Citation: Matteo Novaga, Marco Pozzetta. Connected surfaces with boundary minimizing the Willmore energy[J]. Mathematics in Engineering, 2020, 2(3): 527-556. doi: 10.3934/mine.2020024
[1] | Alessandroni R, Kuwert E (2016) Local solutions to a free boundary problem for the Willmore functional. Calc Var Partial Dif 55: 1-29. doi: 10.1007/s00526-015-0942-y |
[2] | Bauer M, Kuwert E (2003) Existence of minimizing Willmore surfaces of prescribed genus. Int Math Res Notices 10: 553-576. |
[3] | Bergner M, Dall'Acqua A, Fröhlich S (2010) Symmetric Willmore surfaces of revolution satisfying natural boundary conditions. Calc Var Partial Dif 39: 361-378. doi: 10.1007/s00526-010-0313-7 |
[4] | Bergner M, Dall'Acqua A, Fröhlich S (2013) Willmore surfaces of revolution with two prescribed boundary circles. J Geom Anal 23: 283-302. doi: 10.1007/s12220-011-9248-2 |
[5] | Bergner M, Jakob R (2014) Sufficient conditions for Willmore immersions in $\mathbb{R}^3$ to be minimal surfaces. Ann Glob Anal Geom 45: 129-146. doi: 10.1007/s10455-013-9391-z |
[6] | Dall'Acqua A, Deckelnick K, Grunau H (2008) Classical solutions to the Dirichlet problem for Willmore surfaces of revolution. Adv Calc Var 1: 379-397. |
[7] | Dall'Acqua A, Deckelnick K, Wheeler G (2013) Unstable Willmore surfaces of revolution subject to natural boundary conditions. Calc Var Partial Dif 48: 293-313. doi: 10.1007/s00526-012-0551-y |
[8] | Dall'Acqua A, Fröhlich S, Grunau H, et al. (2011) Symmetric Willmore surfaces of revolution satisfying arbitrary Dirichlet boundary data. Adv Calc Var 4: 1-81. doi: 10.1515/acv.2010.022 |
[9] | Deckelnick K, Grunau H (2009) A Navier boundary value problem for Willmore surfaces of revolution. Analysis 29: 229-258. |
[10] | Eichmann S (2016) Nonuniqueness for Willmore surfaces of revolution satisfying Dirichlet boundary data. J Geom Anal 26: 2563-2590. doi: 10.1007/s12220-015-9639-x |
[11] | Eichmann S (2019) The Helfrich boundary value problem. Calc Var Partial Dif 58: 1-26. doi: 10.1007/s00526-018-1462-3 |
[12] | Elliott CM, Fritz H, Hobbs G (2017) Small deformations of Helfrich energy minimising surfaces with applications to biomembranes. Math Mod Meth Appl Sci 27: 1547-1586. doi: 10.1142/S0218202517500269 |
[13] | Gazzola F, Grunau H, Sweers G (2010) Polyharmonic boundary value problems. Lect Notes Math 1991: xviii+423. |
[14] | Hutchinson J (1986) Second fundamental form for varifolds and the existence of surfaces minimizing curvature. Indiana U Math J 35: 45-71. doi: 10.1512/iumj.1986.35.35003 |
[15] | Kuwert E, Schätzle R (2004) Removability of point singularities of Willmore surfaces. Ann Math 160: 315-357. doi: 10.4007/annals.2004.160.315 |
[16] | Li P, Yau ST (1982) A new conformal invariant and its applications to the Willmore conjecture and the first eigenvalue on compact surfaces. Invent Math 69: 269-291. doi: 10.1007/BF01399507 |
[17] | Mandel R (2018) Explicit formulas, symmetry and symmetry breaking for Willmore surfaces of revolution. Ann Glob Anal Geom 54: 187-236. doi: 10.1007/s10455-018-9598-0 |
[18] | Mantegazza C (1996) Curvature varifolds with boundary. J Differ Geom 43: 807-843. doi: 10.4310/jdg/1214458533 |
[19] | Marques FC, Neves A (2014) Min-Max theory and the Willmore Conjecture. Ann Math 179: 683-782. doi: 10.4007/annals.2014.179.2.6 |
[20] | Morgan F (2008) Geometric Measure Theory: A Beginners's Guide, 4 Eds., Academic Press. |
[21] | Pozzetta M (2017) Confined Willmore energy and the Area functional. arXiv:1710.07133. |
[22] | Pozzetta M (2018) On the Plateau-Douglas problem for the Willmore energy of surfaces with planar boundary curves. arXiv:1810.07662. |
[23] | Rivière T (2008) Analysis aspects of Willmore surfaces. Invent Math 174: 1-45. doi: 10.1007/s00222-008-0129-7 |
[24] | Rivière T (2013) Lipschitz conformal immersions from degenerating Riemann surfaces with L2-bounded second fundamental forms. Adv Calc Var 6: 1-31. doi: 10.1515/acv-2012-0108 |
[25] | Rivière T (2014) Variational principles for immersed surfaces with L2-bounded second fundamental form. J Reine Angew Math 695: 41-98. |
[26] | Schätzle R (2010) The Willmore boundary problem. Calc Var 37: 275-302. doi: 10.1007/s00526-009-0244-3 |
[27] | Schoen R (1983) Uniqueness, symmetry, and embeddedness of minimal surfaces. J. Differ Geom 18: 791-809. doi: 10.4310/jdg/1214438183 |
[28] | Schygulla J (2012) Willmore minimizers with prescribed isoperimetric ratio. Arch Ration Mech Anal 203: 901-941. doi: 10.1007/s00205-011-0465-4 |
[29] | Seguin B, Fried E (2014) Microphysical derivation of the Canham-Helfrich free-energy density. J Math Biol 68: 647-665. doi: 10.1007/s00285-013-0647-9 |
[30] | Simon L (1984) Lectures on Geometric Measure Theory, Proceedings of the Centre for Mathematical Analysis of Australian National University. |
[31] | Simon L (1993) Existence of surfaces minimizing the Willmore functional. Commun Anal Geom 1: 281-326. doi: 10.4310/CAG.1993.v1.n2.a4 |
[32] | Willmore TJ (1965) Note on embedded surfaces. Ann Al Cuza Univ Sect I 11B: 493-496. |
[33] | Willmore TJ (1993) Riemannian Geometry, Oxford Science Publications. |