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Abstract: We consider a nonlinear, frame indifferent Griffith model for nonsimple brittle materials
where the elastic energy also depends on the second gradient of the deformations. In the framework of
free discontinuity and gradient discontinuity problems, we prove existence of minimizers for boundary
value problems. We then pass to a small strain limit in terms of suitably rescaled displacement fields
and show that the nonlinear energies can be identified with a linear Griffith model in the sense of Γ-
convergence. This complements the study in [39] by providing a linearization result in arbitrary space
dimensions.
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1. Introduction

Mathematical models in solids mechanics typically do not predict the mechanical behavior
correctly at every scale, but have a certain limited range of applicability. A central example in that
direction are models for hyperelastic materials in nonlinear (finite) elasticity and their linear
(infinitesimal) counterparts. The last decades have witnessed remarkable progress in providing a clear
relationship between different models via Γ-convergence [30]. In their seminal work [33], Dal Maso,
Negri and Percivale performed a nonlinear-to-linear analysis in terms of suitably rescaled
displacement fields and proved the convergence of minimizers for corresponding boundary value
problems. This study has been extended in various directions, including different growth assumptions
on the stored energy densities [1], the passage from atomistic-to-continuum models [13, 55],
multiwell energies [2, 54], plasticity [51], and viscoelasticity [43].
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In the present contribution, we are interested in an analogous analysis for materials undergoing
fracture. Based on the variational approach to quasistatic crack evolution by Francfort and Marigo
[37], where the displacements and the (a priori unknown) crack paths are determined from an energy
minimization principle, we consider an energy functional of Griffith-type. Such variational models
of brittle fracture, which comprise an elastic energy stored in the uncracked region of the body and a
surface contribution comparable to the size of the crack of codimension one, have been widely studied
both at finite and infinitesimal strains, see [7, 18, 32, 34, 38, 45, 48] without claim of being exhaustive.
We refer the reader to [11] for a general overview.

In this context, first results addressing the question of a nonlinear-to-linear analysis have been
obtained in [52, 53] in a two-dimensional evolutionary setting for a fixed crack set or a restricted class
of admissible cracks, respectively. Subsequently, the problem was studied in [44] from a different
perspective. Here, a simultaneous discrete-to-continuum and nonlinear-to-linear analysis is performed
for general crack geometries, but under the simplifying assumption that all deformations are close to
the identity mapping.

Eventually, a result in dimension two without a priori assumptions on the crack paths and the
deformations, in the general framework of free discontinuity problems (see [35]), has been derived
in [39]. This analysis relies fundamentally on delicate geometric rigidity results in the spirit
of [22, 46]. At this point, the geometry of crack paths in the plane is crucially exploited and higher
dimensional analogs seem to be currently out of reach. In spite of the lack of rigidity estimates, the
goal of this contribution is to perform a nonlinear-to-linear analysis for brittle materials in the spirit
of [39] in higher space dimensions. This will be achieved by starting from a slightly different
nonlinear model for so-called nonsimple materials.

Whereas the elastic properties of simple materials depend only on the first gradient, the notion
of a nonsimple material refers to the fact that the elastic energy depends additionally on the second
gradient of the deformation. This idea goes back to Toupin [57, 58] and has proved to be useful in
modern mathematical elasticity, see e.g., [8, 9, 14, 36, 43, 50], since it brings additional compactness
and rigidity to the problem. In a similar fashion, we consider here a Griffith model with an additional
second gradient in the elastic part of the energy. This leads to a model in the framework of free
discontinuity and gradient discontinuity problems.

The goal of this contribution is twofold. We first show that the regularization allows to prove
existence of minimizers for boundary value problems without convexity properties for the stored elastic
energy. In particular, we do not have to assume quasiconvexity [4]. Afterwards, we identify an effective
linearized Griffith energy as the Γ-limit of the nonlinear and frame indifferent models for vanishing
strains. In this context, it is important to mention that, in spite of the formulation of the nonlinear
model in terms of nonsimple materials, the effective limit is a ‘standard’ Griffith functional in linearized
elasticity depending only on the first gradient. A similar justification for the treatment of nonsimple
materials has recently been discussed in [43] for a model in nonlinear viscoelasticity.

The existence result for boundary value problems at finite strains is formulated in the space
GS BV2

2 (Ω;Rd), see (2.2) below, consisting of the mappings for which both the function itself and its
derivative are in the class of generalized special functions of bounded variation [6]. The relevant
compactness and lower semicontinuity results stated in Theorem 3.3 essentially follow from a study
on second order variational problems with free discontinuity and gradient discontinuity [16]. Another
key ingredient is the recent work [42] which extends the classical compactness result due to
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Ambrosio [3] to problems without a priori bounds on the functions.
Concerning the passage to the linearized system, the essential step is to establish a compactness

result in terms of suitably rescaled displacement fields which measure the distance of the deformations
from the identity. Whereas in [39] this is achieved by means of delicate geometric rigidity estimates,
the main idea in our approach is to partition the domain into different regions in which the gradient is
‘almost constant’. This construction relies on the coarea formula in BV and is the fundamental point
where the presence of a second order term in the energy is used to pass rigorously to a linear theory.
The linear limiting model is formulated on the space of generalized special functions of bounded
deformation GS BD2, which has been studied extensively over the last years, see e.g., [19–21, 23–28,
31, 40, 41, 45, 49].

The paper is organized as follows. In Section 2 we first introduce our nonlinear model for nonsimple
brittle materials and state our main results: We first address the existence of minimizers for boundary
value problems at finite strains. Then, we present a compactness and Γ-convergence result in the
passage from the nonlinear to the linearized theory. Here, we also discuss the convergence of minima
and minimzers under given boundary data. Section 3 is devoted to some preliminary results about the
function spaces GS BV and GS BD. In particular, we present a compactness result in GS BV2

2 involving
the second gradient (see Theorem 3.3). Finally, Section 4 contains the proofs of our results.

2. The model and main results

In this section we introduce our model and present the main results. We start with some basic
notation. Throughout the paper, Ω ⊂ Rd is an open and bounded set. The notations Ld and Hd−1 are
used for the Lebesgue measure and the (d − 1)-dimensional Hausdorff measure in Rd, respectively. We
set S d−1 = {x ∈ Rd : |x| = 1}. For an Ld-measurable set E ⊂ Rd, the symbol χE denotes its indicator
function. For two sets A, B ⊂ Rd, we define A4B = (A \ B) ∪ (B \ A). The identity mapping on Rd

is indicated by id and its derivative, the identity matrix, by Id ∈ Rd×d. The sets of symmetric and
skew symmetric matrices are denoted by Rd×d

sym and Rd×d
skew, respectively. We set sym(F) = 1

2 (FT + F) for
F ∈ Rd×d and define S O(d) = {R ∈ Rd×d : RT R = Id, det R = 1}.

2.1. A nonlinear model for nonsimple materials and boundary value problems

In this subsection we introduce our nonlinear model and discuss the existence of minimizers for
boundary value problems.

Function spaces: To introduce our Griffith-type model for nonsimple materials, we first need to
introduce the relevant spaces. We use standard notation for GS BV functions, see [6, Section 4] and [32,
Section 2]. In particular, we let

GS BV2(Ω;Rd) = {y ∈ GS BV(Ω;Rd) : ∇y ∈ L2(Ω;Rd×d), Hd−1(Jy) < +∞}, (2.1)

where ∇y(x) denotes the approximate differential at Ld-a.e. x ∈ Ω and Jy the jump set. We define the
space

GS BV2
2 (Ω;Rd) :=

{
y ∈ GS BV2(Ω;Rd) : ∇y ∈ GS BV2(Ω;Rd×d)

}
. (2.2)

The approximate differential and the jump set of ∇y will be denoted by ∇2y and J∇y, respectively. (To
avoid confusion, we point out that in the paper [32] the notation GS BV2

2 (Ω;Rd) was used differently,
namely for GS BV2(Ω;Rd) ∩ L2(Ω;Rd).)
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A similar space has been considered in [15, 16] to treat second order free discontinuity functionals,
e.g., a weak formulation of the Blake & Zissermann model [10] of image segmentation. We point out
that the functions are allowed to exhibit discontinuities. Thus, the analysis is outside of the framework
of the space of special functions with bounded Hessian S BH(Ω), considered in problems of second
order energies for elastic-perfectly plastic plates, see e.g., [17].

Nonlinear Griffith energy for nonsimple materials: We let W : Rd×d → [0,+∞) be a single well,
frame indifferent stored energy functional. More precisely, we suppose that there exists c > 0 such that

(i) W continuous and C3 in a neighborhood of S O(d),
(ii) Frame indifference: W(RF) = W(F) for all F ∈ Rd×d,R ∈ S O(d),

(iii) W(F) ≥ c dist2(F, S O(d)) for all F ∈ Rd×d, W(F) = 0 iff F ∈ S O(d). (2.3)

We briefly note that we can also treat inhomogeneous materials where the energy density has the form
W : Ω × Rd×d → [0,+∞). Moreover, it suffices to assume W ∈ C2,α, where C2,α is the Hölder space
with exponent α ∈ (0, 1], see Remark 4.2 for details.

Let κ > 0 and β ∈ ( 2
3 , 1). For ε > 0, define the energy Eε(·,Ω) : GS BV2

2 (Ω;Rd)→ [0,+∞] by

Eε(y,Ω) =

ε−2
∫

Ω
W(∇y(x)) dx + ε−2β

∫
Ω
|∇2y(x)|2 dx + κHd−1(Jy) if J∇y ⊂ Jy,

+∞ else.
(2.4)

Here and in the following, the inclusion J∇y ⊂ Jy has to be understood up to an Hd−1-negligible set.
Since W grows quadratically around S O(d), the parameter ε corresponds to the typical scaling of
strains for configurations with finite energy.

Due to the presence of the second term, we deal with a Griffith-type model for nonsimple
materials. As explained in the introduction, elastic energies which depend additionally on the second
gradient of the deformation were introduced by Toupin [57, 58] to enhance compactness and rigidity
properties. In the present context, we add a second gradient term for a material undergoing fracture.
This regularization effect acts on the entire intact region Ω \ Jy of the material. This is modeled by the
condition J∇y ⊂ Jy.

The goal of this contribution is twofold. We first show that the regularization allows to prove
existence of minimizers for boundary value problems without convexity properties of W. The main
result of the present work is then to identify a linearized Griffith energy in the small strain limit ε→ 0
which is related to the nonlinear energies Eε through Γ-convergence. We point out that the effective
limit is a ‘standard’ Griffith model in linearized elasticity depending only on the first gradient, see
(2.14) below, although we start with a nonlinear model for nonsimple materials.

We observe that the condition J∇y ⊂ Jy is not closed under convergence in measure on Ω. In fact,
consider, e.g., Ω = (−1, 1)2,Ω1 = (−1, 0)×(−1, 1),Ω2 = (0, 1)×(−1, 1), and for δ ≥ 0 the configurations

yδ(x1, x2) = (x1, x2)χΩ1 + (2x1 + δ, x2)χΩ2 for (x1, x2) ∈ Ω.

Then J∇yδ = Jyδ = {0} × (−1, 1) for δ > 0 and yδ → y0 in measure on Ω as δ→ 0. However, there holds
∅ = Jy0 ⊂ J∇y0 = {0} × (−1, 1). Therefore, we need to pass to a relaxed formulation.
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Proposition 2.1 (Relaxation). Let Ω ⊂ Rd be open and bounded. Suppose that W satisfies (2.3). Then
the relaxed functional Eε(·,Ω) : GS BV2

2 (Ω;Rd)→ [0,+∞] defined by

Eε(y,Ω) = inf
{
lim infn→∞ Eε(yn,Ω) : yn → y in measure on Ω

}
is given by

Eε(y,Ω) = ε−2
∫

Ω

W(∇y(x)) dx + ε−2β
∫

Ω

|∇2y(x)|2 dx + κHd−1(Jy ∪ J∇y). (2.5)

The result is proved in Subsection 4.1. Clearly, Eε(·,Ω) is lower semicontinuous with respect to the
convergence in measure. We point out that this latter property has essentially been shown in [16], cf.
Theorem 3.2.

In the following, our goal is to study boundary value problems. To this end, we suppose that there
exist two bounded Lipschitz domains Ω′ ⊃ Ω. We will impose Dirichlet boundary data on ∂DΩ :=
Ω′ ∩ ∂Ω. As usual for the weak formulation in the framework of free discontinuity problems, this will
be done by requiring that configurations y satisfy y = g on Ω′ \ Ω for some g ∈ W2,∞(Ω′;Rd). From
now on, we write Eε(·) = Eε(·,Ω′) and Eε(·) = Eε(·,Ω′) for notational convenience. The following
result about existence of minimizers will be proved in Subsection 4.1.

Theorem 2.2 (Existence of minimizers). Let Ω ⊂ Ω′ ⊂ Rd be bounded Lipschitz domains. Suppose
that W satisfies (2.3), and let g ∈ W2,∞(Ω′;Rd). Then the minimization problem

inf
y∈GS BV2

2 (Ω′;Rd)

{
Eε(y) : y = g on Ω′ \Ω

}
(2.6)

admits solutions.

2.2. Compactness of rescaled displacement fields

The main goal of the present work is the identification of an effective linearized Griffith energy in
the small strain limit. In this subsection, we formulate the relevant compactness result. Let Ω′ ⊃ Ω

be bounded Lipschitz domains. The limiting energy is defined on the space of generalized special
functions of bounded deformation GS BD2(Ω′). For basic properties of GS BD2(Ω′) we refer to [31]
and Section 3.3 below. In particular, for u ∈ GS BD2(Ω′), we denote by e(u) = 1

2 (∇uT + ∇u) the
approximate symmetric differential and by Ju the jump set.

The general idea in linearization results in many different settings (see, e.g., [2,13,33,43,44,52,54,
55]) is the following: Given a sequence (yε)ε with supε Eε(yε) < +∞, define displacement fields which
measure the distance of the deformations from the identity, rescaled by the small parameter ε, i.e.,

uε =
1
ε

(yε − id). (2.7)

It turns out, however, that in general no compactness can be expected if the body may undergo fracture.
Consider, e.g., the functions yε = idχΩ′\B + R xχB, for a small ball B ⊂ Ω and a rotation R ∈ S O(d),
R , Id. Then |uε|, |∇uε| → ∞ on B as ε → 0. The main idea in our approach is the observation that
this phenomenon can be avoided if the deformation is rotated back to the identity on the set B. This
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will be made precise in Theorem 2.3(a) below where we pass to piecewise rotated functions. For such
functions, we can control at least the symmetric part of ∇uε for the rescaled displacement fields defined
in (2.7). This will allow us to derive a compactness result in the space GS BD2(Ω′), see Theorem 2.3(b).

Recall the definition of GS BV2
2 (Ω′;Rd) in (2.2). To account for boundary data h ∈ W2,∞(Ω′;Rd),

we introduce the spaces

Sε,h = {y ∈ GS BV2
2 (Ω′;Rd) : y = id + εh on Ω′ \Ω},

GS BD2
h = {u ∈ GS BD2(Ω′) : u = h on Ω′ \Ω}. (2.8)

Recall β ∈ (2
3 , 1) and the definition of Eε = Eε(·,Ω′) in (2.5). For definition and basic properties of

Caccioppoli partitions we refer to Section 3.1. In particular, for a set of finite perimeter E ⊂ Ω′, we
denote by ∂∗E its essential boundary and by (E)1 the points where E has density one, see [6, Definition
3.60].

Theorem 2.3 (Compactness). Let γ ∈ ( 2
3 , β). Assume that W satisfies (2.3), and let h ∈ W2,∞(Ω′;Rd).

Let (yε)ε be a sequence satisfying yε ∈ Sε,h and supε Eε(yε) < +∞.
(a) (Piecewise rotated functions) There exist Caccioppoli partitions (Pε

j) j of Ω′ and corresponding
rotations (Rε

j) j ⊂ S O(d) such that the piecewise rotated functions yrot
ε ∈ GS BV2

2 (Ω′;Rd) given by

yrot
ε :=

∑∞

j=1
Rε

j yε χPεj (2.9)

satisfy

(i) yrot
ε = id + εh on Ω′ \Ω,

(ii) Hd−1((Jyrot
ε
∪ J∇yrot

ε

)
\
(
Jyε ∪ J∇yε

))
≤ Hd−1

((
Ω′ ∩

⋃∞

j=1
∂∗Pε

j

)
\ J∇yε

)
≤ Cεβ−γ,

(iii) ‖sym(∇yrot
ε ) − Id‖L2(Ω′) ≤ Cε,

(iv) ‖∇yrot
ε − Id‖L2(Ω′) ≤ Cεγ (2.10)

for a constant C > 0 independent of ε.
(b) (Compactness of rescaled displacement fields) There exists a subsequence (not relabeled) and a
function u ∈ GS BD2

h such that the rescaled displacement fields uε ∈ GS BV2
2 (Ω′;Rd) defined by

uε :=
1
ε

(yrot
ε − id) (2.11)

satisfy

(i) uε → u a.e. in Ω′ \ Eu,

(ii) e(uε) ⇀ e(u) weakly in L2(Ω′ \ Eu;Rd×d
sym),

(iii) Hd−1(Ju) ≤ lim infε→0H
d−1(Juε) ≤ lim infε→0H

d−1(Jyε ∪ J∇yε),
(iv) e(u) = 0 on Eu, H

d−1((∂∗Eu ∩Ω′) \ Ju
)

= Hd−1(Ju ∩ (Eu)1) = 0, (2.12)

where Eu := {x ∈ Ω : |uε(x)| → ∞} is a set of finite perimeter.
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Here and in the sequel, we follow the usual convention that convergence of the continuous parameter
ε → 0 stands for convergence of arbitrary sequences {εi}i with εi → 0 as i → ∞, see [12, Definition
1.45]. The compactness result will be proved in Subsection 4.2.

Note that (2.10)(i) implies yrot
ε ∈ Sε,h. In view of (2.10)(ii), the frame indifference of the elastic

energy, and γ < β, one can show that the Griffith-type energy (2.5) of yrot
ε is asymptotically not larger

than the one of yε. The control on the symmetric part of the derivative (2.10)(iii) is essential to obtain
compactness in GS BD2(Ω′) for the sequence (uε)ε. Property (2.10)(iv) will be needed to control higher
order terms in the passage to linearized elastic energies, see Theorem 2.7 below.

The presence of the set Eu is due to the compactness result in GS BD2(Ω′), see [26] and Theorem
3.4. In principle, the phenomenon that the sequence is unbounded on a set of positive measure can be
avoided by generalizing the definition of (2.11): In [45, Theorem 6.1] and [39, Theorem 2.2] it has
been shown that, by subtracting in (2.11) suitable translations on a Caccioppoli partition of Ω′ related
to yε, one can achieve Eu = ∅. This construction, however, is limited so far to dimension two. As
discussed in [26], the presence of Eu is not an issue for minimization problems of Griffith energies
since a minimizer can be recovered by choosing u affine on Eu with e(u) = 0, cf. (2.12)(iv). We also
note that Eu ⊂ Ω, i.e., Eu ∩ (Ω′ \Ω) = ∅.

Definition 2.4 (Asymptotic representation). We say that a sequence (yε)ε with yε ∈ Sε,h is
asymptotically represented by a limiting displacement u ∈ GS BD2

h, and write yε  u, if there exist
sequences of Caccioppoli partitions (Pε

j) j of Ω′ and corresponding rotations (Rε
j) j ⊂ S O(d) such that

(2.10) and (2.12) hold for some fixed γ ∈ ( 2
3 , β), where yrot

ε and uε are defined in (2.9) and (2.11),
respectively.

Theorem 2.3 shows that for each (yε)ε with supε Eε(yε) < +∞ there exists a subsequence (yεk)k and
u ∈ GS BD2

h such that yεk  u as k → ∞. We speak of asymptotic representation instead of
convergence, and we use the symbol  , in order to emphasize that Definition 2.4 cannot be
understood as a convergence with respect to a certain topology. In particular, the limiting function u
for a given (sub-)sequence (yε)ε is not determined uniquely, but depends fundamentally on the choice
of the sequences (Pε

j) j and (Rε
j) j. To illustrate this phenomenon, we consider an example similar

to [39, Example 2.4].

Example 2.5 (Nonuniqueness of limits). Consider Ω′ = (0, 3) × (0, 1), Ω = (1, 3) × (0, 1), Ω1 =

(0, 2) × (0, 1), Ω2 = (2, 3) × (0, 1), h ≡ 0, and

yε(x) = x χΩ1(x) + R̄ε x χΩ2(x) for x ∈ Ω′,

where R̄ε ∈ S O(2) with R̄ε = Id + εA + O(ε2) for some A ∈ R2×2
skew. Then two possible alternatives are

(1) Pε
1 = Ω1, Pε

2 = Ω2, Rε
1 = Id, Rε

2 = R̄−1
ε ,

(2) P̃ε
1 = Ω′, R̃ε

1 = Id.

Letting uε = ε−1(
∑2

j=1 Rε
jyεχPεj−id) and ũε = ε−1(yε−id), we find the limits u ≡ 0 and ũ(x) = A x χΩ2(x),

respectively.

We refer to [39, Section 2.3] for a further discussion about different choices of the involved
partitions and rigid motions. Here, we show that it is possible to identify uniquely the relevant notions
e(u) and Ju of the limit. This is content of the following lemma.
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Lemma 2.6 (Characterization of limiting displacements). Suppose that a sequence (yε)ε satisfies yε 
u1 and yε u2, where u1, u2 ∈ GS BD2

h, u1 , u2. Let Eu1 , Eu2 ⊂ Ω be the sets given in (2.12). Then

(a) e(u1) = e(u2) Ld-a.e. on Ω′ \ (Eu1 ∪ Eu2).
(b) If additionally (yε)ε is a minimizing sequence, i.e.,

Eε(yε) ≤ inf
ȳ∈Sε,h

Eε(ȳ) + ρε with ρε → 0 as ε→ 0, (2.13)

then e(u1) = e(u2) Ld-a.e. on Ω′, and Ju1 = Ju2 up to anHd−1-negligible set.

Note that property (a) is consistent with Example 2.5. Example 2.5 also shows that the property
Ju1 = Ju2 is not satisfied in general but some extra condition, e.g., the one in (2.13), is necessary. We
refer to Example 4.3 below for an illustration that in case (a) the strains are not necessarily the same
inside Eu1 ∪ Eu2 . The result will be proved in Subsection 4.4.

2.3. Passage from the nonlinear to a linearized Griffith model

We now show that the nonlinear energies of Griffith-type can be related to a linearized Griffith
model in the small strain limit by Γ-convergence. We also discuss the convergence of minimizers
for boundary value problems. Given bounded Lipschitz domains Ω ⊂ Ω′, we define the energy E :
GS BD2(Ω′)→ [0,+∞) by

E(u) =

∫
Ω′

1
2

Q(e(u)) + κHd−1(Ju), (2.14)

where κ > 0, and Q : Rd×d → [0,+∞) is the quadratic form Q(F) = D2W(Id)F : F for all F ∈ Rd×d. In
view of (2.3), Q is positive definite on Rd×d

sym and vanishes on Rd×d
skew.

For the Γ-limsup inequality, more precisely for the application of the density result stated in
Theorem 3.6, we make the following geometrical assumption on the Dirichlet boundary
∂DΩ = Ω′ ∩ ∂Ω: there exists a decomposition ∂Ω = ∂DΩ ∪ ∂NΩ ∪ N with

∂DΩ, ∂NΩ relatively open, Hd−1(N) = 0, ∂DΩ ∩ ∂NΩ = ∅, ∂(∂DΩ) = ∂(∂NΩ), (2.15)

and there exist δ̄ > 0 small and x0 ∈ R
d such that for all δ ∈ (0, δ̄) there holds

Oδ,x0(∂DΩ) ⊂ Ω, (2.16)

where Oδ,x0(x) := x0 + (1 − δ)(x − x0).
We now present our main Γ-convergence result. Recall Definition 2.4, as well as the definition of

the nonlinear energies in (2.4) and (2.5). Moreover, recall the spaces Sε,h and GS BD2
h in (2.8) for

h ∈ W2,∞(Ω′;Rd).

Theorem 2.7 (Passage to linearized model). Let Ω ⊂ Ω′ ⊂ Rd be bounded Lipschitz domains. Suppose
that W satisfies (2.3) and that (2.15)–(2.16) hold. Let h ∈ W2,∞(Ω′;Rd).

(a) (Compactness) For each sequence (yε)ε with yε ∈ Sε,h and supε Eε(yε) < +∞, there exists a
subsequence (not relabeled) and u ∈ GS BD2

h such that yε u.
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(b) (Γ-liminf inequality) For each sequence (yε)ε, yε ∈ Sε,h, with yε  u for some u ∈ GS BD2
h we

have
lim inf
ε→0

Eε(yε) ≥ E(u).

(c) (Γ-limsup inequality) For each u ∈ GS BD2
h there exists a sequence (yε)ε, yε ∈ Sε,h, such that

yε u and
lim
ε→0
Eε(yε) = E(u).

The same statements hold with Eε in place of Eε.

We point out that we identify a ‘standard’ Griffith energy in linearized elasticity although we
departed from a nonlinear model for nonsimple materials. As a corollary, we obtain the convergence
of minimizers for boundary value problems.

Corollary 2.8 (Minimization problems). Consider the setting of Theorem 2.7. Then

inf
ȳ∈Sε,h

Eε(ȳ) → min
u∈GS BD2

h

E(u) (2.17)

as ε→ 0. Moreover, for each sequence (yε)ε with yε ∈ Sε,h satisfying

Eε(yε) ≤ inf
ȳ∈Sε,h

Eε(ȳ) + ρε with ρε → 0 as ε→ 0, (2.18)

there exist a subsequence (not relabeled) and u ∈ GS BD2
h with E(u) = minv∈GS BD2

h
E(v) such that

yε u.

The results announced in this subsection will be proved in Subsection 4.3.

3. Preliminaries

In this section we collect some fundamental properties about (generalized) special functions of
bounded variation and deformation. In particular, we recall and prove some results for GS BV2

2 and
GS BD2 that will be needed for the proofs in Section 4.

3.1. Caccioppoli partitions

We say that a partition (P j) j of an open set Ω ⊂ Rd is a Caccioppoli partition of Ω if∑
jH

d−1(∂∗P j) < +∞, where ∂∗P j denotes the essential boundary of P j (see [6, Definition 3.60]). The
local structure of Caccioppoli partitions can be characterized as follows (see [6, Theorem 4.17]).

Theorem 3.1. Let (P j) j be a Caccioppoli partition of Ω. Then⋃
j
(P j)1 ∪

⋃
i, j

(∂∗Pi ∩ ∂
∗P j)

containsHd−1-almost all of Ω.

Here, (P)1 denote the points where P has density one (see again [6, Definition 3.60]). Essentially,
the theorem states thatHd−1-a.e. point of Ω either belongs to exactly one element of the partition or to
the intersection of exactly two sets ∂∗Pi, ∂∗P j.
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3.2. GS BV2 and GS BV2
2 functions

For the general notions on S BV and GS BV functions and their properties we refer to [6, Section 4].
For Ω ⊂ Rd open and m ∈ N, we define GS BV2(Ω;Rm) as in (2.1), for general m. We denote by ∇y the
approximate differential and by Jy the set of approximate jump points of y, which is anHd−1-rectifiable
set. We recall that GS BV2(Ω;Rm) is a vector space, see [32, Proposition 2.3]. In a similar fashion, we
say y ∈ S BV2(Ω;Rm) if y ∈ S BV(Ω;Rm), ∇y ∈ L2(Ω;Rm×d), andHd−1(Jy) < +∞.

We define GS BV2
2 (Ω;Rm) as in (2.2), for general m. For m = 1 we write GS BV2

2 (Ω). By definition,
∇y ∈ GS BV2(Ω;Rm×d), and we use the notation ∇2y and J∇y for the approximate differential and the
jump set of ∇y, respectively. Applying [32, Proposition 2.3] on y and ∇y, we find that GS BV2

2 (Ω;Rm)
is a vector space. The following result is the key ingredient for the proof of Proposition 2.1.

Theorem 3.2 (Compactness in GS BV2
2 ). Let Ω ⊂ Rd be open and bounded, and let m ∈ N. Let

(yn)n be a sequence in GS BV2
2 (Ω;Rm). Suppose that there exists a continuous, increasing function

ψ : [0,∞)→ [0,∞) with limt→∞ ψ(t) = +∞ such that

sup
n∈N

( ∫
Ω

ψ(|yn|) dx +

∫
Ω

|∇2yn|
2 dx +Hd−1(Jyn ∪ J∇yn)

)
< +∞.

Then there exist a subsequence, still denoted by (yn)n, and a function y ∈ [GS BV(Ω)]m with ∇y ∈
GS BV2(Ω;Rm×d) such that for all 0 < γ2 ≤ γ1 ≤ 2γ2 there holds

(i) yn → y a.e. in Ω,

(ii) ∇yn → ∇y a.e. Ω,

(iii) ∇2yn ⇀ ∇
2y weakly in L2(Ω;Rm×d×d),

(iv) γ1H
d−1(Jy) + γ2H

d−1(J∇y \ Jy) ≤ lim inf
n→∞

(
γ1H

d−1(Jyn) + γ2H
d−1(J∇yn \ Jyn)

)
. (3.1)

If in addition supn∈N ‖∇yn‖L2(Ω) < +∞, then y ∈ GS BV2
2 (Ω;Rm).

Proof. First, we observe that it suffices to treat the case m = 1 since otherwise one may argue
componentwise, see particularly [38, Lemma 3.1] how to deal with property (iv). The result has been
proved in [16, Theorem 4.4, Theorem 5.13, Remark 5.14] with the only difference that we just assume
supn∈N

∫
Ω
ψ(|yn|) dx < +∞ here instead of supn∈N ‖yn‖L2(Ω) < +∞. We briefly indicate the necessary

adaptions in the proof of [16, Theorem 4.4] for m = 1. To ease comparison with [16], we point out
that in that paper the notation GS BV2(Ω) is used for functions u with u ∈ GS BV(Ω) and
∇u ∈ [GS BV(Ω)]d.

For k ∈ N, we define some ϕk ∈ C2(R) by ϕk(t) = t for t ∈ [−k + 1, k − 1], |ϕk(t)| = k for |t| > k + 1,
and 0 ≤ ϕ′k ≤ 1. By ‖ϕk ◦ yn‖L1(Ω) ≤ kLd(Ω) and by using an interpolation inequality one can check
that (ϕk ◦ yn)n is bounded in BVloc(Ω), see [16, (4.8)]. Therefore, by a diagonal argument there exist a
subsequence of (yn)n and functions wk ∈ BVloc(Ω) for all k ∈ N such that

ϕk ◦ yn → wk a.e. in Ω for all k ∈ N. (3.2)

Since ψ is continuous and increasing, and |ϕk(t)| ≤ |t| for all t ∈ R, we also get by Fatou’s lemma

‖ψ(|wk|)‖L1(Ω) ≤ lim inf
n→∞

‖ψ(|ϕk ◦ yn|)‖L1(Ω) ≤ sup
n∈N

∫
Ω

ψ(|yn|) dx < +∞. (3.3)
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Let Ek = {|wk| < k − 1}. The properties of ϕk along with (3.2) imply

yn → wk a.e. in Ek for all k ∈ N, wk = wl on Ek for all k ≤ l. (3.4)

By using (3.3) we observe that Ld(Ω \ Ek)→ 0 as k → ∞ since limt→∞ ψ(t) = +∞. This together with
(3.4) shows that the measurable function y : Ω → R defined by y := limk→∞ wk satisfies y = wk on Ek

for all k ∈ N and therefore
yn → y a.e. in Ω.

The rest of the proof starting with [16, (4.10)] remains unchanged. In [16], it has been shown that
y ∈ GS BV(Ω) and ∇y ∈ [GS BV(Ω)]d. Since ∇2y ∈ L2(Ω;Rd×d) andHd−1(J∇y) < +∞, we actually get
∇y ∈ GS BV2(Ω;Rd). Finally, given an additional control on (∇yn)n in L2, we also find ∇y ∈ L2(Ω;Rd)
andHd−1(Jy) < +∞. This implies y ∈ GS BV2

2 (Ω), see (2.2). �

We now proceed with a version of Theorem 3.2 without a priori bounds on the functions. We also
take boundary data into account. The result relies on Theorem 3.2 and [42].

Theorem 3.3 (Compactness in GS BV2
2 without a priori bounds). Let Ω ⊂ Ω′ ⊂ Rd be bounded

Lipschitz domains, and let m ∈ N. Let g ∈ W2,∞(Ω′;Rm). Consider (yn)n ⊂ GS BV2
2 (Ω′;Rm) with

yn = g on Ω′ \Ω and

sup
n∈N

( ∫
Ω′

(
|∇yn|

2 + |∇2yn|
2) dx +Hd−1(Jyn ∪ J∇yn)

)
< +∞.

Then we find a subsequence (not relabeled), modifications (zn)n ⊂ GS BV2
2 (Ω′;Rm) satisfying zn = g on

Ω′ \Ω and

(i) zn = g on S n := {∇zn , ∇yn} ∪ {∇
2zn , ∇

2yn}, where Ld(S n)→ 0 as n→ ∞,

(ii) lim
n→∞
Hd−1((Jzn ∪ J∇zn

)
\
(
Jyn ∪ J∇yn

))
= 0, (3.5)

as well as a limiting function y ∈ GS BV2
2 (Ω′;Rm) with y = g on Ω′ \Ω such that

(i) zn → y in measure on Ω′,

(ii) ∇zn → ∇y a.e. Ω′ and ∇zn ⇀ ∇y weakly in L2(Ω′;Rm×d)
(iii) ∇2zn ⇀ ∇

2y weakly in L2(Ω′;Rm×d×d)
(iv) Hd−1(Jy ∪ J∇y) ≤ lim inf

n→∞
Hd−1(Jzn ∪ J∇zn). (3.6)

In general, it is indispensable to pass to modifications. Consider, e.g., the sequence yn = nχU for
some set U ⊂ Ω of finite perimeter. The idea in [42, Theorem 3.1], where this result is proved in the
space GS BV2(Ω;Rm), relies on constructing modifications (zn)n by (cf. [42, (37)–(38)])

zn = gχRn +
∑

j≥1
(yn − tn

j )χPn
j

(3.7)

for Caccioppoli partitions Ω′ =
⋃

j≥1 Pn
j ∪ Rn, and suitable translations (tn

j ) j≥1 ⊂ R
m, where

(i) lim
n→∞
Ld(Rn) = 0,

(ii) lim
n→∞
Hd−1(Jzn \ Jyn) = lim

n→∞
Hd−1((∂∗Rn ∩Ω′) \ Jyn

)
= 0. (3.8)
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Proof of Theorem 3.3. We briefly indicate the necessary adaptions with respect to [42, Theorem 3.1] to
obtain the result in the frame of GS BV2

2 (Ω′;Rm) involving second derivatives. First, by [42, Theorem
3.1] we find modifications (zn)n as in (3.7) satisfying zn = g on Ω′ \ Ω and y ∈ GS BV2(Ω′;Rm) such
that zn → y in measure on Ω′, up to passing to a subsequence. By (3.8) we get (3.5).

As zn → y in measure on Ω′, [45, Remark 2.2] implies that there exists a continuous, increasing
function ψ : [0,∞) → [0,∞) with limt→∞ ψ(t) = +∞ such that up to subsequence (not relabeled)
supn∈N

∫
Ω′
ψ(|zn|) dx < +∞. Moreover, by the assumptions on yn, (3.5), and the fact that

g ∈ W2,∞(Ω′;Rm) we get that ∇zn and ∇2zn are uniformly controlled in L2, as well as
supn∈NH

d−1(Jzn ∪ J∇zn) < +∞. Then Theorem 3.2 yields y ∈ GS BV2
2 (Ω′;Rm). Along with (3.1) for

γ1 = γ2 we also get (3.6), apart from the weak convergence of (∇zn)n. The weak convergence readily
follows from supn∈N ‖∇zn‖L2(Ω′) ≤ supn∈N ‖∇yn‖L2(Ω′) + ‖∇g‖L2(Ω′) < +∞. �

3.3. GS BD2 functions

We refer the reader to [5] and [31] for the definition, notations, and basic properties of S BD and
GS BD functions, respectively. Here, we only recall briefly some relevant notions which can be defined
for generalized functions of bounded deformation: let Ω ⊂ Rd open and bounded. In [31, Theorem 6.2
and Theorem 9.1] it is shown that for u ∈ GS BD(Ω) the jump set Ju is Hd−1-rectifiable and that an
approximate symmetric differential e(u)(x) exists at Ld-a.e. x ∈ Ω. We define the space GS BD2(Ω) by

GS BD2(Ω) := {u ∈ GS BD(Ω) : e(u) ∈ L2(Ω;Rd×d
sym) , Hd−1(Ju) < +∞} .

The space GS BD2(Ω) is a vector subspace of the vector space of Ld-measurable function, see [31,
Remark 4.6]. Moreover, there holds GS BV2(Ω;Rd) ⊂ GS BD2(Ω). The following compactness result
in GS BD2 has been proved in [26].

Theorem 3.4 (GS BD2 compactness). Let Ω ⊂ Rd be open, bounded. Let (un)n ⊂ GS BD2(Ω) be a
sequence satisfying

supn∈N
(
‖e(un)‖L2(Ω) +Hd−1(Jun)

)
< +∞.

Then there exists a subsequence (not relabeled) such that the set A := {x ∈ Ω : |un(x)| → ∞} has finite
perimeter, and there exists u ∈ GS BD2(Ω) such that

(i) un → u in measure on Ω \ A,

(ii) e(un) ⇀ e(u) weakly in L2(Ω \ A;Rd×d
sym),

(iii) lim inf
n→∞

Hd−1(Jun) ≥ H
d−1(Ju ∪ (∂∗A ∩Ω)). (3.9)

We briefly remark that (3.9)(i) is slightly weaker with respect to (3.6)(i) in Theorem 3.3 (or the
corresponding version in GS BV , see [42]) in the sense that there might be a set A where the sequence
(un)n is unbounded, cf. the example below Theorem 3.3. This phenomenon is avoided in Theorem
3.3 by passing to suitable modifications which consists in subtracting piecewise constant functions,
see (3.7). We point out that an analogous result in GS BD2 is so far only available in dimension two,
see [45, Theorem 6.1]. We now state two density results.
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Theorem 3.5 (Density). Let Ω ⊂ Rd be a bounded Lipschitz domain. Let u ∈ GS BD2(Ω). Then there
exists a sequence (un)n ⊂ S BV2(Ω;Rd)∩L∞(Ω;Rd) such that each Jun is closed and included in a finite
union of closed connected pieces of C1 hypersurfaces, each un belongs to C∞(Ω \ Jun;R

d) ∩Wm,∞(Ω \
Jun;R

d) for every m ∈ N, and the following properties hold:

(i) un → u in measure on Ω,

(ii) ‖e(un) − e(u)‖L2(Ω) → 0,
(iii) Hd−1(Jun4Ju)→ 0.

