Research article Special Issues

Second-order asymptotics of the fractional perimeter as s → 1

  • Received: 30 January 2020 Accepted: 13 March 2020 Published: 19 March 2020
  • In this note we provide a second-order asymptotic expansion of the fractional perimeter Ps(E), as $s\to 1^-$, in terms of the local perimeter and of a higher order nonlocal functional.

    Citation: Annalisa Cesaroni, Matteo Novaga. Second-order asymptotics of the fractional perimeter as s → 1[J]. Mathematics in Engineering, 2020, 2(3): 512-526. doi: 10.3934/mine.2020023

    Related Papers:

  • In this note we provide a second-order asymptotic expansion of the fractional perimeter Ps(E), as $s\to 1^-$, in terms of the local perimeter and of a higher order nonlocal functional.


    加载中


    [1] Ambrosio L, De Philippis G, Martinazzi L (2011) Gamma-convergence of nonlocal perimeter functionals. Manuscripta Math 134: 377-403. doi: 10.1007/s00229-010-0399-4
    [2] Bourgain J, Brezis H, Mironescu P (2001) Another look at Sobolev spaces, In: Optimal Control and Partial Differential Equations, Amsterdam: IOS, 439-455.
    [3] Brasco L, Lindgren E, Parini E (2014) The fractional Cheeger problem. Interface Free Bound 16: 419-458. doi: 10.4171/IFB/325
    [4] Caffarelli L, Roquejoffre JM, Savin O (2010) Nonlocal minimal surfaces. Commun Pure Appl Math 63: 1111-1144.
    [5] Caffarelli L, Valdinoci E (2013) Regularity properties of nonlocal minimal surfaces via limiting arguments. Adv Math 248: 843-871. doi: 10.1016/j.aim.2013.08.007
    [6] Chambolle A, Novaga M, Pagliari V (2019) On the convergence rate of some nonlocal energies. arXiv:1907.06030.
    [7] Dávila J, del Pino M, Wei J (2018) Nonlocal s-minimal surfaces and Lawson cones. J. Differ Geom 109: 111-175. doi: 10.4310/jdg/1525399218
    [8] De Luca L, Novaga M, Ponsiglione M (2019) The 0-fractional perimeter between fractional perimeters and Riesz potentials. arXiv:1906.06303.
    [9] Di Castro A, Novaga M, Ruffini B, et al. (2015) Nonlocal quantitative isoperimetric inequalities. Calc Var Partial Dif 54: 2421-2464. doi: 10.1007/s00526-015-0870-x
    [10] Di Nezza E, Palatucci G, Valdinoci E (2012) Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math 136: 521-573. doi: 10.1016/j.bulsci.2011.12.004
    [11] Dipierro S, Figalli A, Palatucci G, et al. (2013) Asymptotics of the s-perimeter as s → 0. Discrete Cont Dyn Syst 33: 2777-2790. doi: 10.3934/dcds.2013.33.2777
    [12] Frank RL, Lieb E (2015) A compactness lemma and its application to the existence of minimizers for the liquid drop model. SIAM J Math Anal 47: 4436-4450. doi: 10.1137/15M1010658
    [13] Knüpfer H, Muratov CB, Novaga M (2016) Low density phases in a uniformly charged liquid. Commun Math Phys 345: 141-183. doi: 10.1007/s00220-016-2654-3
    [14] Maggi F (2012) Sets of Finite Perimeter and Geometric Variational Problems. An Introduction to Geometric Measure Theory, Cambridge: Cambridge University Press.
    [15] Mazýa V (2003) Lectures on isoperimetric and isocapacitary inequalities in the theory of Sobolev spaces. Contemp Math 338: 307-340. doi: 10.1090/conm/338/06078
    [16] Muratov CB, Simon T (2019) A nonlocal isoperimetric problem with dipolar repulsion. Commun Math Phys 372: 1059-1115. doi: 10.1007/s00220-019-03455-y
    [17] Valdinoci E (2013) A fractional framework for perimeters and phase transitions. Milan J Math 81: 1-23. doi: 10.1007/s00032-013-0199-x
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2793) PDF downloads(345) Cited by(9)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog