Solutions of the Cheeger problem via torsion functions, J. Math. Anal. Appl., 381 (2011), 263–279. doi: 10.1016/j.jmaa.2011.03.002
    [12] G. Buttazzo, S. Guarino Lo Bianco, M. Marini, Sharp estimates for the anisotropic torsional rigidity and the principal frequency, J. Math. Anal. Appl., 457 (2018), 1153–1172. doi: 10.1016/j.jmaa.2017.03.055
    [13] T. Carroll, J. Ratzkin, Interpolating between torsional rigidity and principal frequency, J. Math. Anal. Appl., 379 (2011), 818–826. doi: 10.1016/j.jmaa.2011.02.004
    [14] J. Cheeger, A lower bound for the smallest eigenvalue of the Laplacian, In: Proceedings of the Princeton conference in honor of Professor S. Bochner, Princeton University Press, 1970,195–199.
    [15] F. Della Pietra, G. di Blasio, N. Gavitone, Sharp estimates on the first Dirichlet eigenvalue of nonlinear elliptic operators via maximum principle, Adv. Nonlinear Anal., 9 (2020), 278–291.
    [16] J. B. Diaz, A. Weinstein, The torsional rigidity and variational methods, Am. J. Math., 70 (1948), 107–116. doi: 10.2307/2371935
    [17] G. Ercole, Absolute continuity of the best Sobolev constant of a bounded domain, J. Math. Anal. Appl., 404 (2013), 420–428. doi: 10.1016/j.jmaa.2013.03.044
    [18] M. Fleeman, E. Lundberg, The Bergman analytic content of planar domains, Comput. Meth. Funct. Th., 17 (2017), 369–379. doi: 10.1007/s40315-016-0189-4
    [19] M. Fleeman, B. Simanek, Torsional rigidity and Bergman analytic content of simply connected regions, Comput. Meth. Funct. Th., 19 (2019), 37–63. doi: 10.1007/s40315-018-0252-4
    [20] I. Ftouhi, On the Cheeger inequality for convex sets, J. Math. Anal. Appl., 504 (2021), 125443. doi: 10.1016/j.jmaa.2021.125443
    [21] J. Hersch, Physical interpretation and strengthing of M. Protter's method for vibrating nonhomogeneous membranes; its analogue for Schrödinger's equation, Pacific J. Math., 11 (1961), 971–980. doi: 10.2140/pjm.1961.11.971
    [22] J. Hersch, Sur la fréquence fondamentale d'une membrane vibrante: évaluations par défaut et principe de maximum, Z. Angew. Math. Phys., 11 (1960), 387–413. doi: 10.1007/BF01604498
    [23] R. Kajikiya, A priori estimate for the first eigenvalue of the $p-$Laplacian, Differ. Integral Equ., 28 (2015), 1011–1028.
    [24] R. Kajikiya, A priori estimates of positive solutions for sublinear elliptic equations, T. Am. Math. Soc., 361 (2009), 3793–3815. doi: 10.1090/S0002-9947-09-04875-2
    [25] B. Kawohl, Symmetry results for functions yielding best constants in Sobolev-type inequalities, DCDS, 6 (2000), 683–690. doi: 10.3934/dcds.2000.6.683
    [26] M. T. Kohler-Jobin, Symmetrization with equal Dirichlet integrals, SIAM J. Math. Anal., 13 (1982), 153–161. doi: 10.1137/0513011
    [27] E. H. Lieb, M. Loss, Analysis, 2 Eds., Providence, RI: American Mathematical Society, 2001.
    [28] E. Makai, On the principal frequency of a membrane and the torsional rigidity of a beam, In: Studies in math. analysis and related topics, Stanford: Stanford Univ. Press, 1962,227–231.
    [29] A. I. Nazarov, On the symmetry of extremals in the weight embedding theorem. Function theory and mathematical analysis, J. Math. Sci., 107 (2001), 3841–3859. doi: 10.1023/A:1012336127123
    [30] F. Santambrogio, Optimal transport for applied mathematicians, Basel: Birkhäuser, 2015.
    [31] G. Pólya, Two more inequalities between physical and geometrical quantities, J. Indian Math. Soc., 24 (1960), 413–419.
    [32] R. T. Rockafellar, Convex analysis, Princeton, N.J.: Princeton University Press, 1970.
    [33] G. Strang, $L^1$ and $L^\infty$ approximation of vector fields in the plane, In: North-Holland Mathematics Studies, 81 (1983), 273–288.
    [34] P. Takáč, L. Tello, M. Ulm, Variational problems with a $p-$homogeneous energy, Positivity, 6 (2002), 75–94. doi: 10.1023/A:1012088127719
    [35] D. Zucco, Dirichlet conditions in Poincaré-Sobolev inequalities: the sub-homogeneous case, Calc. Var., 58 (2019), 89. doi: 10.1007/s00526-019-1547-7
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1518) PDF downloads(67) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog