Citation: Vito Crismale, Gianluca Orlando. A lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,γ, γ > 1[J]. Mathematics in Engineering, 2020, 2(1): 101-118. doi: 10.3934/mine.2020006
[1] | Abdelmoula R, Marigo JJ, Weller T (2009) Construction d'une loi de fatigue à partir d'un modèle de forces cohésives: Cas d'une fissure en mode III. C R Mecanique 337: 53-59. doi: 10.1016/j.crme.2008.12.001 |
[2] | Alessi R, Ambati M, Gerasimov T, et al. (2018) Comparison of phase-field models of fracture coupled with plasticity, In: Advances in Computational Plasticity, Cham: Springer, 1-21. |
[3] | Alessi R, Crismale V, Orlando G (2019) Fatigue effects in elastic materials with variational damage models: A vanishing viscosity approach. J Nonlinear Sci 29: 1041-1094. doi: 10.1007/s00332-018-9511-9 |
[4] | Alessi R, Marigo JJ, Vidoli S (2014) Gradient damage models coupled with plasticity and nucleation of cohesive cracks. Arch Ration Mech Anal 214: 575-615. doi: 10.1007/s00205-014-0763-8 |
[5] | Alessi R, Marigo JJ, Vidoli S (2015) Gradient damage models coupled with plasticity: Variational formulation and main properties. Mech Mater 80: 351-367. doi: 10.1016/j.mechmat.2013.12.005 |
[6] | Alicandro R, Braides A, Shah J (1999) Free-discontinuity problems via functionals involving the L1-norm of the gradient and their approximations. Interface Free Bound 1: 17-37. |
[7] | Ambati M, Kruse R, De Lorenzis L (2016) A phase-field model for ductile fracture at finite strains and its experimental verification. Comput Mech 57: 149-167. doi: 10.1007/s00466-015-1225-3 |
[8] | Ambrosio L, Coscia A, Dal Maso G (1997) Fine properties of functions with bounded deformation. Arch Ration Mech Anal 139: 201-238. doi: 10.1007/s002050050051 |
[9] | Ambrosio L, Fusco N, Pallara D (2000) Functions of Bounded Variation and Free Discontinuity Problems, Oxford: Oxford University Press. |
[10] | Ambrosio L, Tortorelli VM (1990) Approximation of functionals depending on jumps by elliptic functionals via Γ-convergence. Comm Pure Appl Math 43: 999-1036. doi: 10.1002/cpa.3160430805 |
[11] | Artina M, Cagnetti F, Fornasier M, et al. (2017) Linearly constrained evolutions of critical points and an application to cohesive fractures. Math Mod Meth Appl Sci 27: 231-290. doi: 10.1142/S0218202517500014 |
[12] | Bensoussan A, Frehse J (1996) Asymptotic behaviour of the time dependent Norton-Hoff law in plasticity theory and H1 regularity. Comment Math Univ Carolin 37: 285-304. |
[13] | Bonetti E, Rocca E, Rossi R, et al. (2016) A rate-independent gradient system in damage coupled with plasticity via structured strains. ESAIM P Surv 54: 54-69. doi: 10.1051/proc/201654054 |
[14] | Braides A (2002) Γ-Convergence for Beginners, Oxford: Oxford University Press. |
[15] | Cagnetti F, Toader R (2011) Quasistatic crack evolution for a cohesive zone model with different response to loading and unloading: A young measures approach. ESAIM Contr Optim Calc Var 17: 1-27. doi: 10.1051/cocv/2009037 |
[16] | Chambolle A, Crismale V (2019) A density result in GSBDp with applications to the approximation of brittle fracture energies. Arch Ration Mech Anal 232: 1329-1378. doi: 10.1007/s00205-018-01344-7 |
[17] | Conti S, Focardi M, Iurlano F (2016) Phase field approximation of cohesive fracture models. Ann Inst H Poincaré Anal Non Linéaire 33: 1033-1067. |
[18] | Crismale V (2016) Globally stable quasistatic evolution for a coupled elastoplastic-damage model. ESAIM Contr Optim Calc Var 22: 883-912. doi: 10.1051/cocv/2015037 |
[19] | Crismale V (2017) Globally stable quasistatic evolution for strain gradient plasticity coupled with damage. Ann Mat Pura Appl 196: 641-685. doi: 10.1007/s10231-016-0590-7 |
[20] | Crismale V, Lazzaroni G (2016) Viscous approximation of quasistatic evolutions for a coupled elastoplastic-damage model. Calc Var Partial Dif 55: 17. doi: 10.1007/s00526-015-0947-6 |
[21] | Crismale V, Lazzaroni G, Orlando G (2018) Cohesive fracture with irreversibility: Quasistatic evolution for a model subject to fatigue. Math Mod Meth Appl Sci 28: 1371-1412. doi: 10.1142/S0218202518500379 |
[22] | Crismale V, Orlando G (2018) A Reshetnyak-type lower semicontinuity result for linearised elasto-plasticity coupled with damage in W1,n. NoDEA Nonlinear Diff 25: 16. doi: 10.1007/s00030-018-0507-9 |
