The approximation in the sense of $ \Gamma $-convergence of nonisotropic Griffith-type functionals, with $ p- $growth ($ p > 1 $) in the symmetrized gradient, by means of a suitable sequence of non-local convolution type functionals defined on Sobolev spaces, is analysed.
Citation: Fernando Farroni, Giovanni Scilla, Francesco Solombrino. On some non-local approximation of nonisotropic Griffith-type functionals[J]. Mathematics in Engineering, 2022, 4(4): 1-22. doi: 10.3934/mine.2022031
The approximation in the sense of $ \Gamma $-convergence of nonisotropic Griffith-type functionals, with $ p- $growth ($ p > 1 $) in the symmetrized gradient, by means of a suitable sequence of non-local convolution type functionals defined on Sobolev spaces, is analysed.
[1] | L. Ambrosio, A. Coscia, G. Dal Maso, Fine properties of functions with bounded deformation, Arch. Rational Mech. Anal., 139 (1997), 201–238. doi: 10.1007/s002050050051 |
[2] | L. Ambrosio, N. Fusco, D. Pallara, Functions of bounded variation and free discontinuity problems, Clarendon Press, 2000. |
[3] | G. Bellettini, A. Coscia, G. Dal Maso, Compactness and lower semicontinuity properties in $SBD(\Omega)$, Math. Z., 228 (1998), 337–351. doi: 10.1007/PL00004617 |
[4] | A. Braides, Approximation of free-discontinuity problems, Springer Science & Business Media, 1998. |
[5] | A. Braides, $\Gamma$-convergence for beginners, Oxford: Oxford University Press, 2002. |
[6] | A. Braides, G. Dal Maso, Non-local approximation of the Mumford-Shah functional, Calc. Var., 5 (1997), 293–322. doi: 10.1007/s005260050068 |
[7] | F. Cagnetti, A. Chambolle, L. Scardia, Korn and Poincaré-Korn inequalities for functions with a small jump set, Math. Ann., 2021, https://doi.org/10.1007/s00208-021-02210-w. |
[8] | A. Chambolle, V. Crismale, A density result in $GSBD^p$ with applications to the approximation of brittle fracture energies, Arch. Rational Mech. Anal., 232 (2019), 1329–1378. doi: 10.1007/s00205-018-01344-7 |
[9] | A. Chambolle, V. Crismale, Phase-field approximation for a class of cohesive fracture energies with an activation threshold, Adv. Calc. Var., 2020, https://doi.org/10.1515/acv-2019-0018. |
[10] | A. Chambolle, V. Crismale, Compactness and lower semicontinuity in $GSBD$, J. Eur. Math. Soc., 23 (2021), 701–719. |
[11] | G. Cortesani, Sequences of non-local functionals which approximate free-discontinuity problems, Arch. Rational Mech. Anal., 144 (1998), 357–402. doi: 10.1007/s002050050121 |
[12] | G. Cortesani, R. Toader, A density result in SBV with respect to non-isotropic energies, Nonlinear Anal., 38 (1999), 585–604. doi: 10.1016/S0362-546X(98)00132-1 |
[13] | G. Cortesani, R. Toader, Non-local approximation of non-isotropic free-discontinuity problems, SIAM J. Appl. Math., 59 (1999), 1507–1519. doi: 10.1137/S0036139997327691 |
[14] | V. Crismale, M. Friedrich, F. Solombrino, Integral representation for energies in linear elasticity with surface discontinuities, Adv. Calc. Var., 2020, https://doi.org/10.1515/acv-2020-0047. |
[15] | V. Crismale, G. Scilla, F. Solombrino, A derivation of Griffith functionals from discrete finite-difference models, Calc. Var., 59 (2020), 193. doi: 10.1007/s00526-020-01858-7 |
[16] | G. Dal Maso, An introduction to $\Gamma$-convergence, Birkhäuser, 1993. |
[17] | G. Dal Maso, Generalized functions of bounded deformation, J. Eur. Math. Soc., 15 (2013), 1943–1997. doi: 10.4171/JEMS/410 |
[18] | G. Del Nin, Rectifiability of the jump set of locally integrable functions, Ann. Scuola Norm Sci., 2020, In press. |
[19] | L. Evans, R. Gariepy, Measure theory and fine properties of functions, revised edition, CRC Press, 2015. |
[20] | M. Friedrich, M. Perugini, F. Solombrino, $\Gamma$-convergence for free-discontinuity problems in linear elasticity: Homogenization and relaxation, arXiv: 2010.05461. |
[21] | L. Lussardi, E. Villa, A general formula for the anisotropic outer Minkowski content of a set, P. Roy. Soc. Edinb. A, 146 (2016), 393–413. doi: 10.1017/S0308210515000542 |
[22] | M. Negri, A non-local approximation of free discontinuity problems in $SBV$ and $SBD$, Calc. Var., 25 (2005), 33–62. |
[23] | G. Scilla, F. Solombrino, Non-local approximation of the Griffith functional, Nonlinear Differ. Equ. Appl., 28 (2021), 17. doi: 10.1007/s00030-021-00682-y |
[24] | R. Temam, Mathematical problems in plasticity, Gauthier-Villars, 1985. |