
http://www.aimspress.com/journal/mine

Mathematics in Engineering, 2(1): 119–140.
DOI:10.3934/mine.2020007
Received: 24 October 2019
Accepted: 23 November 2019
Published: 06 December 2019

Research article

Energy asymptotics in the Brezis–Nirenberg problem: The
higher-dimensional case†

Rupert L. Frank1,2, Tobias König1 and Hynek Kovařík3,∗
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Abstract: For dimensions N ≥ 4, we consider the Brézis-Nirenberg variational problem of finding

S (εV) := inf
0.u∈H1

0 (Ω)

∫
Ω
|∇u|2 dx + ε

∫
Ω

V |u|2 dx(∫
Ω
|u|q dx

)2/q ,

where q = 2N
N−2 is the critical Sobolev exponent, Ω ⊂ RN is a bounded open set and V : Ω → R is a

continuous function. We compute the asymptotics of S (0) − S (εV) to leading order as ε → 0+. We
give a precise description of the blow-up profile of (almost) minimizing sequences and, in particular,
we characterize the concentration points as being extrema of a quotient involving the Robin function.
This complements the results from our recent paper in the case N = 3.
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1. Introduction and main results

1.1. Setting of the problem

Let N ≥ 4 and let Ω ⊂ RN be a bounded open set. For ε > 0 and a function V ∈ C(Ω), Brézis and
Nirenberg study in their famous paper [3] the quotient functional

SεV[u] :=

∫
Ω
|∇u|2 dx + ε

∫
Ω

V |u|2 dx(∫
Ω
|u|q dx

)2/q , q =
2N

N − 2
, (1.1)

and the corresponding variational problem of finding

S (εV) := inf
0.u∈H1

0 (Ω)
SεV[u] . (1.2)

This number is to be compared with

S N = πN(N − 2)
(
Γ(N/2)
Γ(N)

)2/N

,

the sharp constant [1, 11, 12, 14] in the Sobolev inequality. Indeed, in [3] it is shown that S (εV) < S N

as soon as
N(V) := {x ∈ Ω : V(x) < 0} (1.3)

is non-empty. This behavior is in stark contrast to the case N = 3 also treated in [3], where there is an
εV > 0 such that S (εV) = S N for all ε ∈ (0, εV] even if N(V) is non-empty.

The purpose of this paper is, for N ≥ 4, to describe the asymptotics of S N − S (εV) to leading order
as ε → 0, as well as the asymptotic behavior of corresponding (almost) minimizing sequences and,
in particular, their concentration behavior. This is the higher-dimensional complement to our recent
paper [6], where analogous results are shown in the more difficult case N = 3.

Notation. To prepare the statement of our main results, we now introduce some key objects for the
following analysis. An important role is played by the Green’s function of the Dirichlet Laplacian on
Ω, which, in the normalization of [10], satisfies in the sense of distributions

−∆x G(x, y) = (N − 2)ωN δy in Ω,

G(x, y) = 0 on ∂Ω,

(1.4)

where ωN is the surface of the unit sphere in RN , and δy denotes the Dirac delta function centered at y.
We denote by

H(x, y) =
1

|x − y|N−2 −G(x, y) (1.5)

the regular part of G. The function H(x, ·), defined on Ω \ {x}, extends to a continuous function on Ω

and we may define the Robin function

φ(x) := H(x, x) . (1.6)
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Using this function, we define the numbers

σN(Ω,V) := sup
x∈N(V)

(
φ(x)−

2
N−4 |V(x)|

N−2
N−4

)
, N ≥ 5 ,

σ4(Ω,V) := sup
x∈N(V)

(
φ(x)−1|V(x)|

)
, N = 4 ,

which will turn out to essentially be the coefficients of the leading order term in S N − S (εV).

Another central role is played by the family of functions

Ux,λ(y) =
λ(N−2)/2

(1 + λ2|x − y|2)(N−2)/2 x ∈ RN , λ > 0. (1.7)

It is well-known that the Ux,λ are exactly the optimizers of the Sobolev inequality on RN .
Since (1.1) is a perturbation of the Sobolev quotient, it is reasonable to expect the Ux,λ to be nearly

optimal functions for (1.2). However, since (1.2) is set on H1
0(Ω), we consider, as in [2], the functions

PUx,λ ∈ H1
0(Ω) uniquely determined by the properties

∆PUx,λ = ∆Ux,λ in Ω, PUx,λ = 0 on ∂Ω . (1.8)

Moreover, let
Tx,λ := span

{
PUx,λ, ∂λPUx,λ, ∂xi PUx,λ (i = 1, 2, . . . ,N)

}
and let T⊥x,λ be the orthogonal complement of Tx,λ in H1

0(Ω) with respect to the inner product
∫

Ω
∇u ·

∇v dy.

In what follows we denote by ‖ · ‖ the L2−norm on Ω. Finally, given a set X and two functions
f1, f2 : X → R, we write f1 . f2 if there exists a numerical constant c such that f1(x) ≤ c f2(x) for all
x ∈ X.

1.2. Main results

Throughout this paper and without further mention we assume that the following properties are
satisfied.

Assumption 1.1. The set Ω ⊂ RN , N ≥ 4, is open and bounded and has a C2 boundary. Moreover,
V ∈ C(Ω) and N(V) , ∅, with N(V) defined in (1.3).

Here is our first main result. It gives the asymptotics of S N − S (εV) to leading order in ε.

Theorem 1.2. As ε → 0+, we have

S (εV) = S N −CN σN(Ω,V) ε
N−2
N−4 + o(ε

N−2
N−4 ) if N ≥ 5 (1.9)

and

S (εV) = S 4 − exp
(
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)

if N = 4. (1.10)

The constants CN are defined in equation (1.14) below.
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Our second main result shows that the blow-up profile of an arbitrary almost minimizing sequence
(uε) is given to leading order by the family of functions PUx,λ. Moreover, we give a precise
characterization of the blow-up speed λ = λε and of the point x0 around which the uε concentrate.

Theorem 1.3. Let (uε) ⊂ H1
0(Ω) be a family of functions such that

lim
ε→0

SεV[uε] − S (εV)
S N − S (εV)

= 0 and
∫

Ω

|uε |q dx =

(
S N

N(N − 2)

) q
q−2

. (1.11)

Then there are (xε) ⊂ Ω, (λε) ⊂ (0,∞), (αε) ⊂ R and (wε) ⊂ H1
0(Ω) with wε ∈ T⊥xε ,λε such that

uε = αε
(
PUxε ,λε + wε

)
(1.12)

and, along a subsequence, xε → x0 for some x0 ∈ N(V). Moreover,φ(x0)−
2

N−4 |V(x0)|
N−2
N−4 = σN(Ω,V), N ≥ 5,

φ(x0)−1|V(x0)| = σ4(Ω,V) , N = 4,‖∇wε‖ = o(ε
N−2

2N−8 ), N ≥ 5,
‖∇wε‖ ≤ exp

(
− 2

ε
(1 + o(1))σ4(Ω,V)−1

)
, N = 4,limε→0 ε λ

N−4
ε =

N (N−2)2 aN φ(x0)
2 bN |V(x0)| , N ≥ 5,

limε→0 ε ln λε =
2 φ(x0)
|V(x0)| , N = 4,αε = s

(
1 + DNε

N−2
N−4 + o(ε

N−2
N−4 )

)
, N ≥ 5,

αε = s
(
1 + exp

(
− 4

ε
(1 + o(1))σ4(Ω,V)−1

))
, N = 4,

for some s ∈ {±1} .

The constants aN , bN and DN are defined in equations (1.13) and (1.15) below.

The coefficients appearing in Theorems 1.2 and 1.3 are

aN :=
∫
RN

dz
(1 + z2)(N+2)/2 , bN :=


∫
RN

dz
(1+z2)N−2 , N ≥ 5,

ω4, N = 4,
(1.13)

as well as

CN := S
2−N

2
N (N(N − 2))

N−2
2

N − 4
N − 2

(
N(N − 2)2

2

) 2
4−N

a−
2

N−4
N b

N−2
N−4
N , N ≥ 5, (1.14)

and

DN := a−
2

N−4
N b

N−2
N−4
N S −

N
2

N (N(N − 2))
N
2 −

N−2
N−4

(
N − 2

2

)− N−2
N−4

, N ≥ 5. (1.15)

A simple computation using beta functions yields the numerical values

aN =
ωN

N
, N ≥ 4, and bN = ωN

Γ
(

N
2

)
Γ
(

N
2 − 2

)
2 Γ(N − 2)

, N ≥ 5.
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1.3. Discussion

Let us put our main results, Theorems 1.2 and 1.3, into perspective with respect to existing results
in the literature.

Of course, minimizers of the variational problem (1.2) satisfy the corresponding Euler–Lagrange
equation. It is natural to study general positive solutions of this equation, even if they do not arise
as minimizers of (1.2). In the special case where V is a negative constant, Brézis and Peletier [4]
discussed the concentration behavior of such general solutions and made some conjectures, which
were later proved by Han [7] and Rey [9]. Probably one can use their precise concentration results to
give an alternative proof of our main results in the special case where V is constant and probably one
can even extend the analysis of Han and Rey to the case of non-constant V .

Our approach here is different and, we believe, simpler for the problem at hand. We work directly
with the variational problem (1.2) and not with the Euler–Lagrange equation. Therefore, our
concentration results are not only true for minimizers but even for ‘almost minimizers’ in the sense of
(1.11). We believe that this is interesting in its own right. On the other hand, a disadvantage of our
method compared to the Han–Rey method is that it gives concentration results only in H1 norm and
not in L∞ norm and that it is restricted to energy minimizing solutions of the Euler–Lagrange
equation.

In the special case where V is a negative constant, our results are very similar to results obtained by
Takahashi [13], who combined elements from the Han–Rey analysis (see, e.g., [13, Equation (2.4) and
Lemma 2.6]) with variational ideas adapted from Wei’s treatment [15] of a closely related problem;
see also [5]. Takahashi obtains the energy asymptotics in Theorem 1.2 as well as the characterization
of the concentration point and the concentration scale in Theorem 1.3 under the assumption that uε is
a minimizer for (1.2). Thus, in our paper we generalize Takahashi’s results to non-constant V and to
almost minimizing sequences and we give an alternative, self-contained proof which does not rely on
the works of Han and Rey.

In dimensions N ≥ 5, the function φ−2/(N−4)|V |(N−2)/(N−4), which enters into the definition of
σN(Ω,V), has appeared earlier in the work [8] by Molle and Pistoia. Their setting, however, is
different from ours. On the one hand, they consider general positive solutions of the corresponding
Euler–Lagrange equation, not necessarily energy minimizers. On the other hand, they assume that the
blow-up point lies in the interior and they seem to assume that the blow-up scale satisfies
λε ∼ ε−1/(N−4) (see [8, Theorem 4.4]). In our energy minimizing setting we show that these
assumptions are satisfied for minimizers and, moreover, that the blow-up point is not only a critical
point, but a maximum point of the function φ−2/(N−4)|V |(N−2)/(N−4).

The present work is a companion paper to [6] relying on the techniques developed there in the three
dimensional case. In particular, Theorems 1.2 and 1.3 should be compared with [6, Theorems 1.3 and
1.7], respectively. Although the expansions for N ≥ 4 have the same structure as in the case N = 3, the
latter case is more involved. In fact, when N = 3, the coefficient of the leading order term, namely the
term of order ε, vanishes and one has to expand the energy to the next order, namely ε2.

Besides the extensions of known results that we achieve here, we also think it is worthwhile from
a methodological point of view to present our arguments again in the conceptually easier case N ≥ 4.
In the three-dimensional case the basic technique is iterated twice, which to some extent obscures the
underlying simple idea. Moreover, we hope our work sheds some new light on the similarities and
differencies between the two cases.

Mathematics in Engineering Volume 2, Issue 1, 119–140.



124

The structure of this paper is as follows. In Section 2 we prove the upper bound from Theorem
1.2 by inserting the PUx,λ as test functions. The proof of the corresponding lower bound is prepared
in Sections 3 and 4, where we derive a crude asymptotic expansion for a general almost minimizing
sequence (uε) and the corresponding expansion of SεV[uε]. Section 5 contains the proof of Theorems
1.2 and 1.3. A crucial ingredient there is the coercivity inequality (5.1) from [10], which allows us to
estimate the remainder terms and to refine the aforementioned expansion of uε . Finally, an appendix
contains two auxiliary technical results.

2. Upper bound

The computation of the upper bound to S (εV) uses the functions PUx,λ, with suitably chosen x and
λ, as test functions. The following theorem gives a precise expansion of the value SεV[PUx,λ]. To state
it, we introduce the distance to the boundary of Ω as

d(x) = dist(x, ∂Ω), x ∈ Ω.

Theorem 2.1. Let x = xλ be a sequence of points such that d(x)λ→ ∞. Then as λ→ ∞, we have∫
Ω

|∇PUx,λ|
2 dy = N(N − 2)

(
S N

N(N − 2)

) q
q−2

+ N(N − 2) aN λ
2−N φ(x) + O((d(x)λ)

4
3−N) , (2.1)∫

Ω

VPU2
x,λ dy =

λ−2 bN V(x) + O
(
(d(x)λ)2−N

)
+ o(λ−2), N ≥ 5,

log λ
λ2 b4 V(x) + O

(
(d(x)λ)−2

)
+ o

(
log λ
λ2

)
N = 4,

(2.2)

and ∫
Ω

|PUx,λ|
q dy =

(
S N

N(N − 2)

) q
q−2

− q aN λ
2−N φ(x) + o((d(x)λ)2−N). (2.3)

In particular, as λ→ ∞,

SεV[PUx,λ] =

S N +
(

S N
N(N−2)

) 2
2−q

(
N(N−2) aN φ(x)

λN−2 + bN ε
V(x)
λ2

)
+ o((d(x)λ)2−N) + o(ελ−2), N ≥ 5,

S 4 + 8
S 4

(
8 a4 φ(x)

λ2 + b4 ε
V(x) log λ

λ2

)
+ o((d(x)λ)−2) + o(ε log λ

λ2 ), N = 4.
(2.4)

In view of Proposition 3.1 below, the assumption d(x)λ→ ∞ in Theorem 2.1 is no restriction, even
when dealing with general almost minimizing sequences.

Corollary 2.2. As ε → 0+, we have

S (εV) ≤ S N −CN σN(Ω,V) ε
N−2
N−4 + o(ε

N−2
N−4 ) if N ≥ 5 (2.5)

and
S (εV) ≤ S 4 − exp

(
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)

if N = 4. (2.6)

Proof of Corollary 2.2. By [10, (2.8)], we have

d(x)2−N . φ(x) . d(x)2−N . (2.7)
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(Note that this bound uses the C2 assumption on Ω.) First, let N ≥ 5. Since, moreover, V = 0
on ∂N(V) \ ∂Ω, the function φ−

2
N−4 |V |

N−2
N−4 can be extended to a continuous function on N(V) which

vanishes on ∂N(V). Thus there is z0 ∈ N(V) such that

σN(Ω,V) = φ(z0)−
2

N−4 |V(z0)|
N−2
N−4 , N ≥ 5. (2.8)

The corollary for N ≥ 5 now follows by choosing x = z0 in (2.4) and optimizing the quantity
N(N−2) aN φ(z0)

λN−2 + bN ε
V(z0)
λ2 in λ. The optimal choice is

λ(ε) =

(
N (N − 2)2 aN φ(z0)

2 bN |V(z0)|

) 1
N−4

ε−
1

N−4 , (2.9)

and (2.5) follows from a straightforward computation.

Similarly, if N = 4, since |V(y)|
φ(y) is a positive continuous function on N(V) which goes to 0 as y →

∂N(V), we find some z0 ∈ N(V) such that

σ4(Ω,V) =
|V(z0)|
φ(z0)

. (2.10)

Thus we may choose x = z0 in (2.4) and optimize the quantity Aλ−2 − Bελ−2 log λ in λ > 0, where
A = 8 a4 φ(z0) + o(1) and B = b4 |V(z0)| + o(1). The optimal choice is

λ(ε) =
√

e exp
( A

Bε

)
. (2.11)

Inserting this into (2.4), we get

S (εV) ≤ SεV[PUx,λ(ε)] = S 4 −
4b4

eS 4
ε|V(z0)| exp

(
−

16 a4 (φ(z0) + o(1))
b4 ε |V(z0)| + o(1)

)
= S 4 − exp

(
−

4
ε

(1 + o(1)) inf
x∈N(V)

φ(x)
|V(x)|

)
,

where we have used the fact that

ε b exp
(
−

a
ε

)
= exp

(
−

a
ε

+ o
(1
ε

))
, ε → 0+, (2.12)

holds for all a ≥ 0 and all b > 0. This completes the proof of (2.6), and thus of Corollary 2.2. �

Proof of Theorem 2.1. We prove Eqs. (2.1)–(2.3) separately. Then expansion (2.4) follows by a
straightforward Taylor expansion of the quotient functional SεV[PUx,λ].

Proof of (2.1). Since the Ux,λ satisfy the equation

− ∆yUx,λ(y) = N(N − 2) Ux,λ(y)q−1, y ∈ RN , (2.13)

it follows using integration by parts that∫
Ω

|∇PUx,λ|
2 dy = N(N − 2)

∫
Ω

Uq−1
x,λ PUx,λ dy.

Mathematics in Engineering Volume 2, Issue 1, 119–140.



126

On the other hand, by [10, Prop. 1] we know that

PUx,λ = Ux,λ − ϕx,λ, ϕx,λ =
H(x, ·)
λ(N−2)/2 + fx,λ, (2.14)

where
‖ fx,λ‖L∞(Ω) = O

(
λ−(N+2)/2 d(x)−N

)
, λ→ ∞. (2.15)

By putting the above equations together we obtain∫
Ω

|∇PUx,λ|
2 dy = N(N − 2)

(∫
Ω

Uq
x,λ dy − λ

2−N
2

∫
Ω

Uq−1
x,λ H(x, ·) dy −

∫
Ω

Uq−1
x,λ fx,λ dy

)
. (2.16)

A direct calculation shows that∫
Ω

Uq
x,λ dy =

∫
RN

Uq
x,λ dy + O((d(x)λ)−N) =

(
S N

N(N − 2)

) q
q−2

+ O((d(x)λ)−N). (2.17)

Moreover, for any x ∈ Ω we have

d(x)2−N . ‖H(x, ·)‖L∞(Ω) . d(x)2−N (2.18)

and
sup
y∈Ω
|∇yH(x, y)| . d(x)1−N , (2.19)

by the maximum principle, compare [10, Sec. 2 and Appendix]. Now let ρ ∈ (0, d(x)
2 ). A direct

calculation using (1.7), (2.18) and (2.19) shows that∫
Bρ(x)

Uq−1
x,λ H(x, ·) dy = λ1+ N

2
(
φ(x) + O(ρ d(x)1−N)

) ∫
Bρ(x)

dy
(1 + λ2|x − y|2)(N+2)/2

= λ1− N
2 aN

(
φ(x) + O(ρ d(x)1−N)

)
(1 + O((λ ρ)−2))

and ∫
Ω\Bρ(x)

Uq−1
x,λ H(x, ·) dy = λ1+ N

2 O(d(x)2−N)
∫ ∞

ρ

rN−1 dr

(1 + λ2 r2)
N+2

2

= λ1− N
2 O(d(x)2−N)

∫ ∞

ρλ

tN−1 dt

(1 + t2)
N+2

2

= λ1− N
2 O

(
d(x)2−N (λ ρ)−2

)
.

Hence for the second term on the right hand side of (2.16) we get

λ
2−N

2

∫
Ω

Uq−1
x,λ H(x, ·) dy = λ2−N aN φ(x) + λ2−N O

(
ρ d(x)1−N

)
+ λ2−N O

(
d(x)2−N (λ ρ)−2

)
. (2.20)

As for the last term on the right hand side of (2.16), we note that in view of (2.15)∣∣∣∣∣∫
Ω

Uq−1
x,λ fx,λ dy

∣∣∣∣∣ ≤ ‖ fx,λ‖L∞(Ω)

∫
RN

Uq−1
x,λ dy = ‖ fx,λ‖L∞(Ω) aN λ

1− N
2 = O

(
(λ d(x))−N

)
.
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The claim thus follows from (2.16) by choosing ρ = d(x)1/3λ−2/3 in (2.20). (Notice that
ρ = d(x)(d(x)λ)−2/3 ≤

d(x)
2 for λ large enough.)

Proof of (2.2). We have∫
Ω

V PU2
x,λ dy =

∫
Ω

V U2
x,λ dy +

∫
Ω

V (ϕ2
x,λ − 2 Ux,λ ϕx,λ) dy . (2.21)

Since by [10, Prop. 1],
0 ≤ ϕx,λ(y) ≤ Ux,λ(y) ∀ y ∈ Ω, (2.22)

together with (2.14), (2.15) and (2.18) we obtain the following upper bound on the last integral in
(2.21), ∣∣∣∣ ∫

Ω

V (ϕ2
x,λ − 2 Ux,λ ϕx,λ) dy

∣∣∣∣ ≤ 2 ‖V‖L∞(Ω) ‖ϕx,λ‖L∞(Ω)

∫
Ω

Ux,λ dy = O
(
(d(x)λ)2−N

)
.

To treat the first term on the right hand side of (2.21), first assume N ≥ 5. Choose a sequence ρ = ρλ
such that ρ ≤ d(x), ρ→ 0 and ρλ→ ∞ as λ→ ∞. (This is always possible, whether or not d(x)→ 0.)
Then, by continuity of V ,∫

Ω

V U2
x,λ dy = (V(x) + o(1))

∫
Bρ(x)

U2
x,λ dy +

∫
Ω\Bρ(x)

V U2
x,λ dy

= λ−2 bN V(x) + o(λ−2) + O

(∫
Ω\Bρ(x)

U2
x,λ dy

)
= λ−2 bN V(x) + o(λ−2) + O

(
λ−2(ρλ)−N+4

)
= λ−2 bN V(x) + o(λ−2).

Similarly, in the case N = 4 we let Bτ(x) and BR(x) be two balls centered at x with radii τ and R chosen
such that Bτ(x) ⊂ Ω ⊂ BR(x) and split the last integration in two parts as follows. Extending V by zero
to BR(x) \Ω we get∫

Ω\Bτ(x)
V U2

x,λ dy =

∫
BR(x)\Bτ(x)

V U2
x,λ dy ≤ ω4 ‖V‖L∞(Ω)

∫ R

τ

λ2

(1 + λ2|x − y|2)2 r3 dr

= ω4 ‖V‖L∞(Ω) λ
−2

∫ Rλ

τλ

t3

(1 + t2)2 dt = O(λ−2 log(R/τ)). (2.23)

On the other hand, denoting by oτ(1) a quantity that vanishes as τ→ 0 and assuming that τλ→ ∞ we
get ∫

Bτ(x)
V U2

x,λ dy = b4 V(x)
∫ τ

0

λ2 r3 dr
(1 + λ2|x − y|2)2 + oτ(1)

∫ τ

0

λ2 r3 dr
(1 + λ2|x − y|2)2

= b4 λ
−2 V(x)

∫ τλ

0

t3 dt
(1 + t2)2 + λ−2 oτ(1)

∫ τλ

0

t3 dt
(1 + t2)2

= b4
log λ
λ2 V(x) + oτ(1)O

(
log λ
λ2

)
+ O

(
log τ
λ2

)
.

By choosing τ = 1
log λ and taking into account (2.23) we arrive at (2.2) in case N = 4.
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Proof of (2.3). Recall that q > 2. Hence from the Taylor expansion of the function t 7→ tq on an
interval [0, b] it follows that for any a ∈ [0, b] we have

| bq − (b − a)q − q bq−1 a | ≤
q(q − 1)

2
bq−2 a2. (2.24)

Because of (2.22) and (2.14) we can apply (2.24) with b = Ux,λ(y) and a = ϕx,λ(y) to obtain the
following point-wise upper bound:∣∣∣ PUq

x,λ − Uq
x,λ + q Uq−1

x,λ ϕx,λ

∣∣∣ ≤ q(q − 1)
2

Uq−2
x,λ ϕ

2
x,λ . (2.25)

Together with estimate (A.2) this gives∣∣∣∣∣∫
Ω

(
PUq

x,λ − Uq
x,λ + q Uq−1

x,λ ϕx,λ

)
dy

∣∣∣∣∣ = O
(
(d(x) λ)−N

)
. (2.26)

On the other hand, the calculations in the proof of (2.1) show that∫
Ω

Uq−1
x,λ ϕx,λ dy = λ2−N aN φ(x) + O

(
(d(x)λ)

4
3−N

)
= λ2−N aN φ(x) + o

(
(d(x)λ)2−N

)
.

In view of (2.17) and (2.26) this completes the proof. �

3. Lower bound. Preliminaries

As a starting point for the proof of the lower bound on S (εV), we derive a crude asymptotic form of
almost minimizers of SεV . The following result is essentially well-known. We have recalled the proof
in [6, Appendix B] in the case N = 3, but the same argument carries over to N ≥ 4.

Proposition 3.1. Let (uε) ⊂ H1
0(Ω) be a sequence of functions satisfying

SεV[uε] = S N + o(1) ,
∫

Ω

|uε |q dx =

(
S N

N(N − 2)

) q
q−2

. (3.1)

Then, along a subsequence,
uε = αε

(
PUxε ,λε + wε

)
, (3.2)

where
αε → s for some s ∈ {−1,+1} ,

xε → x0 for some x0 ∈ Ω ,

λεdε → ∞ ,

‖∇wε‖ → 0 and wε ∈ T⊥xε ,λε .

(3.3)

Here dε = dist (xε , ∂Ω).

Convention:

From now on we will assume that (uε) satisfies (1.11). In particular, assumption (3.1) is satisfied. We
will always work with a sequence of ε’s for which the conclusions of Proposition 3.1 hold. To enhance
readability, we will drop the index ε from αε , xε , λε , dε and wε .
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4. Lower bound. The main expansion

In this section we expand SεV[uε] by using the decomposition (3.2) of uε . We shall show the
following result.

Proposition 4.1. Let (uε) ⊂ H1
0(Ω) satisfy (3.2) and (3.3). Then

|α|−2
∫

Ω

|∇uε |2 dy =

∫
Ω

|∇PUx,λ|
2 dy +

∫
Ω

|∇w|2 dy , (4.1)

|α|−q
∫

Ω

|uε |q dy =

∫
Ω

PUq
x,λ dy +

q(q − 1)
2

∫
Ω

Uq−2
x,λ w2 dy + o

(∫
Ω

|∇w|2 + (λd)2−N

)
, (4.2)

|α|−2ε

∫
Ω

Vu2
ε dy = ε

∫
Ω

VPU2
x,λ dy + O

ε ∫
Ω

|∇w|2 dy + ε

√∫
Ω

|∇w|2 dy

√∫
Ω

|V | PU2
x,λ dy

 . (4.3)

In particular,

SεV[uε] = SεV[PUx,λ] + I[w] + O

ε
√∫

Ω

|∇w|2 dy

√∫
Ω

|V |PU2
x,λ dy


+ o

(∫
Ω

|∇w|2 dy + (λd)2−N

)
, (4.4)

where

I[w] :=
(∫

Ω

Uq
x,λ dy

)− 2
q
(∫

Ω

|∇w|2 dy − N(N + 2)
∫

Ω

Uq−2
x,λ w2 dy

)
. (4.5)

Proof. We prove Eqs. (4.1)–(4.3) separately. Then the expansion (4.4) follows by a straightforward
Taylor expansion of the quotient functional SεV , using SεV[uε] = SεV[|α|−1uε].

In the sequel we denote by c1, c2, . . . various positive constants which are independent of ε.

Proof of (4.1). This follows by (3.2) and w ∈ T⊥x,λ.

Proof of (4.2). Recall that α−1uε = Ux,λ + (w − ϕx,λ) by (2.14) and (3.2). We use the associated
pointwise estimate ∣∣∣∣∣|α|−q|uε |q − Uq

x,λ − q Uq−1
x,λ (w − ϕx,λ) −

q(q − 1)
2

Uq−2
x,λ (w − ϕx,λ)2

∣∣∣∣∣
≤ c1

(
|w − ϕx,λ|

q + |w − ϕx,λ|
q−(q−3)+U (q−3)+

x,λ

)
,

where (q − 3)+ = max{q − 3, 0}. Using (2.25), it follows that∣∣∣∣∣|α|−q|uε |q − PUq
x,λ − q Uq−1

x,λ w −
q(q − 1)

2
Uq−2

x,λ w2
∣∣∣∣∣

≤ c2

(
|w − ϕx,λ|

q + |w − ϕx,λ|
q−(q−3)+U (q−3)+

x,λ + Uq−2
x,λ ϕx,λ |w| + Uq−2

x,λ ϕ
2
x,λ

)
≤ c3

(
|w|q + ϕ

q
x,λ + |w|q−(q−3)+U (q−3)+

x,λ + ϕ
q−(q−3)+

x,λ U (q−3)+

x,λ + Uq−2
x,λ ϕx,λ |w| + Uq−2

x,λ ϕ
2
x,λ

)
≤ c4

(
|w|q + |w|q−(q−3)+U (q−3)+

x,λ + Uq−2
x,λ ϕx,λ |w| + Uq−2

x,λ ϕ
2
x,λ

)
.
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In the last inequality we used (2.22) to simplify the form of the remainder terms. Now we use the
identity

N (N − 2)
∫

Ω

Uq−1
x,λ w dy =

∫
Ω

∇Ux,λ · ∇w dy =

∫
Ω

∇PUx,λ · ∇w dy = 0,

which follows from (1.8), (2.13) and w ∈ T⊥x,λ. Therefore, with the help of the Hölder inequality, we
find ∣∣∣∣∣∣

∫
Ω

(
|α|−q|uε |q − PUq

x,λ −
q(q − 1)

2
Uq−2

x,λ w2
)

dy

∣∣∣∣∣∣
≤ c4

[ ∫
Ω

|w|q dy +

(∫
Ω

|w|q dy
) q−(q−3)+

q
(∫

Ω

Uq
x,λ dy

) (q−3)+
q

+

(∫
Ω

U
q(q−2)

q−1

x,λ ϕ
q

q−1

x,λ dy
) q−1

q
(∫

Ω

|w|q dy
) 1

q

+

∫
Ω

Uq−2
x,λ ϕ

2
x,λ dy

]
≤ c5

[ (∫
Ω

|∇w|2 dy
) q−(q−3)+

2

+

(∫
Ω

U
q(q−2)

q−1

x,λ ϕ
q

q−1

x,λ dy
) q−1

q
(∫

Ω

|∇w|2 dy
) 1

2

+

∫
Ω

Uq−2
x,λ ϕ

2
x,λ dy

]
.

In the last step, we used the Sobolev inequality and the equation (3.3) for w, together with∫
Ω

Uq
x,λ dy ≤

∫
RN

Uq
x,λ dy =

(
S N

N(N − 2)

) q
q−2

.

It follows from Lemma A.1 and (3.3) that(∫
Ω

U
q(q−2)

q−1

x,λ ϕ
q

q−1

x,λ dy
) q−1

q

= o
(
(dλ)

2−N
2
)
,∫

Ω

Uq−2
x,λ ϕ

2
x,λ dy = o

(
(d λ)2−N

)
.

Thus, we conclude that, as ε → 0,∣∣∣∣∣∣
∫

Ω

(
|α|−q|uε |q − PUq

x,λ −
q(q − 1)

2
Uq−2

x,λ w2
)

dy

∣∣∣∣∣∣ = o
(∫

Ω

|∇w|2 dy + (λd)2−N

)
.

Proof of (4.3). We write

|α|−2
∫

Ω

Vu2
ε dy =

∫
Ω

V PU2
x,λ dy + 2

∫
Ω

V PUx,λ w dy +

∫
Ω

Vw2 dy . (4.6)

By the Hölder and Sobolev inequalities we have∣∣∣∣∣ ∫
Ω

Vw2 dy
∣∣∣∣∣ ≤ (∫

Ω

|V |
N
2 dy

) 2
N
(∫

Ω

|w|q dy
) 2

q

≤ S −1
N

(∫
Ω

|V |
N
2 dy

) 2
N
∫

Ω

|∇w|2 dy ,

and ∣∣∣∣∣ ∫
Ω

VPUx,λ w dy
∣∣∣∣∣ ≤ (∫

Ω

|V | PU2
x,λ dy

) 1
2
(∫

Ω

|V |w2 dy
) 1

2

≤ S −1/2
N

(∫
Ω

|V | PU2
x,λ dy

) 1
2
(∫

Ω

|V |
N
2 dy

) 1
n
(∫

Ω

|∇w|2 dy
) 1

2

.

Hence (4.3) follows by inserting these estimates into (4.6). �
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5. Proof of the main results

We now deduce Theorems 1.2 and 1.3 from Proposition 4.1. To do so, we make crucial use of the
following coercivity bound proved in [10, Appendix D].

Proposition 5.1. For all x ∈ Ω, λ > 0 and v ∈ T⊥x,λ, one has∫
Ω

|∇v|2 dy − N(N + 2)
∫

Ω

Uq−2
x,λ v2 dy ≥

4
N + 4

∫
Ω

|∇v|2 dy . (5.1)

Corollary 5.2. For all ε > 0 small enough, we have, if N ≥ 5,

0 ≥ (1 + o(1))(S N − S (εV)) +

(
S N

N(N − 2)

) 2
2−q

(
N(N − 2) aN φ(x)

λN−2 + bN ε
V(x)
λ2

)
+ c

∫
Ω

|∇w|2 dy + o((λd)2−N) + o(ελ−2) (5.2)

and, if N = 4,

0 ≥ (1 + o(1))(S 4 − S (εV)) +
8

S 4

(
8a4φ(x)
λ2 + b4V(x)

ε log λ
λ2

)
+ c

∫
Ω

|∇w|2 dy + o((λd)−2) + o(ελ−2 log λ) . (5.3)

Proof. Firstly, it follows directly from (5.1) and the definition of I[w] in (4.5) that there is a c > 0 such
that for all ε > 0 small enough, we have

I[w] ≥ 4c
∫

Ω

|∇w|2 dy . (5.4)

Using Proposition 4.1 and (5.4) it follows that for ε small enough one has

SεV[uε] ≥ SεV[PUx,λ] + 2c
∫

Ω

|∇w|2 dy + O

ε
√∫

Ω

|∇w|2 dy

√∫
Ω

|V | PU2
x,λ dy

 + o
(
(λd)2−N

)
.

Since

ε

√∫
Ω

|∇w|2 dy

√∫
Ω

|V | PU2
x,λ dy ≤ c

∫
Ω

|∇w|2 dy +
ε2

4c

∫
Ω

|V | PU2
x,λ dy ,

this further implies that for ε > 0 small enough

SεV[uε] ≥ SεV[PUx,λ] + c
∫

Ω

|∇w|2 dy + O

(
ε2

∫
Ω

|V | PU2
x,λ dy

)
+ o

(
(λd)2−N

)
.

Using (2.2) for the potential term and recalling (3.3), we obtain

SεV[uε] ≥

SεV[PUx,λ] + c
∫

Ω
|∇w|2 dy + o(ελ−2) + o((λd)2−N), N ≥ 5,

SεV[PUx,λ] + c
∫

Ω
|∇w|2 dy + o(ελ−2 log λ) + o((λd)−2), N = 4.

Now the fact that S N − SεV[uε] = (1 + o(1))(S N − S (εV)) by (1.11), together with the expansion of
SεV[PUx,λ] from Theorem 2.1, implies the claimed bounds (5.2) and (5.3). �
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In the next lemma, we prove that the limit point x0 lies in the set N(V).

Lemma 5.3. We have x0 ∈ N(V). In particular, d−1 = O(1) as ε → 0 and x ∈ N(V) for ε small
enough.

Proof. We first treat the case N ≥ 5. In (5.2), we drop the non-negative gradient term and write the
remaining lower order terms as(

S N

N(N − 2)

) 2
2−q

(
N(N − 2) aN φ(x)

λN−2 + bN ε
V(x)
λ2

)
+ o((λd)2−N) + o(ελ−2)

=

(
S N

N(N − 2)

) 2
2−q (

A(dλ)2−N − Bε(dλ)−2
)
,

where
A = N(N − 2) aN φ(x)dN−2 + o(1), B = −bNV(x0)d2 + o(1). (5.5)

Notice that since φ(x) & d2−N by (2.7), the quantity A is positive and bounded away from zero.
Moreover, by (5.2) and the fact that S (εV) < S N , which follows from Corollary 2.2, we must have
B > 0. Optimizing in dλ yields the lower bound

A(dλ)2−N − Bε(dλ)−2 ≥ −cA−
2

N−4 B
N−2
N−4 ε

N−2
N−4 , (5.6)

for some explicit constant c > 0 independent of ε. On the other hand, by Corollary 2.2, there is ρ > 0
such that the leading term in (5.2) is bounded by

(1 + o(1))(S N − S (εV)) ≥ ρ ε
N−2
N−4 (5.7)

for all ε > 0 small enough. Plugging (5.6) and (5.7) into (5.2) and rearranging terms, we thus deduce
that

B ≥ ρ
N−4
N−2 A

2
N−2 c−

N−4
N−2 . (5.8)

As observed above, the quantity A is bounded away from zero and therefore (5.8) implies that B is
bounded away from zero. Hence, in view of (5.5), d is bounded away from zero and V(x0) < 0. The
fact that x ∈ N(V) for ε small enough is a consequence of the continuity of V . This completes the
proof in case N ≥ 5.

Now we consider the case N = 4 in a similar way. In (5.3), we drop the non-negative gradient term
and write the remaining lower order terms as

8
S 4

(
8a4φ(x)
λ2 + b4V(x)

ε log λ
λ2

)
+ o((λd)−2) + o(ελ−2 log λ)

=
8

S 4

(
A(dλ)−2 − Bε(dλ)−2 log(dλ)

)
, (5.9)

where

A = 8a4φ(x)d2 + o(1), B = −b4(V(x0) + o(1))d2(1 −
log d

log dλ
). (5.10)
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Since φ(x) & d(x)−2 by (2.7), the quantity A is positive and bounded away from zero. Moreover, by
(5.3) and the fact that S (εV) < S 4, we must have B > 0. Optimizing (5.9) in dλ yields the lower bound

A(dλ)−2 − Bε(dλ)−2 log(dλ) ≥ −
Bε
2e

exp
(
−

2A
Bε

)
= − exp

(
−

2A
Bε

+ log(
Bε
2e

)
)
. (5.11)

On the other hand, by Corollary 2.2, there is ρ > 0 such that the leading term in (5.3) is bounded by

(1 + o(1))(S 4 − S (εV)) ≥ exp(−
ρ

ε
). (5.12)

Plugging (5.11) and (5.12) into (5.3), we thus deduce that

0 ≥ exp(−
ρ

ε
) − exp

(
−

2A
Bε

+ log(
Bε
2e

)
)
,

which leads to
−

2A
B

+ ε log(
Bε
2e

) ≥ −ρ. (5.13)

Since φ(x) & d−2 by (2.7), the quantity A is bounded away from zero and moreover B is bounded.
Using this fact, the left hand side of (5.13) can be written as

−
2A
B

(1 −
Bε log B

2A
) + ε log

ε

2e
= −

2A
B

(1 + o(1)) + o(1).

Together with (5.13), this easily implies, if ε > 0 is small enough, that

B ≥
A
ρ
.

As before, in view of (5.10), we deduce that d is bounded away from zero and that V(x0) < 0. The fact
that x ∈ N(V) for ε small enough is again a consequence of the continuity of V . �

Proof of Theorem 1.2. We first treat the case N ≥ 5. In view of Lemma 5.3, the lower bound (5.2) can
be written as (upon dropping the non-negative gradient term)

0 ≥ (1 + o(1))(S N − S (εV)) +

(
S N

N(N − 2)

) 2
2−q

(
N(N − 2) aN (φ(x0) + o(1))

λN−2 + bN ε
V(x0) + o(1)

λ2

)
≥ (1 + o(1))(S N − S (εV)) −CN(φ(x0) + o(1))−

2
N−4 |V(x0) + o(1)|

N−2
N−4 ε

N−2
N−4

by optimization in λ. Therefore

S (εV) ≥ S N −CNφ(x0)−
2

N−4 |V(x0)|
N−2
N−4 ε

N−2
N−4 + o(ε

N−2
N−4 ) ≥ S N −CNσN(Ω,V)ε

N−2
N−4 + o(ε

N−2
N−4 ),

where the last inequality uses the fact that x0 ∈ N(V) by Lemma 5.3. Since the matching upper bound
has already been proved in Theorem 2.1, the proof in case N ≥ 5 is complete.
Similarly, we can handle the case N = 4. In view of Lemma 5.3, the lower bound (5.3) can be written
as (upon dropping the non-negative gradient term)

0 ≥ (1 + o(1))(S 4 − S (εV)) +
8

S 4

(
8a4(φ(x0) + o(1))

λ2 + b4(V(x0) + o(1))
ε log λ
λ2

)
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≥ (1 + o(1))(S 4 − S (εV)) −
4b4

eS 4
ε |V(x0) + o(1)| exp

(
−

4(φ(x0) + o(1))
ε |V(x0) + o(1)|

)
by optimization in λ. Therefore

S (εV) ≥ S 4 − exp
(
−

4
ε

(1 + o(1))
φ(x0)
|V(x0)|

)
≥ S 4 − exp

(
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)
,

where the last inequality uses the fact that x0 ∈ N(V) by Lemma 5.3. Since the matching upper bound
has already been proved in Theorem 2.1, the proof in case N = 4 is complete. �

Proof of Theorem 1.3. We start again with the bounds from Corollary 5.2, but this time we need to take
into account the various nonnegative remainder terms more carefully.

Proof for N ≥ 5. We rewrite (5.2), using Lemma 5.3, as

0 ≥ (1 + o(1))(S N − S (εV)) −CN(φ(x0) + o(1))−
2

N−4 |V(x0) + o(1)|
N−2
N−4 ε

N−2
N−4 + R (5.14)

with
R =

( Aε

λN−2 − Bε

ε

λ2 + CN A−
2

N−4
ε B

N−2
N−4
ε ε

N−2
N−4

)
+ c

∫
Ω

|∇w|2 dy ,

where we have set

Aε =

(
S N

N(N − 2)

) 2
2−q

(N(N − 2) aN (φ(x0) + o(1))) , Bε =

(
S N

N(N − 2)

) 2
2−q

bN (V(x0) + o(1)) .

Notice that both summands of R are separately nonnegative. Inserting the upper bound from Corollary
2.2 into (5.14), we get

0 ≥ CN

(
σN(Ω,V) − φ(x0)−

2
N−4 |V(x0)|

N−2
N−4

)
ε

N−2
N−4 + R + o(ε

N−2
N−4 ) .

Since each one of the first two summands on the right hand side is nonnegative, we deduce that

φ(x0)−
2

N−4 |V(x0)|
N−2
N−4 = sup

x∈N(V)
φ(x)−

2
N−4 |V(x)|

N−2
N−4 = σN(Ω,V)

and
R = o(ε

N−2
N−4 ). (5.15)

In particular, (5.15) implies that
‖∇w‖22 = o(ε

N−2
N−4 ). (5.16)

Denote by

λ0(ε) =

(
(N − 2)Aε

2Bε

) 1
N−4

ε
1

4−N

the unique value of λ for which the first summand of R vanishes. Using Lemma A.2, the bound (5.15)
implies that

ε(λ−1 − λ0(ε)−1)2 = o(ε
N−2
N−4 ),
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which is equivalent to

λ = λ0(ε) + o(ε−
1

N−4 ) =

(
N (N − 2)2 aN φ(x0)

2 bN |V(x0)|

) 1
N−4

ε−
1

N−4 + o(ε−
1

N−4 ). (5.17)

Finally, to obtain the asymptotics of α, by (4.2), (1.11), (2.3) and (5.16), we have that

|α|−q

(
S N

N(N − 2)

) q
q−2

=

(
S N

N(N − 2)

) q
q−2

− qaNλ
2−Nφ(x0) +

q(q − 1)
2

∫
Ω

Uq−2
x,λ w2 dy + o(λ2−N) . (5.18)

Moreover, by Hölder and Sobolev inequalities,∫
Ω

Uq−2
x,λ w2 dy . ‖∇w‖2. (5.19)

We easily conclude from (5.16)–(5.19) that

|α| = 1 + DNσN(Ω,V)ε
N−2
N−4 + o(ε

N−2
N−4 )

with DN given in (1.15). This completes the proof of Theorem 1.3 in the case N ≥ 5.

Proof for N = 4. We rewrite (5.3), using Lemma 5.3, as

0 ≥ (1 + o(1))(S 4 − S (εV)) −
Bεε

2e
exp

(
−

2Aε

Bεε

)
+ R (5.20)

with

R =

(
Aε

λ2 − Bε

ε log λ
λ2 +

Bεε

2e
exp

(
−

2Aε

Bεε

))
+ c

∫
Ω

|∇w|2 dy,

where we have set

Aε =
64
S 4

a4(φ(x0) + o(1)), Bε =
8

S 4
b4|V(x0) + o(1)| .

Notice that both summands of R are separately nonnegative. Inserting the upper bound from Corollary
2.2 into (5.20), we get

0 ≥ (1 + o(1)) exp
(
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)
−

Bεε

2e
exp

(
−

2Aε

Bεε

)
+ R . (5.21)

Dropping the nonnegative term R from the right side and taking the logarithm of the resulting
inequality, we obtain

−
2Aε

Bεε
+ log

Bεε

2e
≥ −

4
ε

(1 + o(1))σ4(Ω,V)−1 + log(1 + o(1)) .

Multiplying by ε and passing to the limit we infer, since a4/b4 = 1/4,

−
φ(x0)
|V(x0)|

≥ −σ4(Ω,V)−1 .
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By definition of σ4(Ω,V), this implies

|V(x0)|
φ(x0)

= σ4(Ω,V) , (5.22)

as claimed. With this information at hand, we return to (5.21) and drop the nonnegative first term on
the right side to infer that

R ≤
Bεε

2e
exp

(
−

2Aε

Bεε

)
.

Keeping only the second term in the definition of R and using (5.22) we deduce, in particular, that

‖∇w‖22 ≤ exp
(
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)
. (5.23)

We now keep only the first term in the definition of R and obtain from (5.21), multiplied by
(2e/(Bεε)) exp(2Aε/(Bεε)),

1 − (1 + o(1))
2e
Bεε

exp
(
2Aε

Bεε
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)
≥

2e
Bεε

exp
(
2Aε

Bεε

)
R

≥
2e
Bεε

exp
(
2Aε

Bεε

) (
Aε

λ2 − Bε

ε log λ
λ2

)
+ 1

= 1 + y ey+1

with y = 2
Bεε

(Aε − εBε log λ). In view of (5.22) and (2.12) we have

(1 + o(1))
2e
Bεε

exp
(
2Aε

Bεε
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)

= exp
(
o
(
1
ε

))
,

and therefore

− exp
(
o
(
1
ε

))
≥ y ey+1 .

This implies

0 < −y ≤ o
(
1
ε

)
,

which is the same as
Aε

Bεε
< log λ ≤

Aε

Bεε
+ o

(
1
ε

)
.

Recalling (5.22) we obtain

λ = exp
(
−

2
ε

(1 + o(1))σ4(Ω,V)−1
)
, (5.24)

as claimed. Finally, to obtain the asymptotics of α, we deduce from (5.18) and (5.19), together with
the bounds (5.23) and (5.24), that

|α| = 1 + exp
(
−

4
ε

(1 + o(1))σ4(Ω,V)−1
)
.

This completes the proof of Theorem 1.3 in the case N = 4. �
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A. Auxiliary results

The proof of the following lemma is similar to the computation in [10, Appendix A]. We provide
here details for the sake of completeness.

Lemma A.1. Let x = xλ be a sequence of points in Ω such that d(x)λ→ ∞. Then

(∫
Ω

U
q(q−2)

q−1

x,λ ϕ
q

q−1

x,λ dy
) q−1

q

=


O

(
(d(x) λ)

−2−N
2

)
if N > 6,

O
(
(d(x) λ)−4 log(d(x)λ)

)
if N = 6,

O
(
(d(x) λ)2−N

)
if N = 4, 5

(A.1)

and ∫
Ω

Uq−2
x,λ ϕ

2
x,λ dy = O

(
(d(x) λ)−N

)
. (A.2)

Proof. We write d = d(x) for short in the following proof.

Proof of (A.1). By Eqs. (2.14), (2.15) and (2.18),∫
Bd(x)

U
q(q−2)

q−1

x,λ ϕ
q

q−1

x,λ dy ≤ ‖ϕx,λ‖
q

q−1

L∞(Ω)

∫
Bd(x)

U
q(q−2)

q−1

x,λ dy = O
(
(d2−N λ

2−N
2 )

q
q−1

) ∫
Bd(x)

U
q(q−2)

q−1

x,λ dy . (A.3)

Moreover, since q(q−2)
q−1

N−2
2 = 4N

N+2 , from (1.7) we obtain∫
Bd(x)

U
q(q−2)

q−1

x,λ dy = O
(
λ

4N
N+2

) ∫ d

0

rN−1 dr

(1 + λ2 r2)
4N

N+2

= O

(
λ

2N−N2
N+2

) ∫ λd

0

tN−1 dr

(1 + t2)
4N

N+2

= O

(
λ

2N−N2
N+2

) (∫ λd

1
t

N(N−6)
N+2 t−1 dt + O(1)

)
. (A.4)

If N > 6, then ∫ λd

1
t

N(N−6)
N+2 t−1 dt = O

(
(d λ)

N(N−6)
N+2

)
.

If N = 6, then ∫ λd

1
t

N(N−6)
N+2 t−1 dt = O

(
log(d λ)

)
and if N = 4, 5, then ∫ λd

1
t

N(N−6)
N+2 t−1 dt = O (1)

This gives the bound claimed in (A.1) in each case, provided we can bound the integral on the
complement Ω \ Bd(x). On this region, we have by Hölder(∫

Ω\Bd(x)
U

q(q−2)
q−1

x,λ ϕ
q

q−1

x,λ dy
) q−1

q

≤

(∫
Ω

ϕ
2N

N−2
x,λ dy

) N−2
2N

(∫
RN\Bd(x)

U
2N

N−2
x,λ dy

) 2
N
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= O
(
(d λ)

2−N
2
) (∫

RN\Bd(x)
U

2N
N−2
x,λ dy

) 2
N

= O
(
(d λ)

2−N
2
) (∫ ∞

dλ

dt
tN+1

) 2
N

= O
(
(d λ)

2−N
2
)
O

(
(d λ)−2

)
,

where we have used (1.7) and the fact that(∫
Ω

ϕ
2N

N−2
x,λ dy

) N−2
2N

= O
(
(d λ)

2−N
2
)

(A.5)

by [10, Prop. 1(c)]. Combining all the estimates, we deduce (A.1).

Proof of (A.2). We split the domain of integration Ω again into Bd(x) and Ω \ Bd(x). On Bd(x), by
(2.14), ∫

Bd(x)
Uq−2

x,λ ϕ
2
x,λ dy ≤ ‖ϕx,λ‖

2
L∞(Ω)

(∫
Bd(x)

Uq−2
x,λ dy

)
= O

(
d(x)4−2N λ2−N

) (
λ2−N

∫ dλ

0

tN−1 dt
(1 + t2)2

)
= O((dλ)−N). (A.6)

On Ω \ Bd(x), by Hölder and (A.5),∫
Ω\Bd(x)

Uq−2
x,λ ϕ

2
x,λ dy ≤

(∫
Ω

ϕ
q
x,λ dy

) 2
q
(∫
RN\Bd(x)

Uq
x,λ dy

) q−2
q

= O
(
(d(x) λ)2−N

)
O

(
(d λ)−2

)
. (A.7)

Combining (A.6) and (A.7), we obtain (A.2). �

Lemma A.2. Let fε : (0,∞)→ R be given by

fε(λ) =
Aε

λN−2 − Bε

ε

λ2

with Aε , Bε > 0 uniformly bounded away from 0 and∞. Denote by

λ0 = λ0(ε) =

(
(N − 2)Aε

2Bε

) 1
N−4

ε
1

4−N

the unique global minimum of fε . Then there is a c0 > 0 such that for all ε > 0 we have

fε(λ) − fε(λ0) ≥

c0ε
(
λ−1 − λ0(ε)−1

)2
if ( Aε

Bε
)

1
N−4 ε−

1
N−4λ−1 ≤ 2( 2

N−2 )
1

N−4 ,

c0ε
N−2
N−4 if ( Aε

Bε
)

1
N−4 ε−

1
N−4λ−1 > 2( 2

N−2 )
1

N−4 .

Proof. Let F(t) := tN−2 − t2 and denote by t0 := ( 2
N−2 )

1
N−4 the unique global minimum on (0,∞) of F.

Then it is easy to see that there is c > 0 such that

F(t) − F(t0) ≥

c(t − t0)2 if 0 < t ≤ 2t0,

ctN−2
0 if t > 2t0.
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The assertion of the lemma now follows by rescaling. Indeed, it suffices to observe that

fε(λ) = A−
2

N−4
ε B

N−2
N−4
ε ε

N−2
N−4 F

(
(
Aε

Bε

)
1

N−4 ε−
1

N−4λ−1
)

and to use the boundedness of Aε and Bε . �
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