[23] | Dal Maso G, DeSimone A, Mora MG (2006) Quasistatic evolution problems for linearly elasticperfectly plastic materials. Arch Ration Mech Anal 180: 237-291. doi: 10.1007/s00205-005-0407-0 |
[24] | Dal Maso G, Orlando G, Toader R (2016) Fracture models for elasto-plastic materials as limits of gradient damage models coupled with plasticity: The antiplane case. Calc Var Partial Dif 55: 45. doi: 10.1007/s00526-016-0981-z |
[25] | Dal Maso G, Orlando G, Toader R (2017) Lower semicontinuity of a class of integral functionals on the space of functions of bounded deformation. Adv Calc Var 10: 183-207. |
[26] | Dal Maso G, Zanini C (2007) Quasi-static crack growth for a cohesive zone model with prescribed crack path. P Roy Soc Edinb A 137: 253-279. doi: 10.1017/S030821050500079X |
[27] | Davoli E, Roubíček T, Stefanelli U (2019) Dynamic perfect plasticity and damage in viscoelastic solids. ZAMM J Appl Math Mech 99: e201800161. |
[28] | Demyanov A (2009) Regularity of stresses in Prandtl-Reuss perfect plasticity. Calc Var Partial Dif 34: 23-72. doi: 10.1007/s00526-008-0174-5 |
[29] | Evans LC, Gariepy RF (1992) Measure Theory and Fine Properties of Functions, Boca Raton: CRC Press. |
[30] | Heinonen J, Kilpeläinen T, Martio O (2006) Nonlinear Potential Theory of Degenerate Elliptic Equations, Mineola: Dover Publications Inc. |
[31] | Horn RA, Johnson CR (2013) Matrix Analysis, 2 Eds., Cambridge: Cambridge University Press. |
[32] | Ibrahimbegovic A (2009) Nonlinear Solid Mechanics: Theoretical Formulations and Finite Element Solution Methods, Dordrecht: Springer. |
[33] | Iurlano F (2014) A density result for GSBD and its application to the approximation of brittle fracture energies. Calc Var Partial Dif 51: 315-342. doi: 10.1007/s00526-013-0676-7 |
[34] | Knees D, Rossi R, Zanini C (2013) A vanishing viscosity approach to a rate-independent damage model. Math Mod Meth Appl Sci 23: 565-616. doi: 10.1142/S021820251250056X |
[35] | Lemaitre J, Chabouche J (1990) Mechanics of Solid Materials, Avon: Cambridge University Press. |
[36] | Lions PL (1985) The concentration-compactness principle in the calculus of variations. The limit case, part I. Rev Mat Iberoam 1: 145-201. |
[37] | Melching D, Scala R, Zeman J (2019) Damage model for plastic materials at finite strains. ZAMM J Appl Math Mech 99: e201800032. |
[38] | Miehe C, Aldakheel F, Raina A (2016) Phase field modeling of ductile fracture at finite strains: A variational gradient-extended plasticity-damage theory. Int J Plasticity 84: 1-32. doi: 10.1016/j.ijplas.2016.04.011 |
[39] | Miehe C, Hofacker M, Schänzel LM, et al. (2015) Phase field modeling of fracture in multi-physics problems. Part II. Coupled brittle-to-ductile failure criteria and crack propagation in thermo-elastic-plastic solids. Comput Method Appl M 294: 486-522. |
[40] | Mielke A (2015) Evolution of rate-independent systems, In: Evolutionary Equations, Amsterdam: Elsevier/North-Holland, 461-559. |
[41] | Negri M, Scala R (2017) A quasi-static evolution generated by local energy minimizers for an elastic material with a cohesive interface. Nonlinear Anal Real 38: 271-305. doi: 10.1016/j.nonrwa.2017.05.002 |
[42] | Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: I. Les concepts fondamentaux. CR Mécanique 338: 191-198. |
[43] | Pham K, Marigo JJ (2010) Approche variationnelle de l'endommagement: II. Les modèles à gradient, CR Mécanique 338: 199-206. |
[44] | Reshetnyak YG (1968) Weak convergence of completely additive vector functions on a set. Siberian Math J 9: 1039-1045. doi: 10.1007/BF02196453 |
[45] | Rossi R (2018) From visco to perfect plasticity in thermoviscoelastic materials. ZAMM J Appl Math Mech 98: 1123-1189. doi: 10.1002/zamm.201700205 |
[46] | Rossi R, Thomas M (2017) Coupling rate-independent and rate-dependent processes: Existence results. SIAM J Math Anal 49: 1419-1494. doi: 10.1137/15M1051567 |
[47] | Roubíček T, Valdman J (2016) Perfect plasticity with damage and healing at small strains, its modeling, analysis, and computer implementation. SIAM J Appl Math 76: 314-340. doi: 10.1137/15M1019647 |
[48] | Roubíček T, Valdman J (2017) Stress-driven solution to rate-independent elasto-plasticity with damage at small strains and its computer implementation. Math Mech Solids 22: 1267-1287. doi: 10.1177/1081286515627674 |
[49] | Temam R (1985) Mathematical Problems in Plasticity, Paris: Gauthier-Villars. |