Research article Special Issues

A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1

  • Received: 20 June 2019 Accepted: 23 September 2019 Published: 27 November 2019
  • We prove the lower semicontinuity of functionals of the form $ \begin{equation*} \int \limits_\Omega \! V(\alpha) {\rm d} |{\rm E} u| \, , \end{equation*} $ with respect to the weak converge of $\alpha$ in $W^{1, \gamma}(\Omega)$, $\gamma \gt 1$, and the weak* convergence of $u$ in $BD(\Omega)$, where $\Omega \subset {\mathbb R}^n$. These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents $\gamma \lt n$.

    Citation: Vito Crismale, Gianluca Orlando. A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1[J]. Mathematics in Engineering, 2020, 2(1): 101-118. doi: 10.3934/mine.2020006

    Related Papers:

  • We prove the lower semicontinuity of functionals of the form $ \begin{equation*} \int \limits_\Omega \! V(\alpha) {\rm d} |{\rm E} u| \, , \end{equation*} $ with respect to the weak converge of $\alpha$ in $W^{1, \gamma}(\Omega)$, $\gamma \gt 1$, and the weak* convergence of $u$ in $BD(\Omega)$, where $\Omega \subset {\mathbb R}^n$. These functional arise in the variational modelling of linearised elasto-plasticity coupled with damage and their lower semicontinuity is crucial in the proof of existence of quasi-static evolutions. This is the first result achieved for subcritical exponents $\gamma \lt n$.


