We obtain density estimates for the free boundaries of minimizers $ u \ge 0 $ of the Alt-Phillips functional involving negative power potentials
$ \int_\Omega \left(|\nabla u|^2 + u^{-\gamma} \chi_{\{u>0\}}\right) \, dx, \quad \quad \gamma \in (0, 2). $
These estimates remain uniform as the parameter $ \gamma \to 2 $. As a consequence we establish the uniform convergence of the corresponding free boundaries to a minimal surface as $ \gamma \to 2 $. The results are based on the $ \Gamma $-convergence of these energies (properly rescaled) to the Dirichlet-perimeter functional
$ \int_{\Omega} |\nabla u|^2 dx + Per_{\Omega}(\{ u = 0\}), $
considered by Athanasopoulous, Caffarelli, Kenig, and Salsa.
Citation: Daniela De Silva, Ovidiu Savin. Uniform density estimates and $ \Gamma $-convergence for the Alt-Phillips functional of negative powers[J]. Mathematics in Engineering, 2023, 5(5): 1-27. doi: 10.3934/mine.2023086
We obtain density estimates for the free boundaries of minimizers $ u \ge 0 $ of the Alt-Phillips functional involving negative power potentials
$ \int_\Omega \left(|\nabla u|^2 + u^{-\gamma} \chi_{\{u>0\}}\right) \, dx, \quad \quad \gamma \in (0, 2). $
These estimates remain uniform as the parameter $ \gamma \to 2 $. As a consequence we establish the uniform convergence of the corresponding free boundaries to a minimal surface as $ \gamma \to 2 $. The results are based on the $ \Gamma $-convergence of these energies (properly rescaled) to the Dirichlet-perimeter functional
$ \int_{\Omega} |\nabla u|^2 dx + Per_{\Omega}(\{ u = 0\}), $
considered by Athanasopoulous, Caffarelli, Kenig, and Salsa.
[1] | S. M. Allen, J. W. Cahn, Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metallurgica, 20 (1972), 423–433. https://doi.org/10.1016/0001-6160(72)90037-5 doi: 10.1016/0001-6160(72)90037-5 |
[2] | H. W. Alt, L. A. Caffarelli, Existence and regularity for a minimum problem with free boundary, J. Reine Angew. Math., 1981 (1981), 105–144. https://doi.org/10.1515/crll.1981.325.105 doi: 10.1515/crll.1981.325.105 |
[3] | H. W. Alt, L. A. Caffarelli, A. Friedman, Variational problems with two phases and their free boundaries, Trans. Amer. Math. Soc., 282 (1984), 431–461. https://doi.org/10.2307/1999245 doi: 10.2307/1999245 |
[4] | H. W. Alt, D. Phillips, A free boundary problem for semilinear elliptic equations, J. Reine Angew. Math., 986 (1986) 63–107. https://doi.org/10.1515/crll.1986.368.63 doi: 10.1515/crll.1986.368.63 |
[5] | L. Ambrosio, G. De Philippis, L. Martinazzi, Gamma-convergence of nonlocal perimeter functionals, Manuscripta Math., 134 (2011), 377–403. https://doi.org/10.1007/s00229-010-0399-4 doi: 10.1007/s00229-010-0399-4 |
[6] | I. Athanasopoulos, L. A. Caffarelli, C. Kenig, S. Salsa, An area-Dirichlet integral minimization problem, Commun. Pure Appl. Math., 54 (2001), 479–499. https://doi.org/10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2 doi: 10.1002/1097-0312(200104)54:4<479::AID-CPA3>3.0.CO;2-2 |
[7] | L. A. Caffarelli, A. Cordoba, Uniform convergence of a singular perturbation problem, Commun. Pure Appl. Math., 48 (1995), 1–12. https://doi.org/10.1002/cpa.3160480101 doi: 10.1002/cpa.3160480101 |
[8] | L. A. Caffarelli, S. Salsa, A geometric approach to free boundary problems, Providence, RI: American Mathematical Society, 2005. http://doi.org/10.1090/gsm/068 |
[9] | L. A. Caffarelli, E. Valdinoci, Uniform estimates and limiting arguments for non-local minimal surfaces, Calc. Var., 41 (2011), 203–240. https://doi.org/10.1007/s00526-010-0359-6 doi: 10.1007/s00526-010-0359-6 |
[10] | D. De Silva, O. Savin, The Alt-Phillips functional for negative powers, arXiv: 2203.07123. |
[11] | S. Dipierro, A. Figalli, G. Palatucci, E. Valdinoci, Asymptotics of the s perimeter as $s \to 0$, Discrete Contin. Dyn. Syst., 33 (2013), 2777–2790. https://doi.org/10.3934/dcds.2013.33.2777 doi: 10.3934/dcds.2013.33.2777 |
[12] | L. Modica, The gradient theory of phase transitions and the minimal interface criterion, Arch. Rational Mech. Anal., 98 (1987), 123–142. https://doi.org/10.1007/BF00251230 doi: 10.1007/BF00251230 |
[13] | L. Modica, S. Mortola, Un esempio di $\Gamma$-convergenza, (Italian), Boll. Un. Mat. Ital. B, 14 (1977), 285–299. |
[14] | A. Petrosyan, H. Shahgholian, N. Uraltseva, Regularity of free boundaries in obstacle-type problems, Providence, RI: American Mathematical Society, 2012. https://doi.org/10.1090/gsm/136 |
[15] | A. Petrosyan, E. Valdinoci, Density estimates for a degenerate/singular phase-transition model, SIAM J. Math. Anal., 36 (2005), 1057–1079. https://doi.org/10.1137/S0036141003437678 doi: 10.1137/S0036141003437678 |
[16] | O. Savin, E. Valdinoci, Density estimates for a nonlocal variational model via the Sobolev inequality, SIAM J. Math. Anal., 43 (2011), 2675–2687. https://doi.org/10.1137/110831040 doi: 10.1137/110831040 |
[17] | E. Valdinoci, Plane-like minimizers in periodic media: jet flows and Ginzburg-Landau-type functionals, J. Reine Angew. Math., 2004 (2004), 147–185. https://doi.org/10.1515/crll.2004.068 doi: 10.1515/crll.2004.068 |