Citation: Manuel Friedrich. Griffith energies as small strain limit of nonlinear models for nonsimple brittle materials[J]. Mathematics in Engineering, 2020, 2(1): 75-100. doi: 10.3934/mine.2020005
[1] | Agostiniani V, Dal Maso G, DeSimone A (2012) Linear elasticity obtained from finite elasticity by Γ-convergence under weak coerciveness conditions. Ann Inst H Poincaré Anal Non Linéaire 29: 715-735. |
[2] | Alicandro R, Dal Maso G, Lazzaroni G, et al. (2018) Derivation of a linearised elasticity model from singularly perturbed multiwell energy functionals. Arch Ration Mech Anal 230: 1-45. doi: 10.1007/s00205-018-1240-6 |
[3] | Ambrosio L (1990) Existence theory for a new class of variational problems. Arch Ration Mech Anal 111: 291-322. doi: 10.1007/BF00376024 |
[4] | Ambrosio L (1994) On the lower semicontinuity of quasi-convex integrals in S BV(\Omega; \R^k). Nonlinear Anal Theor 23: 405-425. doi: 10.1016/0362-546X(94)90180-5 |
[5] | Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238. doi: 10.1007/s002050050051 |
[6] | Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford: Oxford University Press. |
[7] | Babadjian JF, Giacomini A (2014) Existence of strong solutions for quasi-static evolution in brittle fracture. Ann Sc Norm Super Pisa Cl Sci 13: 925-974. |
[8] | Ball JM, Currie JC, Olver PL (1981) Null Lagrangians, weak continuity, and variational problems of arbitrary order. J Funct Anal 41: 135-174. doi: 10.1016/0022-1236(81)90085-9 |
[9] | Batra RC (1976) Thermodynamics of non-simple elastic materials. J Elasticity 6: 451-456. doi: 10.1007/BF00040904 |
[10] | Blake A, Zisserman A (1987) Visual Reconstruction, Cambridge: The MIT Press. |
[11] | Bourdin B, Francfort GA, Marigo JJ (2008) The variational approach to fracture. J Elasticity 91: 5-148. doi: 10.1007/s10659-007-9107-3 |
[12] | Braides A (2002) Γ-Convergence for Beginners, Oxford: Oxford University Press. |
[13] | Braides A, Solci M, Vitali E (2007) A derivation of linear elastic energies from pair-interaction atomistic systems. Netw Heterog Media 2: 551-567. doi: 10.3934/nhm.2007.2.551 |
[14] | Capriz G (1985) Continua with latent microstructure. Arch Ration Mech Anal 90: 43-56. doi: 10.1007/BF00281586 |
[15] | Carriero M, Leaci A, Tomarelli F (1996) A second order model in image segmentation: Blake & Zisserman functional, In: Variational Methods for Discontinuous Structures, Basel: Birkhäuser, 57-72. |
[16] | Carriero M, Leaci A, Tomarelli F (2004) Second order variational problems with free discontinuity and free gradient discontinuity, In: Calculus of Variations: Topics from the Mathematical Heritage of Ennio De Giorgi, Quad Mat, 14: 135-186. |
[17] | Carriero M, Leaci A, Tomarelli F (1992) Plastic free discontinuities and special bounded hessian. C R Acad Sci 314: 595-600. |
[18] | Chambolle A (2003) A density result in two-dimensional linearized elasticity, and applications. Arch Ration Mech Anal 167: 167-211. |
[19] | Chambolle A, Conti S, Francfort G (2016) Korn-Poincaré inequalities for functions with a small jump set. Indiana Univ Math J 65: 1373-1399. doi: 10.1512/iumj.2016.65.5852 |
[20] | Chambolle A, Conti S, Francfort G (2018) Approximation of a brittle fracture energy with a constraint of non-interpenetration. Arch Ration Mech Anal 228: 867-889. doi: 10.1007/s00205-017-1207-z |
[21] | Chambolle A, Conti S, Francfort G (2019) Approximation of functions with small jump sets and existence of strong minimizers of Griffith's energy. J Math Pures Appl 128: 119-139. doi: 10.1016/j.matpur.2019.02.001 |
[22] | Chambolle A, Giacomini A, Ponsiglione M (2007) Piecewise rigidity. J Funct Anal 244: 134-153. doi: 10.1016/j.jfa.2006.11.006 |
[23] | Conti S, Focardi M, Iurlano F (2018) Which special functions of bounded deformation have bounded variation? P Roy Soc Edinb A 148: 33-50. doi: 10.1017/S030821051700004X |
[24] | Conti S, Focardi M, Iurlano F (2017) Integral representation for functionals defined on S BDp in dimension two. Arch Rat Mech Anal 223: 1337-1374. doi: 10.1007/s00205-016-1059-y |
[25] | Chambolle A, Crismale V (2019) A density result in GS BDp with applications to the approximation of brittle fracture energies. Arch Ration Mech Anal 232: 1329-1378. doi: 10.1007/s00205-018-01344-7 |
[26] | Chambolle A, Crismale V (2018) Compactness and lower semicontinuity in GS BD. J Eur Math Soc http://arxiv.org/abs/1802.03302. |
[27] | Chambolle A, Crismale V (2018) Existence of strong solutions to the Dirichlet problem for Griffith energy. Calc Var Partial Dif 58: 136. |
[28] | Crismale V (2018) On the approximation of S BD functions and some applications. http://arxiv.org/abs/1806.03076. |
[29] | Cortesani G, Toader R (1999) A density result in SBV with respect to non-isotropic energies. Nonlinear Anal 38: 585-604. doi: 10.1016/S0362-546X(98)00132-1 |
[30] | Dal Maso G (1993) An Introduction to Γ-Convergence, Basel: Birkhäuser. |
[31] | Dal Maso G (2013) Generalized functions of bounded deformation. J Eur Math Soc 15: 1943-1997. doi: 10.4171/JEMS/410 |
[32] | Dal Maso G, Francfort GA, Toader R (2005) Quasistatic crack growth in nonlinear elasticity. Arch Ration Mech Anal 176: 165-225. doi: 10.1007/s00205-004-0351-4 |
[33] | Dal Maso G, Negri M, Percivale D (2002) Linearized elasticity as Γ-limit of finite elasticity. Set-valued Anal 10: 165-183. doi: 10.1023/A:1016577431636 |
[34] | Dal Maso G, Lazzaroni G (2010) Quasistatic crack growth in finite elasticity with noninterpenetration. Ann Inst H Poincaré Anal Non Linéaire 27: 257-290. |
[35] | De Giorgi E, Ambrosio L (1988) Un nuovo tipo di funzionale del calcolo delle variazioni. Acc Naz Lincei, Rend Cl Sci Fis Mat Natur 82: 199-210. |
[36] | Dunn JE, Serrin J (1985) On the thermomechanics of interstitial working. Arch Ration Mech Anal 88: 95-133. doi: 10.1007/BF00250907 |
[37] | Francfort GA, Marigo JJ (1998) Revisiting brittle fracture as an energy minimization problem. J Mech Phys Solids 46: 1319-1342. doi: 10.1016/S0022-5096(98)00034-9 |
[38] | Francfort GA, Larsen CJ (2003) Existence and convergence for quasi-static evolution in brittle fracture. Comm Pure Appl Math 56: 1465-1500. doi: 10.1002/cpa.3039 |
[39] | Friedrich M (2017) A derivation of linearized Griffith energies from nonlinear models. Arch Ration Mech Anal 225: 425-467. doi: 10.1007/s00205-017-1108-1 |
[40] | Friedrich M (2017) A Korn-type inequality in SBD for functions with small jump sets. Math Mod Meth Appl Sci 27: 2461-2484. doi: 10.1142/S021820251750049X |
[41] | Friedrich M (2018) A piecewise Korn inequality in SBD and applications to embedding and density results. SIAM J Math Anal 50: 3842-3918. doi: 10.1137/17M1129982 |
[42] | Friedrich M (2019) A compactness result in GS BVp and applications to Γ-convergence for free discontinuity problems. Calc Var Partial Dif 58: 86. doi: 10.1007/s00526-019-1530-3 |
[43] | Friedrich M, Kružík M (2018) On the passage from nonlinear to linearized viscoelasticity. SIAM J Math Anal 50: 4426-4456. doi: 10.1137/17M1131428 |
[44] | Friedrich M, Schmidt B (2015) On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime. Netw Heterog Media 10: 321-342. doi: 10.3934/nhm.2015.10.321 |
[45] | Friedrich M, Solombrino F (2018) Quasistatic crack growth in 2d-linearized elasticity. Ann Inst H Poincaré Anal Non Linéaire 35: 27-64. |
[46] | Friesecke G, James RD, MÜller S (2002) A theorem on geometric rigidity and the derivation of nonlinear plate theory from three-dimensional elasticity. Comm Pure Appl Math 55: 1461-1506. doi: 10.1002/cpa.10048 |
[47] | Giacomini A (2005) Ambrosio-Tortorelli approximation of quasi-static evolution of brittle fractures. Calc Var Partial Dif 22: 129-172. doi: 10.1007/s00526-004-0269-6 |
[48] | Giacomini A, Ponsiglione M (2006) A Γ-convergence approach to stability of unilateral minimality properties. Arch Ration Mech Anal 180: 399-447. doi: 10.1007/s00205-005-0392-3 |
[49] | Iurlano F (2014) A density result for GSBD and its application to the approximation of brittle fracture energies. Calc Var Partial Dif 51: 315-342. doi: 10.1007/s00526-013-0676-7 |
[50] | Mielke A, Roubíček T (2015) Rate-Independent Systems: Theory and Application, New York: Springer. |
[51] | Mielke A, Stefanelli U (2013) Linearized plasticity is the evolutionary Γ-limit of finite plasticity. J Eur Math Soc 15: 923-948. doi: 10.4171/JEMS/381 |
[52] | Negri M, Toader R (2015) Scaling in fracture mechanics by Bažant's law: from finite to linearized elasticity. Math Mod Meth Appl Sci 25: 1389-1420. doi: 10.1142/S0218202515500360 |
[53] | Negri M, Zanini C (2014) From finite to linear elastic fracture mechanics by scaling. Calc Var Partial Dif 50: 525-548. doi: 10.1007/s00526-013-0645-1 |
[54] | Schmidt B (2008) Linear Γ-limits of multiwell energies in nonlinear elasticity theory. Continuum Mech Thermodyn 20: 375-396. doi: 10.1007/s00161-008-0087-8 |
[55] | Schmidt B (2009) On the derivation of linear elasticity from atomistic models. Netw Heterog Media 4: 789-812. doi: 10.3934/nhm.2009.4.789 |
[56] | Schmidt B, Fraternali F, Ortiz M (2009) Eigenfracture: An eigendeformation approach to variational fracture. SIAM Mult Model Simul 7: 1237-1266. doi: 10.1137/080712568 |
[57] | Toupin RA (1962) Elastic materials with couple stresses. Arch Ration Mech Anal 11: 385-414. doi: 10.1007/BF00253945 |
[58] | Toupin RA (1964) Theory of elasticity with couple stress. Arch Ration Mech Anal 17: 85-112. doi: 10.1007/BF00253050 |