Proof. The result follows by combining [25, Theorem 1.1] and [28, Theorem 1.1]. First, [25, Theorem
1.1] yields an approximation un satisfying un ∈ S BV2(Ω;Rd)∩W1,∞(Ω\Jun;R

d), and then [28, Theorem
1.1] gives the higher regularity. �

An adaption of the proof allows to impose boundary conditions on the approximating sequence.
Suppose that the Lipschitz domains Ω ⊂ Ω′ satisfy the conditions introduced in (2.15)–(2.16). By
W(Ω;Rd) we denote the space of all functions u ∈ S BV(Ω;Rd) such that Ju is a finite union of disjoint
(d − 1)-simplices and u ∈ Wk,∞(Ω \ Ju;Rd) for every k ∈ N.

Theorem 3.6 (Density with boundary data). Let Ω ⊂ Ω′ ⊂ Rd be bounded Lipschitz domains satisfying
(2.15)–(2.16). Let g ∈ Wr,∞(Ω′) for r ∈ N. Let u ∈ GS BD2(Ω′) with u = g on Ω′ \Ω. Then there exists
a sequence of functions (un)n ⊂ S BV2(Ω;Rd), a sequence of neighborhoods (Un)n ⊂ Ω′ of Ω′ \ Ω, and
a sequence of neighborhoods (Ωn)n ⊂ Ω of Ω \ Un such that un = g on Ω′ \ Ω, un|Un ∈ Wr,∞(Un;Rd),
and un|Ωn ∈ W(Ωn;Rd), and the following properties hold:

(i) un → u in measure on Ω′,

(ii) ‖e(un) − e(u)‖L2(Ω′) → 0,
(iii) Hd−1(Jun)→ H

d−1(Ju). (3.10)

In particular, un ∈ Wr,∞(Ω \ Jun;R
d).

Proof. The fact that u can be approximated by a sequence (un)n ⊂ S BV2(Ω′;Rd)∩L∞(Ω;Rd) satisfying
(3.10) and un = g in a neighborhood of Ω′ \Ω has been addressed in [25, Proof of Theorem 5.4]. Here,
also the necessity of the geometric assumptions (2.15)–(2.16) is discussed, see [25, Remark 5.6]. The
fact that the approximating sequence can be chosen as in the statement then follows by applying on each
un a construction very similar to the one of [47, Proposition 2.5] along with a diagonal argument. This
construction consists in a suitable cut-off construction and the application of the density result [29].
We also refer to [56, Theorem 3.5] for a similar statement. �

4. Proofs

This section contains the proofs of our results.

4.1. Relaxation and existence of minimizers for the nonlinear model

In this subsection we prove Proposition 2.1 and Theorem 2.2.
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Proof of Proposition 2.1. For y ∈ GS BV2
2 (Ω;Rd) we define

E′ε(y) = inf
{
lim infn→∞ Eε(yn,Ω) : yn → y in measure on Ω

}
, (4.1)

and define Eε(·,Ω) as in (2.5). We need to check that E′ε = Eε(·,Ω). In the proof, we write ⊂̃ and =̃ for
brevity if the inclusion or the identity holds up to anHd−1-negligible set, respectively.

Step 1: E′ε ≥ Eε(·,Ω). Since by definition Eε(y,Ω) ≤ Eε(y,Ω) for all y ∈ GS BV2
2 (Ω;Rd), see (2.4),

it suffices to confirm that Eε(·,Ω) is lower semicontinous with respect to the convergence in measure.
To see this, consider (yn)n ⊂ GS BV2

2 (Ω;Rd) with yn → y in measure Ω and supn∈N Eε(yn,Ω) < +∞.
By using [45, Remark 2.2], there exists a continuous, increasing function ψ : [0,∞) → [0,∞) with
limt→∞ ψ(t) = +∞ such that up to subsequence (not relabeled) supn∈N

∫
Ω
ψ(|yn|) dx < +∞. Then from

Theorem 3.2 we obtain
Eε(y,Ω) ≤ lim inf

n→∞
Eε(yn,Ω).

In fact, for the second and the third term in (2.5) we use (3.1)(iii) and (iv) for γ1 = γ2, respectively.
The first term in (2.5) is lower semicontinuous by the continuity of W, (3.1)(ii), and Fatou’s lemma.
This shows that Eε(·,Ω) is lower semicontinous and concludes the proof of E′ε ≥ Eε(·,Ω).

Step 2: E′ε ≤ Eε(·,Ω). In the proof, we will use the following argument several times: If y1, y2 ∈

GS BV2(Ω;Rd), then for a.e. t ∈ R there holds that z := y1 + ty2 ∈ GS BV2(Ω;Rd) satisfies Jz = Jy1 ∪ Jy2 ,
see [38, Proof of Lemma 3.1] or [32, Proof of Lemma 4.5] for such an argument. We point out that
here we exploit the fact that GS BV2(Ω;Rd) is a vector space.

Observe that for each y ∈ GS BV2
2 (Ω;Rd) and each ν ∈ S d−1, the function v := ∇y · ν lies in

GS BV2(Ω;Rd) ⊂ GS BD2(Ω). We can choose ν ∈ S d−1 such that there holds Hd−1(Jv4J∇y) = 0.
We apply Theorem 3.5 to approximate v ∈ GS BD2(Ω) by a sequence (vn)n ⊂ S BV2(Ω;Rd) such that
vn ∈ W2,∞(Ω \ Jvn ;R

d) and

Hd−1(Jvn4J∇y) = Hd−1(Jvn4Jv)→ 0 (4.2)

as n → ∞. We point out that J∇vn⊂̃Jvn since vn ∈ W2,∞(Ω \ Jvn;R
d). Using vn ∈ W2,∞(Ω \ Jvn;R

d) we
can choose a sequence (ηn)n with ηn → 0 such that zn := y +ηnvn ∈ GS BV2

2 (Ω;Rd) satisfies Jzn=̃Jy∪ Jvn

and there holds zn → y in measure on Ω. By (4.2), the continuity of W, Jzn=̃Jy ∪ Jvn , and J∇zn⊂̃J∇y ∪ Jvn

we get

lim supn→∞ Eε(zn,Ω) ≤ Eε(y,Ω). (4.3)

As Jzn=̃Jy ∪ Jvn , J∇y=̃Jv, and J∇vn⊂̃Jvn , we also get

J∇zn \ Jzn ⊂̃ (J∇y ∪ J∇vn) \ (Jy ∪ Jvn) ⊂̃ Jv \ Jvn . (4.4)

In view of (4.2), by a Besicovitch covering argument we can cover the rectifiable sets Jv \ Jvn by sets
of finite perimeter (En)n ⊂⊂ Ω, each of which being a countable union of balls with radii smaller than
1
n , such that

Ld(En) +Hd−1(∂∗En)→ 0. (4.5)

We finally define the sequence yn ∈ GS BV2
2 (Ω;Rd) by yn = znχΩ\En + (id + bn)χEn for suitable constants

(bn)n ⊂ R
d which are chosen such that Jyn=̃(Jzn \En)∪∂∗En. Now in view of (4.4) and Jv\Jvn⊂̃En, we get
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J∇yn⊂̃Jyn . By (4.5) and zn → y in measure on Ω we get yn → y in measure on Ω. By (2.3)(iii) we obtain
W(∇yn) = 0, ∇2yn = 0 on En. Then by (2.5), (4.3), (4.5), and the fact that J∇yn⊂̃Jyn=̃(Jzn \ En) ∪ ∂∗En

we get
lim sup

n→∞
Eε(yn,Ω) ≤ lim sup

n→∞

(
Eε(zn,Ω) + κHd−1(∂∗En)

)
≤ Eε(y,Ω).

Since Eε(yn,Ω) = Eε(yn,Ω) for all n ∈ N by J∇yn⊂̃Jyn , (4.1) implies E′ε(y) ≤ Eε(y,Ω). This concludes
the proof. �

Proof of Theorem 2.2. We prove the existence of minimizers via the direct method. Let
(yn)n ⊂ GS BV2

2 (Ω′;Rd) with yn = g on Ω′ \Ω be a minimizing sequence for the minimization problem
(2.6). By (2.3) we find W(F) ≥ c1|F|2 − c2 for c1, c2 > 0. Thus, supn∈N Eε(yn) < +∞ also implies
supn∈N ‖∇yn‖L2(Ω′) < +∞, and we can apply Theorem 3.3. We obtain a sequence
(zn)n ⊂ GS BV2

2 (Ω′;Rd) satisfying zn = g on Ω′ \ Ω and a limiting function y ∈ GS BV2
2 (Ω′;Rd) with

y = g on Ω′ \ Ω such that zn → y in measure on Ω′. Using (2.5), (3.5), and g ∈ W2,∞(Ω′;Rd) we
calculate

lim sup
n→∞

(
Eε(zn) − Eε(yn)

)
≤ lim sup

n→∞

(
ε−2CW,gL

d(S n) + ε−2β‖∇2g‖2L2(S n)

+ κ
(
Hd−1(Jzn ∪ J∇zn) −H

d−1(Jyn ∪ J∇yn)
))
≤ 0,

where the constant CW,g depends on W and ‖∇g‖L∞(Ω′). I.e., (zn)n is also a minimizing sequence. By
zn → y in measure on Ω′ and the fact that Eε is lower semicontinuous with respect to the convergence
in measure on Ω′, see Proposition 2.1, we get

Eε(y) ≤ lim inf
n→∞

Eε(zn) ≤ lim inf
n→∞

Eε(yn) = inf
ȳ∈GS BV2

2 (Ω′;Rd)

{
Eε(ȳ) : ȳ = g on Ω′ \Ω

}
.

This shows that y is a minimizer. �

4.2. Compactness

This subsection is devoted to the proof of Theorem 2.3.

Proof of Theorem 2.3(a). Consider a sequence (yε)ε with yε ∈ Sε,h, i.e., yε = id+εh on Ω′ \Ω. Suppose
that M := supε Eε(yε) < +∞. We first construct Caccioppoli partitions (Step 1) and the corresponding
rotations (Step 2) in order to define yrot

ε . Then we confirm (2.10) (Step 3).
Step 1: Definition of the Caccioppoli partitions. First, we apply the BV coarea formula (see [6,

Theorem 3.40 or Theorem 4.34]) on each component (∇yε)i j ∈ GS BV2(Ω′), 1 ≤ i, j ≤ d, to write∫ ∞

−∞

Hd−1((Ω′ \ J∇yε) ∩ ∂
∗{(∇yε)i j > t}

)
dt = |D(∇yε)i j|(Ω′ \ J∇yε) ≤ ‖∇

2yε‖L1(Ω′).

Using Hölder’s inequality and (2.5) along with Eε(yε) ≤ M, we then get∫ ∞

−∞

Hd−1((Ω′ \ J∇yε) ∩ ∂
∗{(∇yε)i j > t}

)
dt ≤ (Ld(Ω′))1/2‖∇2yε‖L2(Ω′) ≤ (Ld(Ω′)M)1/2εβ. (4.6)
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Fix γ ∈ (2
3 , β) and define Tε = εγ. For all k ∈ Z we find ti j

k ∈ (kTε, (k + 1)Tε] such that

Hd−1((Ω′ \ J∇yε) ∩ ∂
∗{(∇yε)i j > ti j

k }
)
≤

1
Tε

∫ (k+1)Tε

kTε
Hd−1((Ω′ \ J∇yε) ∩ ∂

∗{(∇yε)i j > t}
)

dt. (4.7)

Let Gε,i j
k = {(∇yε)i j > ti j

k } \ {(∇yε)i j > ti j
k+1} and note that each set has finite perimeter in Ω′ since it is

the difference of two sets of finite perimeter. Now (4.6) and (4.7) imply∑
k∈Z
Hd−1((Ω′ \ J∇yε) ∩ ∂

∗Gε,i j
k

)
≤ 2T−1

ε (Ld(Ω′)M)1/2εβ ≤ Cεβ−γ (4.8)

for a sufficiently large constant C > 0 independent of ε. Since Ld(Ω′ \
⋃

k∈ZGε,i j
k ) = 0, (Gε,i j

k )k∈Z

is a Caccioppoli partition of Ω′. We let (Pε
j) j∈N be the Caccioppoli partition of Ω′ consisting of the

nonempty sets of {
Gε,11

k11
∩Gε,12

k12
∩ . . . ∩Gε,dd

kdd
: ki j ∈ Z for i, j = 1, . . . , d

}
.

Then (4.8) implies ∑∞

j=1
Hd−1(∂∗Pε

j ∩ (Ω′ \ J∇yε)
)
≤ Cεβ−γ (4.9)

for a constant C > 0 independent of ε.
Step 2: Definition of the rotations. We now define corresponding rotations. Recalling Tε = εγ we

get |ti j
k − ti j

k+1| ≤ 2Tε = 2εγ for all k ∈ Z, i, j = 1, . . . , n. Then by the definition of Gε,i j
k , for each

component Pε
j of the Caccioppoli partition, we find a matrix Fε

j ∈ R
d×d such that

‖∇yε − Fε
j‖L∞(Pεj ) ≤ cεγ, (4.10)

where c depends only on d. For each j ∈ N with Pε
j ⊂ Ω up to an Ld-negligible set, we denote by

R̄ε
j the nearest point projection of Fε

j onto S O(d). For all other components Pε
j , i.e., the components

intersecting Ω′ \Ω, we set R̄ε
j = Id. We now show that for all j ∈ N and for Ld-a.e. x ∈ Pε

j there holds

|∇yε(x) − R̄ε
j | ≤ max

{
Cεγ, 2 dist(∇yε(x), S O(d))

}
(4.11)

for a constant C > 0 independent of ε.
First, we consider components Pε

j which are contained in Ω up to an Ld-negligible set. Recall that
R̄ε

j is defined as the nearest point projection of Fε
j onto S O(d). If |R̄ε

j − Fε
j | ≤ 3cεγ, where c is the

constant of (4.10), (4.11) follows from (4.10) and the triangle inequality. Otherwise, by (4.10) we get
for Ld-a.e. x ∈ Pε

j

dist(∇yε(x), S O(d)) ≥ dist(Fε
j , S O(d)) − cεγ = |R̄ε

j − Fε
j | − cεγ

≥ 1
2

(
|R̄ε

j − Fε
j | + cεγ

)
≥ 1

2 |R̄
ε
j − ∇yε(x)|.

This implies (4.11). Now consider a component Pε
j which intersects Ω′ \ Ω. Then by (4.10) and the

fact that yε = id + εh on Ω′ \Ω there holds

‖Id + ε∇h − Fε
j‖L∞(Pεj\Ω) ≤ ‖∇yε − Fε

j‖L∞(Pεj ) ≤ cεγ.
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Since 0 < γ < 1, this yields |Fε
j − Id| ≤ Cεγ for a constant C depending also on ‖∇h‖L∞(Ω′). This along

with (4.10) implies (4.11) (for R̄ε
j = Id). We define the rotations in the statement by Rε

j := (R̄ε
j)
−1.

Step 3: Proof of (2.10). We are now in a position to prove (2.10). We define yrot
ε as in (2.9), i.e.,

yrot
ε =

∑∞
j=1 Rε

jyεχPεj . Then (2.10)(i) follows from the fact that yε = id + εh on Ω′ \ Ω and yrot
ε = yε on

Ω′ \Ω, where the latter holds due to Rε
j = Id for all Pε

j intersecting Ω′ \Ω. Property (2.10)(ii) is a direct
consequence of the definition of yrot

ε and (4.9). To see (2.10)(iv), we use (4.11) and Rε
j = (R̄ε

j)
−1 to get

‖∇yrot
ε − Id‖2L2(Ω′) =

∑∞

j=1
‖∇yε − R̄ε

j‖
2
L2(Pεj )

≤ Cε2γLd(Ω′) + 4‖ dist(∇yε, S O(d))‖2L2(Ω′)

≤ C(ε2γ + ε2)

for a constant depending on M, where the last step follows from (2.3)(iii), (2.5), and Eε(yε) ≤ M.
Since 0 < γ < 1, (2.10)(iv) is proved. It remains to show (2.10)(iii). We recall the linearization
formula (see [46, (3.20)])

|sym(F − Id)| = dist(F, S O(d)) + O(|F − Id|2) (4.12)

for F ∈ Rd×d. By Young’s inequality and |sym(F − Id)| ≤ |F − Id| this implies

|sym(F − Id)|2 ≤ min
{
|F − Id|2, C dist2(F, S O(d)) + C|F − Id|4

}
≤ C dist2(F, S O(d)) + C min

{
|F − Id|2, |F − Id|4

}
.

Then we calculate∫
Ω′
|sym(∇yrot

ε − Id)|2 ≤ C
∫

Ω′

(
dist2(∇yrot

ε , S O(d)) + min
{
|∇yrot

ε − Id|2, |∇yrot
ε − Id|4

})
≤ C

∑∞

j=1

∫
Pεj

(
dist2(∇yε, S O(d)) + |∇yε − R̄ε

j |
2 min

{
1, |∇yε − R̄ε

j |
2}).

By (4.11) we note that for a.e. x ∈ Pε
j there holds

|∇yε(x) − R̄ε
j |

2 min
{
1, |∇yε(x) − R̄ε

j |
2} ≤ Cε4γ + C dist2(∇yε(x), S O(d)).

Here, we used that, if |∇yε(x) − R̄ε
j |

2 > 1, the maximum in (4.11) is attained for dist(∇yε(x), S O(d)),
provided that ε is small enough. Therefore, we get∫

Ω′
|sym(∇yrot

ε − Id)|2 ≤ C
∫

Ω′
dist2(∇yε, S O(d)) + CLd(Ω′)ε4γ ≤ Cε2 + Cε4γ,

where in the last step we have again used (2.3)(iii), (2.5), and Eε(yε) ≤ M. Since γ > 2
3 ≥

1
2 , we obtain

(2.10)(iii). This concludes the proof of Theorem 2.3(a). �

Remark 4.1. For later purposes, we point out that the construction shows yrot
ε = yε on all Pε

j

intersecting Ω′ \Ω.

Mathematics in Engineering Volume 2, Issue 1, 75–100.



92

Proof of Theorem 2.3(b). We define the rescaled displacment fields uε := 1
ε
(yrot
ε − id) as in (2.11).

Clearly, there holds uε ∈ GS BV2(Ω′;Rd) ⊂ GS BD2(Ω′). Note that by (2.10)(iii) we obtain
supε ‖e(uε)‖L2(Ω′) < +∞, where for shorthand we again write e(uε) = 1

2 (∇uT
ε + ∇uε). Moreover, in view

of (2.10)(ii) and β > γ, we get

lim supε→0H
d−1(Juε) ≤ lim supε→0H

d−1(Jyε ∪ J∇yε) < +∞. (4.13)

Therefore, we can apply Theorem 3.4 on the sequence (uε)ε to obtain A and u′ ∈ GS BD2(Ω′) such
that (3.9) holds (up to passing to a subsequence). We first observe that Eu = A, where Eu := {x ∈ Ω :
|uε(x)| → ∞} and A := {x ∈ Ω′ : |uε(x)| → ∞}. To see this, we have to check that A ⊂ Ω. This follows
from the fact that uε = h on Ω′ \Ω for all ε, see (2.10)(i) and (2.11).

We define u := u′χΩ′\Eu + λχEu for some λ ∈ Rd such that ∂∗Eu ∩ Ω′ ⊂ Ju up to anHd−1-negligible
set. Since Ju ⊂ Ju′ ∪ (∂∗Eu ∩ Ω′), (3.9) then implies (2.12), where the last inequality in (2.12)(iii)
follows from (4.13). Finally, u ∈ GS BD2

h follows from uε = h on Ω′ \Ω and (2.12)(i). �

4.3. Passage to linearized model by Γ-convergence

We now give the proof of Theorem 2.7.

Proof of Theorem 2.7. Since Eε ≤ Eε, see (2.4) and (2.5), the compactness result follows immediately
from Theorem 2.3. It suffices to show the Γ-liminf inequality for Eε and the Γ-limsup inequality for
Eε.

Step 1: Γ-liminf inequality. Consider u ∈ GS BD2
h and (yε)ε, yε ∈ Sε,h, such that yε  u, i.e., by

Definition 2.4 there exist yrot
ε =

∑∞
j=1 Rε

j yε χPεj and uε := 1
ε
(yrot
ε − id) such that (2.10) and (2.12) hold for

some fixed γ ∈ (2
3 , β). The essential step is to prove

lim inf
ε→0

1
ε2

∫
Ω′

W(∇yε) ≥
∫

Ω′

1
2

Q(e(u)). (4.14)

Once (4.14) is shown, we conclude by (2.5) and (2.12)(iii) that

lim inf
ε→0

Eε(yε) ≥ lim inf
ε→0

( 1
ε2

∫
Ω′

W(∇yε) + κHd−1(Jyε ∪ J∇yε)
)
≥

∫
Ω′

1
2

Q(e(u)) + κHd−1(Ju).

In view of (2.14), this shows lim infε→0 Eε(yε) ≥ E(u). To see (4.14), we first note that the frame
indifference of W (see (2.3)(ii)) and the definitions of yrot

ε and uε (see (2.9) and (2.11)) imply

W(∇yε) = W(∇yrot
ε ) = W(Id + ε∇uε). (4.15)

In view of γ > 2/3, we can choose ηε → +∞ such that

ε1−γηε → +∞ and εη3
ε → 0. (4.16)

We define χε ∈ L∞(Ω′) by χε(x) = χ[0,ηε)(|∇uε(x)|). Note that Ld({|∇uε(x)| > ηε}) ≤ C(εγ−1/ηε)2 by
(2.10)(iv) and the fact that uε = 1

ε
(yrot
ε − id). Thus, (4.16) implies χε → 1 boundedly in measure on

Ω′. The regularity of W implies W(Id + F) = 1
2 Q(sym(F)) + ω(F), where Q is defined in (2.14) and
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ω : Rd×d → R is a function satisfying |ω(F)| ≤ C|F|3 for all F ∈ Rd×d with |F| ≤ 1. Then by (4.15) and
W ≥ 0 we get

lim inf
ε→0

1
ε2

∫
Ω′

W(∇yε) ≥ lim inf
ε→0

1
ε2

∫
Ω′
χεW(Id + ε∇uε)

= lim inf
ε→0

∫
Ω′
χε

(1
2

Q(e(uε)) +
1
ε2ω(ε∇uε)

)
≥ lim inf

ε→0

( ∫
Ω′\Eu

χε
1
2

Q(e(uε)) +

∫
Ω′
χε|∇uε|3ε

ω(ε∇uε)
|ε∇uε|3

)
,

where Eu = {x ∈ Ω : |uε(x)| → ∞}. The second term converges to zero. Indeed, χε
|ω(ε∇uε)|
|ε∇uε |3

is
uniformly controlled by C and χε|∇uε|3ε is uniformly controlled by η3

εε, where η3
εε → 0 by (4.16). As

e(uε) ⇀ e(u) weakly in L2(Ω′ \ Eu,R
d×d
sym) by (2.12)(ii), Q is convex, and χε converges to 1 boundedly

in measure on Ω′ \ Eu, we conclude

lim inf
ε→0

1
ε2

∫
Ω′

W(∇yε) ≥
∫

Ω′\Eu

1
2

Q(e(u)) =

∫
Ω′

1
2

Q(e(u)),

where the last step follows from the fact that e(u) = 0 on Eu, see (2.12)(iv). This shows (4.14) and
concludes the proof of the Γ-liminf inequality.

Step 2: Γ-limsup inequality. Consider u ∈ GS BD2
h with h ∈ W2,∞(Ω′;Rd). Let γ ∈ (2

3 , β). By
Theorem 3.6 we can find a sequence (vε)ε ∈ GS BV2

2 (Ω′;Rd) with vε = h on Ω′ \ Ω, vε ∈ W2,∞(Ω′ \
Jvε;R

d), and

(i) vε → u in measure on Ω′,

(ii) ‖e(vε) − e(u)‖L2(Ω′) → 0,
(iii) Hd−1(Jvε)→ H

d−1(Ju),
(iv) ‖∇vε‖L∞(Ω′) + ‖∇2vε‖L∞(Ω′) ≤ ε

(β−1)/2 ≤ εγ−1. (4.17)

Note that property (iv) can be achieved since the approximations satisfy vε ∈ W2,∞(Ω′\Jvε;R
d). (Recall

γ < β < 1.) Moreover, vε ∈ W2,∞(Ω′ \ Jvε;R
d) also implies J∇vε ⊂ Jvε .

We define the sequence yε = id+εvε. As vε ∈ GS BV2
2 (Ω′;Rd) and vε = h on Ω′\Ω, we get yε ∈ Sε,h,

see (2.8). We now check that yε u in the sense of Definition 2.4.
We define yrot

ε = yε, i.e., the Caccioppoli partition in (2.9) consists of the set Ω′ only with
corresponding rotation Id. Then (2.10)(i),(ii) are trivially satisfied. As ∇yrot

ε − Id = ε∇vε,
(2.10)(iii),(iv) follow from (4.17)(ii),(iv). The rescaled displacement fields uε defined in (2.11) satisfy
uε = vε. Then (2.12) for Eu = ∅ follows from (4.17)(i)–(iii) and Jyε = Jvε .

Finally, we confirm limε→0 Eε(yε) = E(u). In view of Jyε = Jvε , J∇yε ⊂ Jyε , (4.17)(iii), and the
definition of the energies in (2.4), (2.14), it suffices to show

lim
ε→0

( 1
ε2

∫
Ω′

W(∇yε) +
1
ε2β

∫
Ω′
|∇2yε|2

)
=

∫
Ω′

1
2

Q(e(u)).

The second term vanishes by (4.17)(iv), β < 1, and the fact that ∇2yε = ε∇2vε. For the first term, we
again use that W(Id + F) = 1

2 Q(sym(F)) + ω(F) with |ω(F)| ≤ C|F|3 for |F| ≤ 1, and compute by
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(4.17)(ii),(iv)

lim
ε→0

1
ε2

∫
Ω′

W(∇yε) = lim
ε→0

1
ε2

∫
Ω′

W(Id + ε∇vε) = lim
ε→0

∫
Ω′

(1
2

Q(e(vε)) +
1
ε2ω(ε∇vε)

)
=

∫
Ω′

1
2

Q(e(u)) + lim
ε→0

∫
Ω′

O
(
ε|∇vε|3

)
=

∫
Ω′

1
2

Q(e(u)),

where in the last step we have used that ‖∇vε‖L∞(Ω′) ≤ Cεγ−1 for some γ > 2/3. This concludes the
proof. �

Remark 4.2. The proof shows that one can readily incorporate a dependence on the material point
x in the density W, as long as (2.3) still holds. We also point out that it suffices to suppose that W
is C2,α in a neighborhood of S O(d), provided that 1 > β > γ > 2

2+α
. In fact, in that case, one has

|ω(F)| ≤ C|F|2+α for all |F| ≤ 1,and all estimates remain true, where in (4.16) one chooses ηε with
ε1−γηε → +∞ and εαη2+α

ε → 0.

We close this subsection with the proof of Corollary 2.8.

Proof of Corollary 2.8. The statement follows in the spirit of the fundamental theorem of
Γ-convergence, see, e.g., [12, Theorem 1.21]. We repeat the argument here for the reader’s
convenience. We observe that inf ȳ∈Sε,h Eε(ȳ) is uniformly bounded by choosing id + εh as competitor.
Given (yε)ε, yε ∈ Sε,h, satisfying (2.18), we apply Theorem 2.7(a) to find a subsequence (not
relabeled), and u ∈ GS BD2

h such that yε  u in the sense of Definition 2.4. Thus, by Theorem 2.7(b)
we obtain

E(u) ≤ lim inf
ε→0

Eε(yε) ≤ lim inf
ε→0

inf
ȳ∈Sε,h

Eε(ȳ). (4.18)

By Theorem 2.7(c), for each v ∈ GS BD2
h, there exists a sequence (wε)ε with wε  v and

limε→0 Eε(wε) = E(v). This implies

lim sup
ε→0

inf
ȳ∈Sε,h

Eε(ȳ) ≤ lim
ε→0
Eε(wε) = E(v). (4.19)

By combining (4.18)–(4.19) we find

E(u) ≤ lim inf
ε→0

inf
ȳ∈Sε,h

Eε(ȳ) ≤ lim sup
ε→0

inf
ȳ∈Sε,h

Eε(ȳ) ≤ E(v). (4.20)

Since v ∈ GS BD2
h was arbitrary, we get that u is a minimizer of E. Property (2.17) follows from (4.20)

with v = u. In particular, the limit in (2.17) does not depend on the specific choice of the subsequence
and thus (2.17) holds for the whole sequence. �

4.4. Characterization of limiting displacements

This final subsection is devoted to the proof of Lemma 2.6.
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Proof of Lemma 2.6. Proof of (a). As a preparation, we observe that for two given rotations R1,R2 ∈

S O(d) there holds

|sym(R2RT
1 − Id)| ≤ C|R1 − R2|

2. (4.21)

This follows from formula (4.12) applied for F = R2RT
1 .

Consider a sequence (yε)ε. Let

yrot,i
ε =

∑∞

j=1
Rε,i

j yε χPε,ij
, i = 1, 2, (4.22)

be two sequences such that the corresponding rescaled displacement fields ui
ε = ε−1(yrot,i

ε − id), i = 1, 2,
converge to u1 and u2, respectively, in the sense of (2.12), where the exceptional sets are denoted by
Eu1 and Eu2 , respectively. In particular, pointwise Ld-a.e. in Ω′ there holds

e(u1
ε) − e(u2

ε) = ε−1sym
(∑

j
Rε,1

j ∇yε χPε,1j
−

∑
j
Rε,2

j ∇yε χPε,2j

)
= ε−1sym

(∑
j,k

(
Rε,1

j − Rε,2
k

)
χPε,1j ∩Pε,2k

∇yε
)

= ε−1sym
(∑

j,k

(
Id − Rε,2

k (Rε,1
j )T ) χPε,1j ∩Pε,2k

∇yrot,1
ε

)
. (4.23)

For brevity, we define Zε ∈ L∞(Ω′;Rd×d) by

Zε :=
∑

j,k

(
Id − Rε,2

k (Rε,1
j )T ) χPε,1j ∩Pε,2k

. (4.24)

By (2.10)(iv) and the triangle inequality we get

∑
j,k

∥∥∥Rε,1
j − Rε,2

k

∥∥∥2

L2(Pε,1j ∩Pε,2k )
≤ C

∞∑
j=1

‖(∇yε)T − Rε,1
j ‖

2
L2(Pε,1j )

+ C
∞∑

k=1

‖(∇yε)T − Rε,2
k ‖

2
L2(Pε,2k )

= C‖∇yrot,1
ε − Id‖2L2(Ω′) + C‖∇yrot,2

ε − Id‖2L2(Ω′) ≤ Cε2γ

for some given γ ∈ (2
3 , β), and C > 0 independent of ε. Equivalently, this means∑

j,k
Ld(Pε,1

j ∩ Pε,2
k

)∣∣∣Rε,1
j − Rε,2

k

∣∣∣2 ≤ Cε2γ.

By recalling (4.21) and (4.24) we then get

‖sym(Zε)‖L1(Ω′) ≤ Cε2γ, ‖Zε‖L2(Ω′) ≤ Cεγ.

This along with Hölder’s inequality, (2.10)(iv) for yrot,1
ε , and (4.23) yields

‖e(u1
ε) − e(u2

ε)‖L1(Ω′) =
1
ε
‖sym

(
Zε ∇yrot,1

ε

)
‖L1(Ω′)

≤
1
ε
‖sym

(
Zε

(
∇yrot,1

ε − Id
))
‖L1(Ω′) +

1
ε
‖sym

(
Zε

)
‖L1(Ω′)

≤
1
ε
‖Zε‖L2(Ω′)‖∇yrot,1

ε − Id‖L2(Ω′) +
1
ε
‖sym

(
Zε

)
‖L1(Ω′) ≤ Cε2γ−1. (4.25)
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We have that e(u1
ε)− e(u2

ε) converges to e(u1)− e(u2) weakly in L2(Ω′ \ (Eu1 ∪Eu2);R
d×d
sym), see (2.12)(ii).

Then (4.25) and the fact that γ > 2
3 >

1
2 imply that e(u1) − e(u2) = 0 on Ω′ \ (Eu1 ∪ Eu2). This shows

part (a) of the statement.
Proof of (b). Let (yε)ε be a sequence satisfying (2.13). Consider two piecewise rotated functions yrot,i

ε

as given in (4.22) and let u1, u2 be the limits identified in (2.12), where the corresponding exceptional
sets are denoted by Eu1 , Eu2 . We let J i = { j ∈ N : Pε,i

j ⊂ Ω up to an Ld-negligible set} for i = 1, 2, and
set Dε :=

⋃
i=1,2

⋃
j∈J i Pε,i

j . By (2.10)(ii) and γ < β we obtain

lim supε→0H
d−1((∂∗Dε ∩Ω′

)
\
(
Jyε ∪ J∇yε

))
= 0. (4.26)

As also supεH
d−1(Jyε ∪ J∇yε) < +∞, we get that Hd−1(∂∗Dε) is uniformly controlled. Therefore, we

may suppose that Dε → D in measure for a set of finite perimter D ⊂ Ω, see [6, Theorem 3.39].
We observe that yrot,i

ε = yε on Ω′ \ Dε for i = 1, 2 by Remark 4.1. Therefore, (2.11) implies that
Eu1 \ D = Eu2 \ D. In the following, we denote this set by Ê. Then, (2.11) and (2.12)(i) also yield

u1 = u2 a.e. on Ω′ \ (D ∪ Ê). (4.27)

To compare u1 and u2 inside D∪ Ê, we introduce modifications: For i = 1, 2 and sequences (λε)ε ⊂ Rd,
let

yλε,iε := yrot,i
ε + λε χDε

. (4.28)

By definition, Dε does not intersect Ω′ \Ω and has finite perimeter by (4.26). Thus, we get yλε,iε ∈ Sε,h,
see (2.8) and (2.10)(i). By (2.10)(ii), (4.26), and the fact that the elastic energy is frame indifferent we
also observe that (yλε,iε )ε is a minimizing sequence for i = 1, 2 and all (λε)ε ⊂ Rd. We obtain

yε = yrot,i
ε = yλε,iε on Ω′ \ Dε for all (λε)ε ⊂ Rd, i = 1, 2. (4.29)

This follows from (4.28) and yrot,i
ε = yε on Ω′ \ Dε for i = 1, 2, see Remark 4.1. We now consider two

different cases:
(1) Fix i = 1, 2, λ ∈ Rd, and consider λε = λε. In view of (2.11), (2.12)(i), and (4.28), we get

that ε−1(yλε,iε − id) → ui + λχD in measure on Ω′ \ Eui . Thus, one can check that yλε,iε  uλi for some
uλi ∈ GS BD2

h satisfying

uλi = ui + λχD on Ω′ \ Eui . (4.30)

(2) Recall that Ê = Eu1 \ D = Eu2 \ D = {x ∈ Ω \ D : |ε−1(yrot,i
ε − id)| → ∞} for i = 1, 2. In

view of (4.28), we can choose a suitable sequence (λε)ε such that |ε−1(yλε,iε − id)| → ∞ on Ê ∪ D for
i = 1, 2. This along with (4.29) and (2.12)(i),(iv) implies that for i = 1, 2 we have yλε,iε  û for some
û ∈ GS BD2

h satisfying

(i) û = u1 = u2 a.e. on Ω′ \ (Ê ∪ D),
(ii) e(û) = 0 a.e. on Ê ∪ D, Hd−1(Jû ∩ (Ê ∪ D)1) = 0, (4.31)

where (·)1 denotes the set of points with density 1.
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We now combine the cases (1) and (2) to obtain the statement: since (yλε,iε )ε are minimizing
sequences, Corollary 2.8 implies that each uλi , λ ∈ Rd, i = 1, 2, and û are minimizers of the problem
minv∈GS BD2

h
E(v). In particular, as e(uλi ) = e(ui) for all λ ∈ Rd for both i = 1, 2, the jump sets of uλ1, uλ2

have to be independent of λ, i.e., Hd−1(Jui4Juλi
) = 0 for all λ ∈ Rd and i = 1, 2. In view of (4.30) and

(2.12)(iv), this yields ∂∗Eui ∩ Ω′, ∂∗(D \ Eui) ∩ Ω′ ⊂ Jui up to Hd−1-negligigble sets. Since
Ê = Eui \ D, this implies for i = 1, 2 that

∂∗(Ê ∪ D) ∩Ω′ ⊂ Jui up toHd−1-negligigble sets. (4.32)

Recall that u1, u2 are both minimizers, that also û is a minimzer, and that there holds û = u1 = u2

on Ω′ \ (Ê ∪ D), see (4.31)(i). This along with (4.31)(ii) and (4.32) yields e(ui) = 0 on Ê ∪ D and
Hd−1(Jui ∩ (Ê ∪ D)1) = 0 for i = 1, 2. Then (4.27) and (4.32) show that e(u1) = e(u2) Ld-a.e. on Ω′,
and Ju1 = Ju2 up to anHd−1-negligible set. �

We finally provide an example that in case (a) the strains cannot be compared inside Eu1 ∪ Eu2 .

Example 4.3. Similar to Example 2.5, we consider Ω′ = (0, 3) × (0, 1), Ω = (1, 3) × (0, 1), Ω1 =

(0, 2) × (0, 1), Ω2 = (2, 3) × (0, 1), and h ≡ 0. Let z ∈ W2,∞(Ω′;Rd) with {z = 0} = ∅, and define

yε(x) = xχΩ1(x) +
(
x + εz(x)

)
χΩ2(x) for x ∈ Ω′.

Note that Jyε = ∂Ω1 ∩Ω′ = ∂Ω2 ∩Ω′. Then two possible alternatives are

(1) Pε
1 = Ω1, Pε

2 = Ω2, Rε
1 = Id, Rε

2 = R̄ε,

(2) P̃ε
1 = Ω′, R̃ε

1 = Id,

where R̄ε ∈ S O(2) satisfies R̄ε = Id + εγA + O(ε2γ) for some A ∈ R2×2
skew, γ ∈ ( 2

3 , β). Let uε =

ε−1(
∑2

j=1 Rε
jyεχPεj − id) and ũε = ε−1(yε− id), We observe that |uε| → ∞ on Ω2. Possible limits identified

in (2.12) are u = λχΩ2 for some λ ∈ Rd, λ , 0, with Eu = Ω2, and ũ(x) = z(x) χΩ2(x) with Eũ = ∅. This
shows that in general there holds e(u) , e(ũ) in Eu.
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