Citation: Rupert L. Frank, Tobias König, Hynek Kovařík. Energy asymptotics in the Brezis–Nirenberg problem: The higher-dimensional case[J]. Mathematics in Engineering, 2020, 2(1): 119-140. doi: 10.3934/mine.2020007
[1] | Aubin T (1976) Problèmes isopérimétriques et espaces de Sobolev. J Differ Geom 11: 573-598. doi: 10.4310/jdg/1214433725 |
[2] | Bahri A, Coron JM (1988) On a nonlinear elliptic equation involving the critical Sobolev exponent: The effect of the topology of the domain. Commun Pur Appl Math 41: 253-294. doi: 10.1002/cpa.3160410302 |
[3] | Brézis H, Nirenberg L (1983) Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun Pur Appl Math 36: 437-477. doi: 10.1002/cpa.3160360405 |
[4] | Brézis H, Peletier LA (1989) Asymptotics for elliptic equations involving critical growth, In: Partial Differential Equations and the Calculus of Variations, Boston: Birkhäuser, 149-192. |
[5] | Flucher M, Wei J (1998) Asymptotic shape and location of small cores in elliptic free-boundary problems. Math Z 228: 683-703. doi: 10.1007/PL00004636 |
[6] | Frank RL, König T, Kovařík H (2019) Energy asymptotics in the three-dimensional Brezis-Nirenberg problem. Preprint, arXiv:1908.01331. |
[7] | Han ZC (1991) Asymptotic approach to singular solutions for nonlinear elliptic equations involving critical Sobolev exponent. Ann Inst H Poincaré Anal Non Linéaire 8: 159-174. |
[8] | Molle R, Pistoia A (2003) Concentration phenomena in elliptic problems with critical and supercritical growth. Adv. Diff. Equations 8: 547-570. |
[9] | Rey O (1989) Proof of two conjectures of H. Brezis and L. A. Peletier. Manuscripta Math 65: 19-37. doi: 10.1007/BF01168364 |
[10] | Rey O (1990) The role of the Green's function in a non-linear elliptic equation involving the critical Sobolev exponent. J Funct Anal 89: 1-52. doi: 10.1016/0022-1236(90)90002-3 |
[11] | Rodemich E (1966) The Sobolev Inequality with Best Possible Constant, Analysis Seminar Caltech: Spring, 1966. |
[12] | Rosen G (1971) Minimum value for c in the Sobolev inequality ||φ3|| ≤ c||▽φ||3. SIAM J Appl Math 21: 30-32. |
[13] | Takahashi F (2004) On the location of blow up points of least energy solutions to the Brezis- Nirenberg equation. Funkc Ekvacioj 47: 145-166. doi: 10.1619/fesi.47.145 |
[14] | Talenti G (1976) Best constant in Sobolev inequality. Ann Mat Pur Appl 110: 353-372. doi: 10.1007/BF02418013 |
[15] | Wei J (1998) Asymptotic behavior of least energy solutions to a semilinear Dirichlet problem near the critical exponent. J Math Soc JPN 50: 139-153. doi: 10.2969/jmsj/05010139 |