Citation: Lorenzo Pistone, Sergio Chibbaro, Miguel D. Bustamante, Yuri V. Lvov, Miguel Onorato. Universal route to thermalization in weakly-nonlinear one-dimensional chains[J]. Mathematics in Engineering, 2019, 1(4): 672-698. doi: 10.3934/mine.2019.4.672
[1] | Benettin G, Christodoulidi H, Ponno A (2013) The Fermi-Pasta-Ulam problem and its underlying integrable dynamics. J Stat Phys 152: 195–212. doi: 10.1007/s10955-013-0760-6 |
[2] | Benettin G, Livi R, Ponno A (2009) The Fermi-Pasta-Ulam problem: Scaling laws vs. initial conditions. J Stat Phys 135: 873–893. |
[3] | Benettin G, Ponno A (2011) Time-scales to equipartition in the Fermi-Pasta-Ulam problem: Finite-size effects and thermodynamic limit. J Stat Phys 144: 793–812. doi: 10.1007/s10955-011-0277-9 |
[4] | Berchialla L, Giorgilli A, Paleari S (2004) Exponentially long times to equipartition in the thermodynamic limit. Phys lett A 321: 167–172. doi: 10.1016/j.physleta.2003.11.052 |
[5] | Bustamante MD, Hutchinson K, Lvov YV, et al. (2019) Exact discrete resonances in the Fermi-Pasta-Ulam-Tsingou system. Commun Nonlinear Sci 73: 437–471. doi: 10.1016/j.cnsns.2019.03.004 |
[6] | Bustamante MD, Kartashova E (2011) Resonance clustering in wave turbulent regimes: Integrable dynamics. Commun Comput Phys 10: 1211–1240. doi: 10.4208/cicp.110910.160211a |
[7] | Carati A, Ponno A (2018) Chopping time of the FPU α-model. J Stat Phys 170: 883–894. doi: 10.1007/s10955-018-1962-8 |
[8] | Carati A, Galgani L, Giorgilli A, et al. (2007) Fermi-Pasta-Ulam phenomenon for generic initial data. Phys Rev E 76: 022104. |
[9] | Chibbaro S, Dematteis G, Josserand C, et al. (2017) Wave-turbulence theory of four-wave nonlinear interactions. Phys Rev E 96: 021101. doi: 10.1103/PhysRevE.96.021101 |
[10] | Chibbaro S, Dematteis G, Rondoni L (2018) 4-wave dynamics in kinetic wave turbulence. Phys D 362: 24–59. doi: 10.1016/j.physd.2017.09.001 |
[11] | Chirikov BV (1979) A universal instability of many-dimensional oscillator systems. Phys Rep 52: 263–379. doi: 10.1016/0370-1573(79)90023-1 |
[12] | Choi Y, Lvov YV, Nazarenko S (2004) Probability densities and preservation of randomness in wave turbulence. Phys Lett A 332: 230–238. doi: 10.1016/j.physleta.2004.09.062 |
[13] | Choi Y, Lvov YV, Nazarenko S (2005) Joint statistics of amplitudes and phases in wave turbulence. Phys D 201: 121–149. doi: 10.1016/j.physd.2004.11.016 |
[14] | Düring G, Josserand C, Rica S (2017) Wave turbulence theory of elastic plates. Phys D 347: 42–73. doi: 10.1016/j.physd.2017.01.002 |
[15] | Dyachenko AI, Lvov YV, Zakharov VE (1995) Five-wave interaction on the surface of deep fluid. Phys D 87: 233–261. doi: 10.1016/0167-2789(95)00168-4 |
[16] | Eyink GL, Shi YK (2012) Kinetic wave turbulence. Phys D 241: 1487–1511. doi: 10.1016/j.physd.2012.05.015 |
[17] | Falkovich G, Lvov VS, Zakharov VE (1992) Kolmogorov Spectra of Turbulence. Berlin: Springer. |
[18] | Fermi E, Pasta J, Ulam S (1955) Studies of the nonlinear problems. Technical report I, Los Alamos Scientific Lab Report No. LA-1940. |
[19] | Ford J (1961) Equipartition of energy for nonlinear systems. J Math Phys 2: 387–393. doi: 10.1063/1.1703724 |
[20] | Fu WC, Zhang Y, Zhao H (2018) Universality of energy equipartition in one-dimensional lattices. arXiv preprint arXiv:1811.05697. |
[21] | Fu WC, Zhang Y, Zhao H (2019) Universal law of thermalization for one-dimensional perturbed toda lattices. arXiv preprint arXiv:1901.04245. |
[22] | Fucito F, Marchesoni F, Marinari E, et al. (1982) Approach to equilibrium in a chain of nonlinear oscillators. J Phys 43: 707–713. doi: 10.1051/jphys:01982004305070700 |
[23] | Gallavotti G (2008) The Fermi-Pasta-Ulam Problem: A Status Report. Springer. |
[24] | Henrici A, Kappeler T (2008) Results on normal forms for FPU chains. Commun Math Phys 278: 145–177. doi: 10.1007/s00220-007-0387-z |
[25] | Arnold VI (1963) Small denominators and problems of stability of motion in classical and celestial mechanics. Russ Math Surv 18: 85–191. |
[26] | Izrailev FM, Chirikov BV (1966) Statistical properties of a nonlinear string. Sov Phys Dokl 11: 30–32. |
[27] | Janssen P (2004) The Interaction of Ocean Waves and Wind. Cambridge: Cambridge University Press. |
[28] | Moser JK (1962) On invariant curves of area-preserving mappings of an annulus. Nachr Akad Wiss Göttingen Math Phys kl 166: 1–20. |
[29] | Kartashova E (2007) Exact and quasiresonances in discrete water wave turbulence. Phys Rev Lett 98: 214502. doi: 10.1103/PhysRevLett.98.214502 |
[30] | Khinchin A (1949) Mathematical Foundations of Statistical Mechanics. Courier Corporation. |
[31] | Kolmogorov AN (1954) On the conservation of conditionally periodic motions under small perturbation of the Hamiltonian. Dokl Akad Nauk SSR 98: 527–530. |
[32] | Krasitskii VP (1994) On reduced equations in the Hamiltonian theory of weakly nonlinear surface waves. J Fluid Mech 272: 1–20. doi: 10.1017/S0022112094004350 |
[33] | Landau LD, Lifshitz EM, Pitaevskii LP (1980) Statistical Physics, Part I. Oxford: Pergamon. |
[34] | Laurie J, Bortolozzo U, Nazarenko S, et al. (2012) One-dimensional optical wave turbulence: Experiment and theory. Phys Rep 514: 121–175. doi: 10.1016/j.physrep.2012.01.004 |
[35] | Lebowitz JL (1993) Boltzmann's entropy and time's arrow. Phys Today 46: 32–32. |
[36] | Lvov YV, Onorato M (2018) Double scaling in the relaxation time in the β-fermi-pasta-ulam-tsingou model. Phys Rev Lett 120: 144301. doi: 10.1103/PhysRevLett.120.144301 |
[37] | Matkowski J (2011) Subadditive periodic functions. Opusc Math 31: 75–96. doi: 10.7494/OpMath.2011.31.1.75 |
[38] | Nazarenko S (2011) Wave Turbulence. Springer Science Business Media. |
[39] | Newell AC (1968) System of random gravity waves. Rev Geophys 6: 1–31. doi: 10.1029/RG006i001p00001 |
[40] | Newell AC, Rumpf B (2011) Wave turbulence. Annu Rev Fluid Mech 43: 59–78. doi: 10.1146/annurev-fluid-122109-160807 |
[41] | Onorato M, Vozella L, Proment D, et al. (2015) Route to thermalization in the α-Fermi-Pasta-Ulam system. Proc Natl Acad Sci 112: 4208–4213. doi: 10.1073/pnas.1404397112 |
[42] | Pistone L, Onorato M, Chibbaro S (2018) Thermalization in the discrete nonlinear klein-gordon chain in the wave-turbulence framework. Europhys Lett 121: 44003. doi: 10.1209/0295-5075/121/44003 |
[43] | Rink B (2006) Proof of Nishida's conjecture on anharmonic lattices. Commun Math Phys 261: 613–627. doi: 10.1007/s00220-005-1451-1 |
[44] | Spohn H (2006) The phonon boltzmann equation, properties and link to weakly anharmonic lattice dynamics. J Stat Phys 124: 1041–1104. doi: 10.1007/s10955-005-8088-5 |
[45] | Yoshida H (1990) Construction of higher order symplectic integrators. Phys Lett A 150: 262–268. doi: 10.1016/0375-9601(90)90092-3 |
[46] | Zabusky NJ, Kruskal MD (1965) Interaction of "solitons" in a collisionless plasma and the recurrence of initial states. Phys Rev Lett 15: 240–243. |
[47] | Zakharov VE, Schulman EI (1988) On additional motion invariants of classical Hamiltonian wave systems. Phys D 29: 283–320. doi: 10.1016/0167-2789(88)90033-4 |
[48] | Zakharov VE, Schulman EI (1991) Integrability of nonlinear systems and perturbation theory. In: What Is Integrability? Springer Series in Nonlinear Dynamics. Berlin: Springer. |
[49] | Zakharov VE, Odesskii AV, Onorato M, et al. (2012) Integrable equations and classical s-matrix. arXiv preprint arXiv:1204.2793. |