    加载中


    [1] Abdelmoula R, Marigo JJ, Weller T (2009) Construction d'une loi de fatigue à partir d'un modèle de forces cohésives: Cas d'une fissure en mode III. C R Mecanique 337: 53-59. doi: 10.1016/j.crme.2008.12.001
    [2] Alessi R, Ambati M, Gerasimov T, et al. (2018) Comparison of phase-field models of fracture coupled with plasticity, In: Advances in Computational Plasticity, Cham: Springer, 1-21.
    [3] Alessi R, Crismale V, Orlando G (2019) Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J Nonlinear Sci 29: 1041-1094. doi: 10.1007/s00332-018-9511-9
    [4] Alessi R, Marigo JJ, Vidoli S (2014) Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal 214: 575-615. doi: 10.1007/s00205-014-0763-8
    [5] Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: Variational formulation and main properties. Mech Mater 80: 351-367. doi: 10.1016/j.mechmat.2013.12.005
    [6] Alicandro R, Braides A, Shah J (1999) Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations. Interface Free Bound 1: 17-37.
    [7] Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57: 149-167. doi: 10.1007/s00466-015-1225-3
    [8] Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238. doi: 10.1007/s002050050051
    [9] Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford: Oxford University Press.
    [10] Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43: 999-1036. doi: 10.1002/cpa.3160430805
    [11] Artina M, Cagnetti F, Fornasier M, et al. (2017) Linearly constrained evolutions of critical points and an application to cohesive fractures. Math Mod Meth Appl Sci 27: 231-290. doi: 10.1142/S0218202517500014
    [12] Bensoussan A, Frehse J (1996) Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H1 regularity. Comment Math Univ Carolin 37: 285-304.
    [13] Bonetti E, Rocca E, Rossi R, et al. (2016) A rate-independent gradient system in damage coupled with plasticity via structured strains. ESAIM P Surv 54: 54-69. doi: 10.1051/proc/201654054
    [14] Braides A (2002) Γ-Convergence for Beginners, Oxford: Oxford University Press.
    [15] Cagnetti F, Toader R (2011) Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A young measures approach. ESAIM Contr Optim Calc Var 17: 1-27. doi: 10.1051/cocv/2009037
    [16] Chambolle A, Crismale V (2019) A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch Ration Mech Anal 232: 1329-1378. doi: 10.1007/s00205-018-01344-7
    [17] Conti S, Focardi M, Iurlano F (2016) Phase field approximation of cohesive fracture models. Ann Inst H Poincaré Anal Non Linéaire 33: 1033-1067.
    [18] Crismale V (2016) Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Contr Optim Calc Var 22: 883-912. doi: 10.1051/cocv/2015037
    [19] Crismale V (2017) Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann Mat Pura Appl 196: 641-685. doi: 10.1007/s10231-016-0590-7
    [20] Crismale V, Lazzaroni G (2016) Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc Var Partial Dif 55: 17. doi: 10.1007/s00526-015-0947-6
    [21] Crismale V, Lazzaroni G, Orlando G (2018) Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue. Math Mod Meth Appl Sci 28: 1371-1412. doi: 10.1142/S0218202518500379
    [22] Crismale V, Orlando G (2018) A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n. NoDEA Nonlinear Diff 25: 16. doi: 10.1007/s00030-018-0507-9
    [23] Dal Maso G, DeSimone A, Mora MG (2006) Quasistatic evolution problems for linearly elasticperfectly plastic materials. Arch Ration Mech Anal 180: 237-291. doi: 10.1007/s00205-005-0407-0
    [24] Dal Maso G, Orlando G, Toader R (2016) Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The antiplane case. Calc Var Partial Dif 55: 45. doi: 10.1007/s00526-016-0981-z
    [25] Dal Maso G, Orlando G, Toader R (2017) Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv Calc Var 10: 183-207.
    [26] Dal Maso G, Zanini C (2007) Quasi-static crack growth for a cohesive zone model with prescribed crack path. P Roy Soc Edinb A 137: 253-279. doi: 10.1017/S030821050500079X
    [27] Davoli E, Roubíček T, Stefanelli U (2019) Dynamic perfect plasticity and damage in viscoelastic solids. ZAMM J Appl Math Mech 99: e201800161.
    [28] Demyanov A (2009) Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc Var Partial Dif 34: 23-72. doi: 10.1007/s00526-008-0174-5
    [29] Evans LC, Gariepy RF (1992) Measure Theory and Fine Properties of Functions, Boca Raton: CRC Press.
    [30] Heinonen J, Kilpeläinen T, Martio O (2006) Nonlinear Potential Theory of Degenerate Elliptic Equations, Mineola: Dover Publications Inc.
    [31] Horn RA, Johnson CR (2013) Matrix Analysis, 2 Eds., Cambridge: Cambridge University Press.
    [32] Ibrahimbegovic A (2009) Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Dordrecht: Springer.
    [33] Iurlano F (2014) A density result for GSBD and its application to the approximation of brittle fracture energies. Calc Var Partial Dif 51: 315-342. doi: 10.1007/s00526-013-0676-7
    [34] Knees D, Rossi R, Zanini C (2013) A vanishing viscosity approach to a rate-independent damage model. Math Mod Meth Appl Sci 23: 565-616. doi: 10.1142/S021820251250056X
    [35] Lemaitre J, Chabouche J (1990) Mechanics of Solid Materials, Avon: Cambridge University Press.
    [36] Lions PL (1985) The concentration-compactness principle in the calculus of variations. The limit case, part I. Rev Mat Iberoam 1: 145-201.
    [37] Melching D, Scala R, Zeman J (2019) Damage model for plastic materials at finite strains. ZAMM J Appl Math Mech 99: e201800032.
    [38] Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory. Int J Plasticity 84: 1-32. doi: 10.1016/j.ijplas.2016.04.011
    [39] Miehe C, Hofacker M, Schänzel LM, et al. (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl M 294: 486-522.
    [40] Mielke A (2015) Evolution of rate-independent systems, In: Evolutionary Equations, Amsterdam: Elsevier/North-Holland, 461-559.
    [41] Negri M, Scala R (2017) A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal Real 38: 271-305. doi: 10.1016/j.nonrwa.2017.05.002
    [42] Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: I. Les concepts fondamentaux. CR Mécanique 338: 191-198.
    [43] Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: II. Les modèles à gradient, CR Mécanique 338: 199-206.
    [44] Reshetnyak YG (1968) Weak convergence of completely additive vector functions on a set. Siberian Math J 9: 1039-1045. doi: 10.1007/BF02196453
    [45] Rossi R (2018) From visco to perfect plasticity in thermoviscoelastic materials. ZAMM J Appl Math Mech 98: 1123-1189. doi: 10.1002/zamm.201700205
    [46] Rossi R, Thomas M (2017) Coupling rate-independent and rate-dependent processes: Existence results. SIAM J Math Anal 49: 1419-1494. doi: 10.1137/15M1051567
    [47] Roubíček T, Valdman J (2016) Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. SIAM J Appl Math 76: 314-340. doi: 10.1137/15M1019647
    [48] Roubíček T, Valdman J (2017) Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math Mech Solids 22: 1267-1287. doi: 10.1177/1081286515627674
    [49] Temam R (1985) Mathematical Problems in Plasticity, Paris: Gauthier-Villars.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3088) PDF downloads(398) Cited by(3)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog