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Abstract: For a given family of smooth closed curves γ1, ..., γα ⊂ R3 we consider the problem of
finding an elastic connected compact surface M with boundary γ = γ1 ∪ ... ∪ γα. This is realized by
minimizing the Willmore energyW on a suitable class of competitors. While the direct minimization
of the Area functional may lead to limits that are disconnected, we prove that, if the infimum of the
problem is < 4π, there exists a connected compact minimizer ofW in the class of integer rectifiable
curvature varifolds with the assigned boundary conditions. This is done by proving that varifold
convergence of bounded varifolds with boundary with uniformly bounded Willmore energy implies the
convergence of their supports in Hausdorff distance. Hence, in the cases in which a small perturbation
of the boundary conditions causes the non-existence of Area-minimizing connected surfaces, our
minimization process models the existence of optimal elastic connected compact generalized surfaces
with such boundary data. We also study the asymptotic regime in which the diameter of the optimal
connected surfaces is arbitrarily large. Under suitable boundedness assumptions, we show that
rescalings of such surfaces converge to round spheres. The study of both the perturbative and the
asymptotic regime is motivated by the remarkable case of elastic surfaces connecting two parallel
circles located at any possible distance one from the other. The main tool we use is the monotonicity
formula for curvature varifolds ( [15, 31]) that we extend to varifolds with boundary, together with its
consequences on the structure of varifolds with bounded Willmore energy.
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1. Introduction

1.1. The Willmore energy

Let ϕ : Σ→ R3 be an immersion of a 2-dimensional manifold Σ with boundary ∂Σ in the Euclidean
space R3. We say that an immersion is smooth if it is of class C2. In such a case we define the second
fundamental form of ϕ in local coordinates as

IIi j(p) = (∂i jϕ(p))⊥,

for any p ∈ Σ \ ∂Σ, where (·)⊥ denotes the orthogonal projection onto (dϕ(TpΣ))⊥. Denoting by
gi j = 〈∂iϕ, ∂ jϕ〉 the induced metric tensor on Σ and by gi j the components of its inverse, we define the
mean curvature vector by

~H(p) =
1
2

gi j(p)IIi j(p),

for any p ∈ Σ \ ∂Σ, where sum over repeated indices is understood. The normalization of ~H is such
that the mean curvature vector of the unit sphere points inside the ball and it has norm equal to one.
Denoting by µϕ the volume measure on Σ, we define the Willmore energy of ϕ by

W(ϕ) =

ˆ
Σ

| ~H|2 dµϕ.

For an immersion ϕ : Σ→ R3 we will denote by coϕ : ∂Σ→ R3 the conormal field, i.e., the unit vector
field along ∂Σ belonging to dϕ(TΣ) ∩ (dϕ|∂Σ(T∂Σ))⊥ and pointing outside of ϕ(Σ).

The study of variational problems involving the Willmore energy has begun with the works of
T. Willmore ( [32, 33]), in which he proved that round spheres minimize W among every possible
immersed compact surface without boundary. The Willmore energy of a sphere is 4π. In [32] the
author proposed his celebrated conjecture, claiming that the infimum ofW among immersed smooth
tori was 2π2. Such conjecture (eventually proved in [19]) motivated the variational study of W in
the setting of smooth surfaces without boundary. In such setting many fundamental results have been
achieved, and some of them (in particular [15, 26, 31]) developed a very useful variational approach,
that today goes under the name of Simon’s ambient approach. Such method relies on the measure
theoretic notion of varifold as a generalization of the concept of immersed submanifold. We remark
that, more recently, an alternative and very powerful variational method based on a weak notion of
immersions has been developed in [23–25].

Following Simon’s approach, the concept of curvature varifold with boundary ( [14,18]), considered
as a good generalization of smooth immersed surfaces, will be fundamental in this work. Such notion is
recalled in Appendix A. We will always consider integer rectifiable curvature varifolds with boundary,
that we will usually call simply varifolds. Roughly speaking a rectifiable varifold is identified by a
couple v(M, θV), where M ⊂ R3 is 2-rectifiable and θV : M → N≥1 is locallyH2-integrable on M, and
we think at it as a 2-dimensional object in R3 whose points p come with a weight θV(p). We recall
here that a 2-dimensional varifold V = v(M, θV) has weight measure µV = θVH

2 ¬M, that is a Radon
measure on R3; moreover it has (generalized) mean curvature vector ~H ∈ L1

loc(µV ;R3) and generalized
boundary σV if ˆ

divT MX dµV = −2
ˆ
〈 ~H, X〉 dµV +

ˆ
X dσV ∀ X ∈ C1

c (R3;R3),
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where σV is a Radon R3-valued measure on R3 of the form σV = νVσ, with |νV | = 1 σ-ae and σ is
singular with respect to µV ; also divT MX(p) = tr(P> ◦ ∇X(p)) where P> is the matrix corresponding to
the projection onto TpM, that is definedH2-ae on M.

By analogy with the case of sooth surfaces, we define the Willmore energy of a varifold V =

v(M, θV) by setting

W(V) =

ˆ
| ~H|2 dµV ∈ [0,+∞],

if V has generalized mean curvature ~H, andW(V) = +∞ otherwise.
A rectifiable varifold V = v(M, θV) defines a Radon measure on G2(R3) := R3 ×G2,3, where G2,3 is

the Grassmannian of 2-subspaces of R3, identified with the metric space of matrices corresponding to
the orthogonal projection on such subspaces. More precisely for any f ∈ C0

c (G2(R3)) we define

V( f ) :=
ˆ

G2(R3)
f (p, P) dV(p, P) =

ˆ
R3

f (p,TpM) dµV(p).

In this way a good notion of convergence in the sense of varifolds is defined, i.e., we say that a sequence
Vn = v(Mn, θVn) converges to V = v(M, θV) as varifolds if

Vn( f )→ V( f ),

for any f ∈ C0
c (G2(R3)).

More recently, varifolds with boundary and Simon’s method have been used also in the study of
variational problems in the presence of boundary conditions. A seminal work is [26], in which the
author constructs branched surfaces with boundary that are critical points of the Willmore energy with
imposed clamped boundary conditions, i.e., with fixed boundary curve and conormal field. Another
remarkable work is [11], in which an analogous result is achieved in the minimization of the Helfich
energy. We also mention [22], in which the minimization problem of the Willmore energy of surfaces
with boundary with fixed topology is considered, and the only constraint is the boundary curve, while
the conormal is free, yielding the so-called natural Navier boundary condition. A couple of previous
works in which Simon’s method is applied in the study of closed surfaces are [21] and [28].

1.2. Elastic surfaces with boundary

If γ = γ1 ∪ ... ∪ γα is a finite disjoint union of smooth closed compact embedded curves, a classical
formulation of the Plateau’s problem with datum γ may be to solve the minimization problem

min
{
µϕ(Σ) | ϕ : Σ→ R3, ϕ|∂Σ : ∂Σ→ γ embedding

}
, (1.1)

that is one wants to look for the surface of least area having the given boundary. From a physical
point of view, solutions of the Plateau’s problem are good models of soap elastic films having the
given boundary [20]. Critical points of the Plateau’s problem are called minimal surfaces and they are
characterized by having zero mean curvature (this is true also in the non-smooth context of varifolds
in the appropriate sense, see [30]). In particular, minimal surfaces or varifolds with vanishing mean
curvature have zero Willmore energy. However, as we are going to discuss, the Plateau’s problem, and
more generally the minimization of the Area functional, may be incompatible with some constraints,
such as a connectedness constraint.
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In this paper we want to study the minimization of the Willmore energy of varifolds V with given
boundary conditions, i.e., both conditions of clamped or natural type on the generalized boundary σV ,
adding the constraint that the support of the varifold must connect the assigned curves γ1, ..., γα. Hence
the minimization problems we will study have the form

P := min
{
W(V) | V = v(M, θV) : σV = σ0, suppV ∪ γ compact, connected

}
, (1.2)

for some assigned vector valued Radon measure σ0, or

Q := min
{
W(V) | V = v(M, θV) : |σV | ≤ µ, suppV ∪ γ compact, connected

}
, (1.3)

for some assigned positive Radon measure µ with suppµ = γ.
Let us introduce a remarkable particular case that motivates our study. Let C = [0, 1]2/∼ be a cylinder.
Let R ≥ 1 and h > 0. We define

ΓR,h :=
{
x2 + y2 = 1, z = h

}
∪

{
x2 + y2 = R2, z = −h

}
, R ≥ 1, h > 0,

that is a disjoint union of two parallel circles of possibly different radii. We consider the class of
immersions

FR,h :=
{
ϕ : C → R3 |ϕ smooth immersion, ϕ|∂C : ∂C → ΓR,h smooth embedding

}
.

By Corollary 3 in [27], if a minimal surface has ΓR,h as boundary, then it necessarily is a catenoid or
a pair of planar disks. Moreover there exists a threshold value h0 > 0 such that ΓR,h is the boundary
of a catenoid if and only if h ≤ h0. For example, in the case of R = 1 one has h0 =

(
mint>0

cosh(t)
t

)−1
.

In particular for any h > h0 there are no minimal surfaces (and thus no solutions of the Plateau’s
problem) connecting the two components of ΓR,h, even in a perturbative setting h ' h0 + ε. This
rigidity in the behavior of minimal surfaces suggests that in some cases an energy different from the
Area functional may be a good model for connected soap films, like for describing the optimal elastic
surface connecting ΓR,h in the perturbative case h ' h0 + ε. Since surfaces with zero Willmore energy
recover critical points of the Plateau’s problem, we expect the minimization ofW to be a good process
for describing optimal elastic surfaces under constraints, like connectedness ones, that do not match
with the Area functional.

Also, from the modeling point of view, we remark the importance of Willmore-type energies, like
the Helfrich energy, in the physical study of biological membranes ( [12, 29]), and in the theory of
elasticity in engineering (see [13] and references therein).

We have to mention some remarkable results about critical points of the Willmore energy (called
Willmore surfaces) with boundary. Apart from the above cited [26], Willmore surfaces with a boundary
also of the form ΓR,h have been studied together with the rotational symmetry of the surface in [3,4,6–
10]; a new result about symmetry breaking is [17]. Also, interesting results about Willmore surfaces in
a free boundary setting is contained in [1]. A relation between Willmore surfaces and minimal surfaces
is investigated in [5].

1.3. Main results

Let us collect here the main results of the paper. If γ = γ1 ∪ ... ∪ γα is a disjoint union of smooth
embedded compact 1-dimensional manifolds, we give a sufficient condition guaranteeing existence in
minimization problems of the form (1.2) or (1.3). We obtain the following two Existence Theorems.
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Theorem 4.1. Let γ = γ1 ∪ ... ∪ γα be a disjoint union of smooth embedded compact 1-dimensional
manifolds with α ∈ N≥2.
Let

σ0 = ν0 mH1 ¬ γ

be a vector valued Radon measure, where m : γ → N≥1 and ν0 : γ → (Tγ)⊥ are H1-measurable
functions with m ∈ L∞(H1 ¬ γ) and |ν0| = 1H1-ae.
Let P be the minimization problem

P := min
{
W(V) | V = v(M, θV) : σV = σ0, suppV ∪ γ compact, connected

}
. (1.4)

If inf P < 4π, then P has minimizers.

Theorem 4.2. Let γ = γ1 ∪ ... ∪ γα be a disjoint union of smooth embedded compact 1-dimensional
manifolds with α ∈ N≥2.
Let m : γ → N≥1 byH1-measurable with m ∈ L∞(H1 ¬ γ).
Let Q be the minimization problem

Q := min
{
W(V) | V = v(M, θV) : |σV | ≤ mH1 ¬ γ, suppV ∪ γ compact, connected

}
. (1.5)

If inf Q < 4π, then Q has minimizers.

Both Existence Theorems are obtained by applying a direct method in the context of varifolds.
The technical assumption on the fact that the infimum of the considered problem is strictly less than 4π
guarantees compactness of minimizing sequences; we mention that it is an open problem to understand
whether a uniform bound possibly greater than 4π on the Willmore energy of a sequence of varifolds
with boundary implies precompactness of the sequence, even in presence of boundary conditions. In
both cases the connectedness constraint passes to the limit by means of the following theorem, that
relates varifolds convergence with convergence in Hausdorff distance of the supports of the varifolds.

Theorem 3.4. Let Vn = v(Mn, θVn) , 0 be a sequence of curvature varifolds with boundary with
uniformly bounded Willmore energy converging to V = v(M, θV) , 0. Suppose that the Mn’s are
connected and uniformly bounded.

Suppose that suppσVn = γ1
n ∪ ... ∪ γ

α
n where the γi

n’s are disjoint compact embedded 1-dimensional
manifolds, γ̄1, ..., γ̄β with β ≤ α are disjoint compact embedded 1-dimensional manifolds, and assume
that γi

n → γ̄i in dH for i = 1, ..., β and thatH1(γi
n)→ 0 for i = β + 1, ..., α.

Then Mn → M ∪ γ̄1 ∪ ... ∪ γ̄β in Hausdorff distance dH (up to subsequence) and M ∪ γ̄1 ∪ ... ∪ γ̄β

is connected. Moreover γi
n → {pi} in dH for any i = β + 1, ..., α for some points {pi}, each pi ∈ M, and

suppσV ⊂ γ̄
1 ∪ ... ∪ γ̄β ∪ {pβ+1, ..., βα}.

The paper is organized as follows. In Section 2 we recall the monotonicity formula for curvature
varifolds with boundary and its consequences on the structure of varifolds with bounded Willmore
energy. Such properties are proved in Appendix B. In Section 3 we prove some properties of the
Hausdorff distance and we prove Theorem 3.4. Section 4 is devoted to the proof of the Existence
Theorems 4.1 and 4.2; we also describe remarkable cases in which such theorems apply, such as in the
above discussed perturbative setting. Theorem 3.4 and the monotonicity formula give us results also
about the asymptotic behavior of connected varifolds with suitable boundedness assumptions; more
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precisely we prove that rescalings of a sequence of varifolds Vn with diam(suppVn) → ∞ converge to
a sphere both as varifolds and in Hausdorff distance (Corollary 5.2). Finally in Section 6 we apply all
the previous results to the motivating case of varifolds with boundary conditions on curves of the type
of ΓR,h. We prove that for any R and h the minimization problem of type Q has minimizers and their
rescalings asymptotically approach a sphere (Corollary 6.2). Appendix A recalls the definitions about
curvature varifolds with boundary and a useful compactness theorem.

1.4. Notation

We adopt the following notation.

• The symbol Br(p) denotes the open ball of radius r and center p in R3.
• The symbol 〈·, ·〉 denotes the Euclidean inner product.
• The symbolH k denotes the k-dimensional Hausdorff measure in R3.
• The symbol dH denotes the Hausdorff distance.
• If ϕ : Σ → R3 is a smooth immersion of a 2-dimensional manifold with boundary, then in local

coordinates we denote by IIi j the second fundamental form, by ~H the mean curvature vector, by
gi j the metric tensor, by gi j its inverse, by µϕ the volume measure on Σ induced by ϕ, and by coϕ
the conormal field.
• If v is a vector and M is 2-rectifiable in R3, the symbol (v)⊥ denotes the projection of v onto TpM⊥;

hence v⊥ is definedH2-ae on M and it implicitly depends on the point p ∈ M.
• The symbol V = v(M, θV) denotes an integer rectifiable varifold. Also µV = θVH

2 ¬M is the
weight measure. If they exist, the generalized mean curvature and boundary are usually denoted
by ~H (or ~HV) and σV .
• The symbol C denotes a fixed cylinder, i.e., C = [0, 1]2/∼.
• For given R ≥ 1 and h > 0, the symbol ΓR,h denotes an embedded 1-dimensional manifold of the

form
ΓR,h :=

{
x2 + y2 = 1, z = h

}
∪

{
x2 + y2 = R2, z = −h

}
, R ≥ 1, h > 0,

that is a disjoint union of two parallel circles of possibly different radii. Observe that the distance
between the two circles is equal to 2h.
• For a given boundary datum ΓR,h as above, we define the class

FR,h :=
{
ϕ : C → R3 |ϕ smooth immersion, ϕ|∂C : ∂C → ΓR,h smooth embedding

}
.

2. Monotonicity formula and its consequences

Here we recall the fundamental monotonicity formula for curvature varifolds with boundary,
together with some immediate consequences on surfaces and on the structure of varifolds with finite
Willmore energy.

This classical formula is completely analogous to its version without boundary ( [15,31]), hence we
refer to Appendix B for the technicalities we need.

Let 0 < σ < ρ and p0 ∈ R
3. If V is an integer rectifiable curvature varifold with boundary with

bounded Willmore energy (here the support of V is not necessarily bounded), with µV the induced
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measure in R3, and generalized boundary σV , it holds that

A(σ) +

ˆ
Bρ(p0)\Bσ(p0)

∣∣∣∣∣ ~H2 +
(p − p0)⊥

|p − p0|
2

∣∣∣∣∣2 dµV(p) = A(ρ), (2.1)

where
A(ρ) :=

µV(Bρ(p0))
ρ2 +

1
4

ˆ
Bρ(p0)

|H|2 dµV(p) + Rp0,ρ, (2.2)

and

Rp0,ρ :=
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p) +
1
2

ˆ
Bρ(p0)

( 1
|p − p0|

2 −
1
ρ2

)
(p − p0) dσV(p)

=:
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p) + Tp0,ρ.

(2.3)

In particular the function ρ 7→ A(ρ) is non-decreasing.
When more than a varifold is involved, we will usually denote by AV(·) the monotone quantity

associated to V for chosen p0 ∈ R
3.

It is useful to remember that Tp0,ρ = 0 if Bρ(p0) ∩ suppσV = ∅, and that∣∣∣∣∣∣
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p)

∣∣∣∣∣∣ −−−→ρ→0
0 (2.4)

wheneverW(V) < +∞ and p0 < suppσV (see (B.8) in Appendix B).

Let us list some immediate consequences on surfaces with boundary.

Lemma 2.1. Let Σ ⊂ R3 be a compact connected immersed surface with boundary. Then

∀p0 ∈ R
3 : 4 lim

σ↘0

|Σ ∩ Bσ(p0)|
σ2 + 4

ˆ
Σ

∣∣∣∣∣ ~H2 +
(p − p0)⊥

|p − p0|
2

∣∣∣∣∣2 =W(Σ) + 2
ˆ
∂Σ

〈 p − p0

|p − p0|
2 , co

〉
. (2.5)

In particular

∀p0 ∈ R
3 \ ∂Σ : 4 lim

σ↘0

|Σ ∩ Bσ(p0)|
σ2 + 4

ˆ
Σ

∣∣∣∣∣ ~H2 +
(p − p0)⊥

|p − p0|
2

∣∣∣∣∣2 ≤ W(Σ) + 2
H1(∂Σ)

d(p0, ∂Σ)
. (2.6)

Moreover calling dH the Hausdorff distance (see Section 3) and writing dH (Σ, ∂Σ) = d(p0, ∂Σ) for
some p0 ∈ Σ \ ∂Σ, it holds that

4 lim
σ↘0

|Σ ∩ Bσ(p0)|
σ2 + 4

ˆ
Σ

∣∣∣∣∣ ~H2 +
(p − p0)⊥

|p − p0|
2

∣∣∣∣∣2 ≤ W(Σ) + 2
H1(∂Σ)

dH (Σ, ∂Σ)
. (2.7)

Proof. It suffices to prove (2.5). Since Σ is smooth we have that∣∣∣∣∣∣
ˆ

Bρ(p0)

( 1
|p − p0|

2 −
1
ρ2

)
〈p − p0, co〉 dH1(p)

∣∣∣∣∣∣ ≤
ˆ

Bρ(p0)

∣∣∣∣∣ 1
|p − p0|

2 −
1
ρ2

∣∣∣∣∣ Op0(|p − p0|
2) dH1(p) −−−→

ρ→0
0.
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Since Σ is smooth, by (2.1) we have that

A(σ) −−−→
σ→0

lim
σ↘0

|Σ ∩ Bσ(p0)|
σ2 ,

while by compactness it holds that

A(ρ) −−−−→
ρ→∞

1
4
W(Σ) +

1
2

ˆ
∂Σ

〈 p − p0

|p − p0|
2 , co

〉
,

and we get (2.5). �

Let us mention that (2.6) already appears in [24].
More importantly, the monotonicity formula implies fundamental structural properties on varifolds

with bounded Willmore energy. First we remark such results in the case of varifolds without boundary,
as proved in [15].

Remark 2.2. Let V = v(M, θV) be an integer rectifiable varifold with σV = 0 and finite Willmore
energy. Then at any point p0 ∈ R

3 there exists the limit

lim
r→0

µV(Br(p0))
πr2 = θV(p0), (2.8)

and θV is upper semicontinuous on R3 (see (A.7) and (A.9) in [15]). In particular M = {p ∈ R3 :
θV(p) ≥ 1

2 } is closed.
Recall that if suppV is also compact and non-empty, then W(V) ≥ 4π ((A.19) in [15]) and θV is

uniformly bounded on R3 by a constant depending only onW(V) ((A.16) in [15]).

In complete analogy with Remark 2.2 we prove in Appendix B (see Proposition B.1) that if V
is a 2-dimensional integer rectifiable curvature varifold with boundary, denoting by S a compact 1-
dimensional embedded manifold containing the support suppσV with |σV |(S ) < +∞ and assuming
that

W(V) < +∞, lim sup
R→∞

µV(BR(0))
R2 ≤ K < +∞,

then the limit

lim
ρ↘0

µV(Bρ(p))
ρ2

exists at any point p ∈ R3 \ S , the multiplicity function θV(p) = limρ↘0
µV (Bρ(p))

ρ2 is upper
semicontinuous on R3 \ S and bounded by a constant C(d(p, S ), |σV |(S ),K,W(V)) depending only on
the distance d(p, S ), |σV |(S ), K, and W(V). Moreover V = v(M, θV) where
M = {p ∈ R3 \ S | θv(p) ≥ 1

2 } ∪ S is closed.

Whenever a varifold v(M, θV) satisfies the above assumptions, we will always assume that M = {p ∈
R3 \ S | θv(p) ≥ 1

2 } ∪ S .
These structural properties on curvature varifolds with finite Willmore energy, together with the

analogous properties recalled in Remark 2.2, should be always kept in mind in what follows.
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3. Convergence in the Hausdorff distance

The convergence of sets with respect to the Hausdorff distance will play an important role in our
study. For every sets X,Y ⊂ R3 we define the Hausdorff distance dH between X and Y by

dH (X,Y) := inf {ε > 0 | X ⊂ Nε(Y), Y ⊂ Nε(X)} = max
{

sup
x∈X

inf
y∈Y
|x − y|, sup

y∈Y
inf
x∈X
|x − y|

}
. (3.1)

We say that a sequence of sets Xn converges to a set X in dH if limn dH (Xn, X) = 0.
Now we prove some useful properties of the Hausdorff distance.

Lemma 3.1. Suppose that Xn → X in dH . Then:
i) Xn → X in dH .
ii) If Xn is connected for any sufficiently large n and X is bounded, then X is connected as well.

Proof. i) Just note that if X ⊂ N ε
2
(Xn), then X ⊂ Nε(Xn).

ii) By i) we can assume without loss of generality that X is closed, and thus compact. Suppose by
contradiction that there exist two closed sets A, B ⊂ X such that A∩B = ∅, A , ∅, B , ∅, and A∪B = X.
Since X is compact, A and B are compact as well, and thus d(A, B) := infx∈A,y∈B |x − y| = ε > 0. By
assumption, for any n ≥ n( ε4 ) we have that Xn ⊂ N ε

4
(X) = N ε

4
(A) ∪ N ε

4
(B) and N ε

4
(A) ∩ N ε

4
(B) = ∅.

The sets N ε
4
(A) ∩ Xn and N ε

4
(B) ∩ Xn are disjoint and definitively non-empty, and open in Xn. This

implies that Xn is not connected for n large enough, that gives a contradiction. �

Lemma 3.2. Suppose Xn is a sequence of uniformly bounded closed sets in R3 and let X ⊂ R3 be
closed. Then Xn → X in dH if and only if the following two properties hold:
a) for any subsequence of points ynk ∈ Xnk such that ynk −→k

y, we have that y ∈ X,
b) for any x ∈ X there exists a sequence yn ∈ Xn converging to x.

Proof. Suppose first that dH (Xn, X) → 0. If there exists a converging subsequence ynk ∈ Xnk with limit
y < X, then d(ynk , X) ≥ ε0 > 0, and thus Xnk 6⊂ N ε0

2
(X) for k large, that is impossible; so we have proved

a). Now let x ∈ X be fixed. Consider a strictly decreasing sequence εm ↘ 0 . For any εm > 0 let nεm

be such that X ⊂ Nεm(Xn) for any n ≥ nεm . This means that Bεm(x) ∩ Xn , ∅ for any n ≥ nεm and any
m ∈ N. We can define the sequence

n 7→ xn ∈ Xn ∩ Bεmn
(x),

where
mn = sup

{
m ∈ N | Xn ∩ Bεm(x) , ∅

}
,

understanding that xn = x if mn = ∞, in fact since Xn is closed we have that x ∈ Xm if mn = ∞. The
sequence εmn converges to 0 as n→ ∞, otherwise there exists η > 0 such that Xn ∩ Bη(x) = ∅ for any n
large, but this contradicts the convergence in dH . Hence xn → x and we have proved b).

Suppose now that a) and b) hold. If there is ε0 > 0 such that Xn 6⊂ Nε0(X) for n large, then a
subsequence xnk converges to a point y such that d(y, X) ≥ ε0 > 0, that is impossible. If there is ε0 > 0
such that X 6⊂ Nε0(Xn) for n large, then there is a sequence zn ∈ X such that d(zn, Xn) ≥ ε0 > 0. By b)
we have that X is bounded, then a subsequence znk converges to z ∈ X, and d(z, Xnk) ≥

ε0
2 definitely in

k. But then z is not the limit of any sequence xnk ∈ Xnk . However z is the limit of a sequence x̄n ∈ Xn by
b), and thus it is the limit of the subsequence x̄nk , and this gives a contradiction. �
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Corollary 3.3. Let Xn be a sequence of uniformly bounded closed sets. Suppose that Xn → X in dH
and Xn → Y in dH . If both X and Y are closed, then X = Y.

Proof. Both X and Y are bounded. We can apply Lemma 3.2, that immediately implies that X ⊂ Y and
Y ⊂ X using the characterization of convergence in dH given by points a) and b). �

The above properties allow us to relate the convergence in the sense of varifolds to the convergence
of their supports in Hausdorff distance.

Theorem 3.4. Let Vn = v(Mn, θVn) , 0 be a sequence of curvature varifolds with boundary with
uniformly bounded Willmore energy converging to V = v(M, θV) , 0. Suppose that the Mn’s are
connected and uniformly bounded.

Suppose that suppσVn = γ1
n ∪ ... ∪ γ

α
n where the γi

n’s are disjoint compact embedded 1-dimensional
manifolds, γ̄1, ..., γ̄β with β ≤ α are disjoint compact embedded 1-dimensional manifolds, and assume
that γi

n → γ̄i in dH for i = 1, ..., β and thatH1(γi
n)→ 0 for i = β + 1, ..., α.

Then Mn → M ∪ γ̄1 ∪ ... ∪ γ̄β in Hausdorff distance dH (up to subsequence) and M ∪ γ̄1 ∪ ... ∪ γ̄β

is connected. Moreover γi
n → {pi} in dH for any i = β + 1, ..., α for some points {pi}, each pi ∈ M, and

suppσV ⊂ γ̄
1 ∪ ... ∪ γ̄β ∪ {pβ+1, ..., βα}.

Proof. Let us first observe that by the uniform boundedness of Mn, we get that γi
n converges to some

compact set Xi in dH up to subsequence for any i = β + 1, ..., α. Each Xi is connected by Lemma
3.1, then by Golab Theorem we know that H1(Xi) ≤ lim infnH

1(γi
n) = 0, hence Xi = {pi} for any

i = β + 1, ..., α for some points pβ+1, ..., pα. Call X = {pβ+1, ..., pα}.

By assumption we know that µVn

?
⇀ µV as measures on R3, also Mn and M can be taken to be closed.

Moreover suppσV ⊂ X ∪ γ̄1 ∪ ... ∪ γ̄β. In fact Vn are definitely varifolds without generalized boundary
on any open set of the form Nε(X ∪ γ̄1 ∪ ... ∪ γ̄β) and they converge as varifolds to V on such an open
set with equibounded Willmore energy.

We want to prove that the sets Mn and M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β satisfy points a) and b) of Lemma 3.2
and that X ⊂ M.

Let x ∈ M ∪ γ̄1 ∪ ...∪ γ̄β ∪ X. If x ∈ γ̄1 ∪ ...∪ γ̄β ∪ X, then by assumption and Lemma 3.2 there is a
sequence of points in suppσVn converging to x. So let x ∈ M \ (γ̄1 ∪ ... ∪ γ̄β ∪ X). We know that there
exists the limit limρ↘0

µV (Bρ(x))
πρ2 ≥ 1, hence we can write that for any ρ ∈ (0, ρ0) with ρ0 < d(x, suppσV)

we have that µV(Bρ(x)) ≥ π
2ρ

2. There exists a sequence ρm ↘ 0 such that limn µVn(Bρm(x)) = µV(Bρm(x))
for any m. Hence Mn ∩ Bρm(x) , ∅ for any m definitely in n. Arguing as in Lemma 3.2 we find a
sequence xn ∈ Mn converging to x, and thus the property b) of Lemma 3.2 is achieved.

For any ε > 0 let Aε := Nε(X ∪ γ̄1 ∪ ... ∪ γ̄β). Let us show that for any ε > 0 it occurs that Mn \ Aε

converges to
(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β

)
\ Aε = M \ Aε in dH , i.e. we want to check property a) of Lemma

3.2 for such sets.
Once this convergence is established, we get that Mn → M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β in dH and we can

show that the whole thesis follows. In fact we have that for any ε > 0 for any η > 0 it holds that

Mn \ Aε ⊂ Nη

(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β \ Aε

)
,

(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β

)
\ Aε ⊂ Nη(Mn \ Aε),

for any n ≥ nε,η. In particular

Mn = Mn \ Aε ∪ Aε ⊂ Nη(M \ Aε) ∪ Aε ⊂ Nη+2ε(M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β),
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M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β =
(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β

)
\ Aε ∪ Aε ⊂ Nη(Mn \ Aε) ∪ Aε ⊂ Nη+2ε(Mn),

for any n ≥ nε,η. Setting ε = η we see that for any η > 0 it holds that

Mn ⊂ N3η

(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β

)
,

(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β

)
⊂ N3η(Mn),

for any n ≥ n2η,η. Hence Mn → M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β in dH . Therefore M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β is closed
and connected. Moreover we get that X ⊂ M, in fact for any pi ∈ X for any K ∈ N≥1 by connectedness
of Mn we find some subsequence ynk ∈ Mn ∩ ∂B 1

K
(pi) converging to a point yK ∈ M ∩ ∂B 1

K
(pi). Since

M is closed, passing to the limit K → ∞ we see that pi ∈ M. In particular Mn → M ∪ γ̄1 ∪ ... ∪ γ̄β in
dH and the proof is completed.

So we are left to prove that Mn \ Aε converges to
(
M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β

)
\ Aε = M \ Aε in dH for

any fixed ε > 0. Consider any converging sequence ynk ∈ Mnk \ Aε. For simplicity, let us denote yn

such sequence. Suppose by contradiction that yn → y but y < M ∪ Aε. Since M is closed, there exist
ζ > 0 such that Bζ(y) ∩ M = ∅ for n large. Since Mn is connected and M , ∅ we can write that
∂Bζ(y) ∩ Mn , ∅ for any σ ∈ ( ζ4 ,

ζ

2 ) for n large enough. Since yn < Aε, up to choosing a smaller ζ
we can assume that Bζ(y) does not intersect suppσVn for n large. Fix N ∈ N with N ≥ 2 and consider
points

zn,k ∈ ∂B(1+ k
N ) ζ4 (y) ∩ Mn , ∅,

for any k = 1, ...,N − 1.
The open balls {

B 1
2N

ζ
4
(zn,k)

}N−1

k=1

are pairwise disjoint. Passing to the limit σ ↘ 0, setting ρ =
ζ

8N , and using Young’s inequality in
Equation (2.1) evaluated on the varifold Vn at the point p0 = zn,k we get that

π ≤
µVn

(
B ζ

8N
(zn,k)

)
(
ζ

8N

)2 +
1
4

ˆ
B ζ

8N
(zn,k)
| ~HVn |

2 dµVn +
1(
ζ

8N

)2

ˆ
B ζ

8N
(zn,k)
〈 ~HVn , p − zn,k〉 dµVn(p)

≤
3
2

µVn

(
B ζ

8N
(zn,k)

)
(
ζ

8N

)2 +
3
4

ˆ
B ζ

8N
(zn,k)
| ~HVn |

2 dµVn ,

(3.2)

for any n large and any k = 1, ...,N − 1. Since

lim sup
n

µVn

(
B ζ

8N
(zn,k)

)
≤ lim sup

n
µVn

(
B ζ

2
(y)

)
≤ µV

(
B 3

4 ζ
(y)

)
= 0,

summing over k = 1, ...,N − 1 in (3.2) and passing to the limit n→ ∞ we get that

π(N − 1) ≤ lim sup
n

3
4

N−1∑
k=1

ˆ
B ζ

8N
(znk )
| ~HVn |

2 dµVn ≤
3
4

lim sup
n
W(Vn).

Since N can be chosen arbitrarily big from the beginning, we get a contradiction with the uniform
bound on the Willmore energy of the Vn’s.

Hence we have proved that Mn → M∪ γ̄1∪ ...∪ γ̄β in dH . By Lemma 3.1 we get that M∪ γ̄1∪ ...∪ γ̄β

is connected. �
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Remark 3.5. Arguing as in the second part of the proof of Theorem 3.4, we get the following useful
statement.

Assuming Vn = v(Mn, θVn) , 0 is a sequence of curvature varifolds with boundary with uniformly
bounded Willmore energy converging to V = v(M, θV) , 0. Suppose that the Mn’s are connected and
closed and that M is closed. Suppose that suppσVn is as in Theorem 3.4. If a subsequence ynk ∈ Mnk

converges to y, then y ∈ M ∪ γ̄1 ∪ ... ∪ γ̄β.
Observe that the supports Mn,M are not necessarily bounded here.

Remark 3.6. The connectedness assumption in Theorem 3.4 is essential. Consider in fact the following
example: let Mn = ∂B1(0) ∪ ∂B 1

n (0) and θVn(p) = 1 for any p ∈ Mn. Hence the varifolds v(Mn, θVn)
converge to v(∂B1(0), 1) as varifolds and they have uniformly bounded energy equal to 8π, but clearly
Mn does not converge to ∂B1(0) in dH .

Remark 3.7. The statement of Theorem 3.4 also holds if we assume suppσVn ⊂ γ1
n ∪ ... ∪ γ

α
n and

Mn ∪ γ
1
n ∪ ...∪ γ

α
n connected. In this case, using the notation of the proof of Theorem 3.4, we have that

Mn ∪ γ
1
n ∪ ... ∪ γ

α
n converges to M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β in dH and M ∪ X ∪ γ̄1 ∪ ... ∪ γ̄β is connected.

4. Perturbative regime: Existence in the class of varifolds

Now we want to prove the two main Existence Theorems about boundary valued minimization
problems on connected varifolds.

Theorem 4.1. Let γ = γ1 ∪ ... ∪ γα be a disjoint union of smooth embedded compact 1-dimensional
manifolds with α ∈ N≥2.
Let

σ0 = ν0 mH1 ¬ γ

be a vector valued Radon measure, where m : γ → N≥1 and ν0 : γ → (Tγ)⊥ are H1-measurable
functions with m ∈ L∞(H1 ¬ γ) and |ν0| = 1H1-ae.
Let P be the minimization problem

P := min
{
W(V) | V = v(M, θV) : σV = σ0, suppV ∪ γ compact, connected

}
. (4.1)

If inf P < 4π, then P has minimizers.

Proof. Let Vn = v(Mn, θVn) be a minimizing sequence for the problem P. Call I = inf P < 4π, and
suppose without loss of generality that W(Vn) < 4π for any n. For any p0 ∈ Mn \ γ passing to the
limits σ→ 0 and ρ→ ∞ in the monotonicity formula (2.1) we get

4π ≤ W(Vn) + 2
|σ0|(γ)
d(p0, γ)

,

then
sup

p0∈Mn\γ

d(p0, γ) ≤ 2
|σ0|(γ)

4π −W(Vn)
≤ C(σ0, I).

Hence the sequence Mn is uniformly bounded in R3. Integrating the tangential divergence of the field
X(p) = χ(p) (p) where χ(p) = 1 for any p ∈ BR0(0) ⊃ Mn for any n we get that

2µVn(R
3) =

ˆ
divT Mn X dµVn = −2

ˆ
〈HVn , X〉 dµVn +

ˆ
〈X, ν0〉d|σ0| ≤ C(σ0, I)µVn(R

3)
1
2 + C(σ0, I),
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for any n, and then µVn is uniformly bounded. By the classical compactness theorem for rectifiable
varifolds (see Section 5 of Chapter 8 in [30]) we have that Vn → V = v(M, θV) in the sense of varifolds
(up to subsequence), and M is compact.

By an argument analogous to the proof of Theorem 3.4 we can show that V , 0. Suppose in fact
that V = 0. Since α ≥ 2 and the curves γ1, ..., γα are disjoint and embedded, there exist a embedded
torus φ : S 1 × S 1 → R3 \ γ dividing R3 into two connected components A1, A2 such that A1 ⊃ γ1

and A2 ⊃ γ
2 ∪ ... ∪ γα. Since Mn is connected and uniformly bounded, there is a sequence of points

yn ∈ Mn ∩ φ(S 1 × S 1) with a converging subsequence ynk → y. Observe that there is ∆ > 0 such that
d(yn, γ) ≥ ∆. Since V = 0 we have that y < suppV . Let N ≥ 4 be a natural number and consider the
balls

{
B j

N
∆
2
(y)

}N

j=1
. Up to subsequence, for n sufficiently large there is zn, j ∈ ∂B j

N
∆
2
(y) ∩ Mn. Also the

balls {
B ∆

4N
(zn, j)

}N

j=1

are pairwise disjoint. As in (3.2) we get that

π ≤
3
2

µVn

(
B ∆

4N
(zn, j)

)
(

∆
4N

)2 +
3
4

ˆ
B ∆

4N
(zn, j)
|HVn |

2 dµVn

for any j = 1, ...,N. Since lim supn µVn

(
B ∆

4N
(zn, j)

)
≤ µV(B 3

4 ∆(y)) = 0, summing over j = 1, ...,N and
passing to the limit in n we get

4π ≤ Nπ ≤
3
4

lim
n
W(Vn) ≤ 3π,

that gives a contradiction. Hence Theorem 3.4 implies that suppV ∪ γ = M ∪ γ is connected. Since
W(V) ≤ I by lower semicontinuity, we are left to show that σV = σ0.

Since γ is smooth we can write that

|π(Tγ)⊥(p − q0)| ≤ Cγ|p − q0|
2 (4.2)

as p → q0 with p ∈ γ for some constant Cγ depending on the curvature of γ. Let 0 < σ < s with
s = s(γ) such that (4.2) holds for p ∈ γ∩ Bs(q) for any q ∈ γ. For any q0 ∈ γ the monotonicity formula
(2.1) at q0 on Vn gives

µVn(Bσ(q0))
σ2 ≤ −

1
σ2

ˆ
Bσ(q0)
〈HVn , p − q0〉 dµVn(p) −

1
2

ˆ
Bσ(q0)

(
1

|p − q0|
2 −

1
σ2

)
〈p − q0, ν0〉 d|σ0|(p) + lim

ρ→∞
AVn(ρ)

≤ W(Vn)
1
2

(
µVn(Bσ(q0))

σ2

) 1
2

+
1
2

ˆ
Bσ(q0)

Cγ|p − q0|
2

|p − q0|
2 +

1
σ

d|σ0|(p) + π +
1
2

ˆ
〈p − q0, ν0〉

|p − p0|
2 d|σ0|(p)

≤ W(Vn)
1
2

(
µVn(Bσ(q0))

σ2

) 1
2

+ Cγ|σ0|(Bσ(q0)) +
1
σ
|σ0|(Bσ(q0)) + π +

1
2

1
s
|σ0| (γ \ Bσ(q))

≤ C(I)
(
µVn(Bσ(q0))

σ2

) 1
2

+ C(γ, σ0).

In particular
µVn(Bσ(q)) ≤ C(I, γ, σ0)σ2 (4.3)
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for any q0 ∈ γ, any σ ∈ (0, s), and any n.
Consider now any X ∈ C0

c (Br(q0)) for fixed q0 ∈ γ and r ∈ (0, s). By varifold convergence we have that

lim
n
−2
ˆ
〈HVn , X〉 dµVn +

ˆ
〈X, ν0〉 d|σ0| = −2

ˆ
〈HV , X〉 dµV +

ˆ
〈X, νV〉 d|σV |, (4.4)

where we wrote σV = νV |σV |. Now let m ∈ N be large and consider the cut off function

Λm(p) =

1 − md(p, γ) d(p, γ) ≤ 1
m ,

0 d(p, γ) > 1
m .

(4.5)

Take now X = ΛmY for some Y ∈ C0
c (Br(q0)). We have that

lim sup
m→∞

lim
n

∣∣∣∣∣ˆ 〈HVn , X〉 dµVn

∣∣∣∣∣ = lim sup
m→∞

lim
n

∣∣∣∣∣∣∣
ˆ

Br(q0)∩N 1
m

(γ)
Λm〈HVn ,Y〉 dµVn

∣∣∣∣∣∣∣
≤ ‖Y‖∞ lim sup

m
lim

n
W(Vn)

1
2µVn

(
Br(q0) ∩ N 1

m
(γ)

) 1
2
.

Moreover, there exists a constant C(γ) such that Br(q0)∩N 1
m

(γ) ⊂ ∪C(γ)m
i=1 B 2

m
(qi) for some points qi ∈ γ

and at most C(γ)m balls {B 2
m

(qi)}i. Hence for 2
m < s we can estimate

µVn

(
Br(q0) ∩ N 1

m
(γ)

)
≤

C(γ)m∑
i=1

µVn

(
B 2

m
(qi)

)
≤ C(γ)mC(I, γ, σ0)

4
m2 .

Therefore

lim sup
m→∞

lim
n

∣∣∣∣∣ˆ 〈HVn , X〉 dµVn

∣∣∣∣∣ ≤ ‖Y‖∞ lim sup
m

C(I, γ, σ0)
1
√

m
= 0. (4.6)

Hence setting X = ΛmY in (4.4) and letting m→ ∞ we obtain
ˆ
〈Y, ν0〉 d|σ0| =

ˆ
〈Y, νV〉 d|σV |,

for any Y ∈ C0
c (Br(q0)). Since q0 ∈ γ is arbitrary we conclude that σV = σ0, and thus V is a minimizer.

�

Theorem 4.2. Let γ = γ1 ∪ ... ∪ γα be a disjoint union of smooth embedded compact 1-dimensional
manifolds with α ∈ N≥2.
Let m : γ → N≥1 byH1-measurable with m ∈ L∞(H1 ¬ γ).
Let Q be the minimization problem

Q := min
{
W(V) | V = v(M, θV) : |σV | ≤ mH1 ¬ γ, suppV ∪ γ compact, connected

}
. (4.7)

If inf Q < 4π, then Q has minimizers.
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Proof. We adopt the same notation used in the proof of Theorem 4.1. In this case the generalized
boundaries of the minimizing sequence Vn = v(Mn, θVn) are denoted by σVn = νVn |σVn |, and |σVn | ≤

mH1 ¬ γ. The very same strategy used in Theorem 4.1 shows that Vn converges up to subsequence in
the sense of varifolds to a limit V = v(M, θV) , 0 with M ∪ γ compact and connected by Theorem
3.4 and Remark 3.7, and W(V) ≤ inf Q. Hence, to see that V is a minimizer, we are left to show
that |σV | ≤ mH1 ¬ γ. Calling µ := mH1 ¬ γ, we find as in Theorem 4.1 that there exist constants
C = C(inf Q, γ, µ) and s = s(γ) such that

µVn(Bσ(q)) ≤ Cσ2,

for any q ∈ γ, any σ ∈ (0, s), and any n large.
For any X ∈ C0

c (Br(q0)) for fixed q0 ∈ γ and r ∈ (0, s) the convergence of the first variation of
varifolds reads

lim
n
−2
ˆ
〈HVn , X〉 dµVn +

ˆ
〈X, νVn〉 d|σVn | = −2

ˆ
〈HV , X〉 dµV +

ˆ
〈X, νV〉 d|σV |, (4.8)

where we wrote σV = νV |σV |. Now we set X = ΛmY in (4.8) for Y ∈ C0
c (Br(q0)) and Λm as in (4.5).

Estimating as in (4.6) and taking the limit m→ ∞ we obtain

lim
n

ˆ
〈Y, νVn〉 d|σVn | =

ˆ
〈Y, νV〉 d|σV |,

that is σVn

?
⇀ σV , and thus |σV |(A) ≤ lim infn |σVn |(A) ≤ µ(A) for any open set A. Hence |σV | ≤ µ and

V is a minimizer of Q. �

Remark 4.3. Assuming in the above existence theorems that the connected components of the
boundary datum are at least two (i.e., α ≥ 2) is technical, but it is also essential in order to obtain a
non-trivial minimization problem, i.e., a problem that does not necessarily reduces to a Plateau’s one.
In fact if we consider a single closed embedded smooth oriented curve γ, Lemma 34.1 in [30]
guarantees the existence of a minimizing integer rectifiable current T = τ(M, θ, ξ) with compact
support and with boundary γ. Hence by Lemma 33.2 in [30] the integer rectifiable varifold
V = v(M, θ) is stationary and suppσV ⊂ γ. Then we can take M = suppT , that is compact. Since
∂T = γ and T is minimizing, the set M ∪ γ is connected andW(V) is trivially zero.

The Existence Theorems 4.1 and 4.2 can be applied in different perturbative regimes, as discussed
in the following corollaries and remarks.

Corollary 4.4. Let γ = γ1 ∪ ... ∪ γα be a disjoint union of smooth embedded compact 1-dimensional
manifolds with α ∈ N≥2. Suppose that there exists a compact connected surface Σ ⊂ R3 with boundary
∂Σ = γ. Let ε ∈ R and fε : R3 → R3 be a smooth family of diffeomorphisms with f0 = id|R3 . For any ε
let

σε = co fε(Σ)H
1 ¬ ( fε(γ)),

where co fε(Σ) is the conormal field of fε(Σ).
IfW(Σ) < 4π, there exists ε1 > 0 such that if ε0 < ε1 the minimization problems

Pε := min
{
W(V) | V = v(M, θV) : σV = σε, suppV ∪ fε(γ) compact, connected

}
, (4.9)
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Qε := min
{
W(V) | V = v(M, θV) : |σV | ≤ H

1 ¬ ( fε(γ)), suppV ∪ fε(γ) compact, connected
}
,

(4.10)
have minimizers for any ε ∈ (−ε0, ε0).

Corollary 4.5. Let γ = γ1 ∪ ... ∪ γα be a disjoint union of smooth embedded compact 1-dimensional
manifolds with α ∈ N≥2. Suppose that there exists a compact connected minimal surface Σ ⊂ R3 with
boundary ∂Σ = γ. Let ε ∈ R and fε : R3 → R3 be a smooth family of diffeomorphisms with f0 = id|R3 .
For any ε let

σε = co fε(Σ)H
1 ¬ ( fε(γ)),

where co fε(Σ) is the conormal field of fε(Σ).
Then there exists ε1 > 0 such that if ε0 < ε1 the minimization problems

Pε := min
{
W(V) | V = v(M, θV) : σV = σε, suppV ∪ fε(γ) compact, connected

}
, (4.11)

Qε := min
{
W(V) | V = v(M, θV) : |σV | ≤ H

1 ¬ ( fε(γ)), suppV ∪ fε(γ) compact, connected
}
,

(4.12)
have minimizers for any ε ∈ (−ε0, ε0).

Remark 4.6. Many examples in which the Existence Theorems 4.1 and 4.2 and Corollary 4.4 apply
are given by defining the following boundary data. We can consider any compact smooth surface S
without boundary such thatW(S ) < 8π. Then the monotonicity formula (see also [15,16]) implies that
S is embedded. We remark that there exist examples of such surfaces having any given genus ( [2,31]).
Considering any suitable plane π that intersects S in finitely many disjoint compact embedded curves
γ1, ..., γα, we get that one halfspace determined by π contains a piece Σ of S with W(Σ) < 4π and
∂Σ = γ1 ∪ ... ∪ γα. Calling coΣ the conormal field of Σ we get that problems

P := min
{
W(V) | V = v(M, θV) : σV = coΣH

1 ¬ ∂Σ, suppV ∪ ∂Σ compact, connected
}
,

Q := min
{
W(V) | V = v(M, θV) : |σV | ≤ H

1 ¬ ∂Σ, suppV ∪ ∂Σ compact, connected
}
,

and suitably small perturbations Pε, Qε of them have minimizers.

Remark 4.7. Suppose that γ = γ1 ∪ ... ∪ γα is a disjoint union of compact smooth embedded 1-
dimensional manifolds and that γ is contained in some sphere S 2

R(c). Up to translation let c = 0.
If there is a point N ∈ S 2

R(0) such that for any i the image πN(γi) via the stereographic projection
πN : S 2

R(0) \ {N} → R2 is homotopic to a point in R2 \ ∪αi=1πN(γi), then the problem

Q := min
{
W(V) | V = v(M, θV) : |σV | ≤ H

1 ¬ γ, suppV ∪ γ compact, connected
}
,

has minimizers. In fact under such assumption there exists a connected submanifold Σ of S 2
R(0) with

∂Σ = γ, thusW(Σ) < 4π and Theorem 4.2 applies.

Remark 4.8. For given R ≥ 1 and h > 0 consider the curves

ΓR,h = {x2 + y2 = 1, z = h} ∪ {x2 + y2 = R2, z = −h}.
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Suppose that h0 > 0 is the critical value for which a connected minimal surface Σ with ∂Σ = ΓR,h exists
if and only if h ≤ h0. Let Σ0 be a minimal surface with ∂Σ0 = ΓR,h0 . Applying Corollary 4.5 we get that
for ε > 0 sufficiently small the minimization problem

Qε := min
{
W(V) | V = v(M, θV) : |σV | ≤ H

1 ¬ΓR,h0+ε, suppV ∪ ΓR,h0+ε compact, connected
}

has minimizers.
Let us anticipate that in the case of boundary data of the form ΓR,h we will see in Corollary 6.2 that

actually existence of minimizers for the problem Qε is guaranteed for any ε > 0, in fact we will see that
the hypotheses implying existence of minimizers actually hold for boundary datum ΓR,h for any h > 0.

5. Asymptotic regime: Limits of rescalings

As we recalled in Remark 2.2, it is proved in [15] that the infimum of the Willmore energy on closed
surfaces coincide with the infimum taken over non-zero compact varifolds without boundary. First we
prove that such infima are both achieved by spheres. This result is certainly expected by experts in the
field, but up to the knowledge of the authors it has not been proved yet without appealing to highly
non-trivial regularity theorems.

Proposition 5.1. Let V = v(M, θV) be an integer rectifiable varifold with σV = 0 and such that suppV
is compact. IfW(V) = 4π, then V = v(S 2

R(z), 1) for some 2-sphere S 2
R(z) ⊂ R3.

Proof. Passing to the limits σ→ 0 and ρ→ ∞ in the monotonicity formula for varifolds we get that

4πθV(p0) + 4
ˆ

M

∣∣∣∣∣∣ ~H2 +
(p − p0)⊥

|p − p0|
2

∣∣∣∣∣∣
2

dµV = 4π,

for any p0 ∈ R
3. Hence θV(p0) = 1 for any p0 ∈ M, and also

~H(p) = −2
(p − p0)⊥

|p − p0|
2 , (5.1)

forH2-ae p ∈ M and for every p0 ∈ M.
Fix δ > 0 small and two points p1, p2 ∈ M with p2 < B2δ(p1). ForH2-ae p ∈ M we can write

~H(p) =

−2 (p−p1)⊥

|p−p1 |2
p < Bδ(p1),

−2 (p−p2)⊥

|p−p2 |2
p < Bδ(p2).

Since M is bounded, we get that ~H ∈ L∞(µV). Therefore, since θV = 1 on M, by the Allard Regularity
Theorem ( [30]) we get that M is a closed surface of class C1,α for any α ∈ (0, 1).
Since M is closed, it is also compact, and thus it is connected, for otherwiseW(V) ≥ 8π.
Let p ∈ M be any fixed point such that (5.1) holds, and call νp the unit vector such that ν⊥p = TpM. Up
to translation let p = 0. Consider the axis generated by ν0 and any point p0 ∈ M \ {0}. We can write
p0 = q + w with q = αν0 and 〈w, ν0〉 = 0. Writing analogously (q + w′) ∈ M \ {0} another point with
the same component on the axis generated by ν0, (5.1) implies that

−2
−〈q, ν0〉ν0

|q|2 + |w|2
= −2

(0 − q − w)⊥0

|q − w|2
= ~H(0) = −2

(0 − q − w′)⊥0

|q − w′|2
= −2

−〈q, ν0〉ν0

|q|2 + |w′|2
.
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Hence, whenever q , 0, we have that |w| = |w′|; that is points in M of the form αν0 + w with α , 0 and
w ∈ ν⊥0 lie on a circle. It follows that M is invariant under rotations about the axis {tν0 | t ∈ R}.

This argument works at H2-almost any point of M. Therefore we have that for any p ∈ M, the set
M is invariant under rotations about the axis p + {tνp | t ∈ R}.

Still assuming 0 ∈ M, up to rotation suppose that ν0 = (0, 0, 1). Let a ∈ M be such that νa = (1, 0, 0).
There exists a point b ∈ M such that b = tν0 = (0, 0, t) for some t ∈ R \ {0}. We can write 0 = q + w
and b = q + w′ for the same q ∈ a + {tνa | t ∈ R} and some w,w′ ∈ ν⊥a . Since |w| = |w′|, it follows
that q , 0, otherwise b = 0. Since q , 0, the rotation of the origin about the axis a + {tνa | t ∈ R}
implies that M contains a circle C of radius r > 0 passing through the origin, and the plane containing
C is orthogonal to ν⊥0 . Since M is of class C1, the circle C has to be tangent at 0 to the subspace ν⊥0 .
Thus by invariance with respect to the rotation about the axis {tν0 | t ∈ R}, we have that M contains the
sphere with positive radius given by the rotation of C about {tν0 | t ∈ R}. Since the Willmore energy of
a sphere is 4π, it follows that M coincide with such sphere. �

Now we can prove the above mentioned result on the asymptotic behavior of connected varifolds.

Corollary 5.2. Let Vn = v(Mn, θVn) be a sequence of integer rectifiable curvature varifolds with
boundary satisfying the hypotheses of Theorem A.2. Suppose that Mn is compact and connected for
any n.
If

W(Vn) ≤ 4π + o(1) as n→ ∞,

diam(suppVn) −−−→
n→∞

+∞,

lim sup
n

|σVn |(R
3)

diam(suppVn)
= 0,

and suppσVn is a disjoint union of uniformly finitely many compact embedded 1-dimensional manifolds,
then the sequence

Ṽn := v
(

Mn

diam(suppVn)
, θ̃n

)
where θ̃n(x) = θVn(diam(suppVn) x), converges up to subsequence and translation to the varifold

V = v(S, 1),

where S is a sphere of diameter 1, in the sense of varifolds and in Hausdorff distance.

Proof. Up to translation let us assume that 0 ∈ suppVn. Then suppṼn is uniformly bounded with
diam(suppṼn) = 1. We have that

2µṼn
(R3) =

ˆ
divTṼn

p dµṼn
(p) ≤ CW(Ṽn)

1
2
(
µṼn

(R3)
) 1

2
+ C

|σVn |(R
3)

diam(suppVn)
,

and thus Theorem A.2 implies that Ṽn converges to a limit varifold V (up to subsequence). Also
σṼn

?
⇀ σV , and thus |σV |(R3) ≤ lim infn |σṼn

|(R3) ≤ lim supn
|σVn |(R

3)

diam(suppVn)
= 0; hence V has compact

support and no generalized boundary.
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Let us say that suppσṼn
is the disjoint union of the smooth closed curves γ1

n, ..., γ
α
n . By the uniform

boundedness of suppṼn, we get that γi
n converges to some compact set Xi in dH up to subsequence. Each

Xi is connected by Lemma 3.1, then by Golab Theorem we know that H1(Xi) ≤ lim infnH
1(γi

n) = 0,
hence Xi = {pi} for any i for some points p1, ..., pα, and we can assume that pi , 0 for any i = 1, ..., α.

Using ideas from the proof of Theorem 3.4, we can show that V , 0. In fact suppose by
contradiction that V = 0. Fix N ∈ N with N ≥ 4. By connectedness of Mn, since diam(suppṼn) → 1,
and the boundary curves converge to a discrete sets, for j = 1, ...,N there are points
zn, j ∈ ∂B j

2N
(0) ∩ suppṼn for n large. We can also choose N so that d(zn, j, suppσṼn

) ≥ δ(N) > 0 for n

large. The open balls
{
B 1

4N
(zn, j)

}N

j=1
are pairwise disjoint. Using Young inequality as in Theorem 3.4 in

the monotonicity formula (2.1) applied on Ṽn at points zn, j with σ→ 0 and ρ = 1
4N gives

π ≤
3
2

µṼn
(B 1

4N
(zn, j))(

1
4N

)2 +
3
4

ˆ
B 1

4N
(zn, j)
|HṼn
|2 dµṼn

+
1
2

∣∣∣∣∣∣∣∣
ˆ  1
|p − zn, j|

2 −
1(
1

4N

)2

 (p − zn, j) dσṼn
(p)

∣∣∣∣∣∣∣∣ , (5.2)

for any n and j = 1, ...,N. Since V = 0 we have that lim supn µṼn
(B 1

4N
(zn, j)) ≤ lim supn µṼn

(B2(0)) = 0.
Also ∣∣∣∣∣∣∣∣

ˆ  1
|p − zn, j|

2 −
1(
1

4N

)2

 (p − zn, j) dσṼn
(p)

∣∣∣∣∣∣∣∣ ≤ C(δ(N),N)|σṼn
|(R3) −−−→

n→∞
0.

Hence summing on j = 1, ...,N in (5.2) and passing to the limit n→ ∞ we get

4π ≤ Nπ ≤
3
4

lim
n
W(Ṽn) ≤ 3π,

that gives a contradiction.
Therefore we can apply Theorem 3.4 to conclude that suppṼn converges to M in dH . Finally, since

V is a compact varifold without generalized boundary and

4π ≤ W(V) ≤ lim inf
n
W(Vn) = 4π,

by Proposition 5.1 we conclude that V is a round sphere of multiplicity 1. By Lemma 3.2 the diameter
of M is the limit limn diam(suppṼn) = 1. �

6. The double circle boundary

In this section we want to discuss how the Existence Theorems 4.1 and 4.2 and the asymptotic
behavior described in Corollary 5.2 relate with the remarkable case that motivates our study, namely
the immersions in the class FR,h.

First, the monotonicity formula provides the following estimates on immersions ϕ ∈ FR,h.

Lemma 6.1. Fix R ≥ 1 and h > 0. It holds that:
i)

inf
{
W(ϕ) | ϕ ∈ FR,h

}
≤ 4π

4h2 + R2 − 1√
(4h2 + R2 − 1)2 + 16h2

< 4π. (6.1)

ii)
lim
h→∞

inf
{
W(ϕ) | ϕ ∈ FR,h

}
= 4π. (6.2)
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Proof. i) We can consider as competitor in FR,h the truncated sphere

Σ = S 2√
1+(z0−h)2

(z0) ∩ {|z| ≤ h} ,

where z0 =
(
0, 0, 1−R2

4h

)
is the point on the z-axis located at the same distance from the two connected

components of ΓR,h. The surface Σ is contained in another truncated sphere Σ′ having the same center
and radius and symmetric with respect to the plane {z = 1−R2

4h }. The boundary of Σ′ is the disjoint union
of two circles of radius 1. We have

W(Σ) ≤ W(Σ′) = 4π
4h2 + R2 − 1√

(4h2 + R2 − 1)2 + 16h2

ii) Let ϕ ∈ FR,h and Σ = ϕ(C ). By connectedness there is a point p ∈ Σ \ ∂Σ lying in the plane z = 0.
Hence dH (Σ, ∂Σ) ≥ h, and by (2.7) we have

4π ≤ W(Σ) + 2
2π(1 + R)

h
∀Σ.

Then 4π ≤ inf
{
W(ϕ) | ϕ ∈ FR,h

}
+

4π(1+R)
h and the thesis follows by using i) by letting h→ ∞. �

We already discussed in Remark 4.8 the existence of minimization problems arising by
perturbations of minimal catenoids in some FR,h. By Lemma 6.1 we can complete the picture about
existence of optimal connected elastic surfaces with boundary ΓR,h for any R ≥ 1 and h > 0, as well as
the asymptotic behavior of almost optimal surfaces having such boundaries.

Corollary 6.2. Fix R ≥ 1 and h > 0.
1) Then the minimization problem

QR,h := min
{
W(V) | V = v(M, θV) : |σV | ≤ H

1 ¬ΓR,h, suppV ∪ ΓR,h compact, connected
}

has minimizers.
2) Let hk → ∞ be any sequence. Let Σk = ϕk(C ) for ϕk ∈ FR,hk . Suppose thatW(ϕk) ≤ 4π + o(1) as
k → ∞. Let S k = Σk

diamΣk
.

Then (up to subsequence) S k converges in Hausdorff distance to a sphere S of diameter 1, and the
varifolds corresponding to S k converge to V = v(S, 1) in the sense of varifolds.

Proof. 1) The result follows by point i) in Lemma 6.1 by applying Corollary 4.4.
2) Identifying S k with the varifold it defines, we estimate the total variation of the boundary measure
by |∂S k| ≤

H1(ΓR,hk )

diamΣk
. Moreover, by the Gauss-Bonnet Theorem the L2-norm of the second fundamental

form of S k is uniformly bounded. Hence Corollary 5.2 applies and the thesis follows. �

Using the notation of point 2) in Corollary 6.2, we remark that even if we know that the rescalings
S k converge to a sphere in dH and as varifolds, it remains open the question whether at a scale of order
h the sequence Σk approximate a big sphere. More precisely it seems a delicate issue to understand if
diamΣk ∼ 2hk as k → ∞.

We conclude with the following partial result: the monotonicity formula gives us some evidence in
the case we assume that diamΣk

hk
→ ∞.
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Proposition 6.3. Let Σk = ϕk(C ) for ϕk ∈ FR,hk . Suppose that W(ϕk) ≤ 4π + o(1) as k → ∞. Let
Mk = Σk

hk
.

Then Mk converges up to subsequence to Z = v(M, θZ) in the sense of varifolds.
If also

diamΣk

hk
→ ∞,

then M is a plane containing the z-axis and θZ ≡ 1.

Proof. We identify Mk with the varifold it defines. First we can establish the convergence up to
subsequence in the sense of varifolds by using Theorem A.2. In fact we have that H1(∂Mk) → 0,´

Mk
|IIMk |

2 is scaling invariant and thus finite. Moreover, since d(0, ∂Mk) ≥ 1, by monotonicity (2.1)
we get that

µMk(Bσ(0))
σ2 ≤ −

1
σ2

ˆ
Bσ(0)
〈HMk , p〉 dµMk(p) −

1
2

ˆ
Bσ(0)∩∂Mk

(
1
|p|2
−

1
σ2

)
〈p, coMk(p)〉 dH1(p)

+ lim
ρ→∞

AMk(ρ)

≤ π + o(1) +
1
σ2

ˆ
Bσ(0)
|p||HMk | dµMk(p) +

1
2

ˆ
∂Mk\Bσ(0)

dH1(p)
|p|

+
1

2σ2

ˆ
∂Mk∩Bσ(0)

|p| dH1(p)

≤ π + o(1) +
1
σ
µMk(Bσ(0))

1
2W(Mk)

1
2 +

1
2
H1(∂Mk) +

1
2σ
H1(∂Mk),

where AMk(·) is the monotone quantity centered at 0 evaluated on Mk, and therefore µMk(Bσ(0)) ≤ C(σ)
for any σ ≥ 1. Hence the hypotheses of Theorem A.2 are satisfied and we call Z = v(M, θZ) the limit
varifold of Mk. Observe that σZ = 0 andW(Z) < +∞.

From now on assume that diamΣk/hk → ∞. Arguing as in the proof of Corollary 5.2 we can prove
that Z , 0. In fact suppose by contradiction that Z = 0. Fix N ∈ N with N ≥ 4. By connectedness of
Mk, for j = 1, ...,N there are points zk, j ∈ ∂B j

N
(0, 0, 1) ∩ Mk and zk, j < ∂Mk for k large. The open balls{

B 1
2N

(zk, j)
}N

j=1
are pairwise disjoint. Hence the monotonicity formula (2.1) applied on Mk at points zk, j

with σ→ 0 and ρ = 1
2N gives

π ≤
3
2

µMk(B 1
2N

(zk, j))(
1

2N

)2 +
3
4

ˆ
B 1

2N
(zk, j)
|HMk |

2 dµMk , (6.3)

for any k and j = 1, ...,N. Since Z = 0 we have that

lim sup
k

µMk(B 1
2N

(zk, j)) ≤ lim sup
k

µMk(B2(0, 0, 1)) = 0.

Hence, summing on j = 1, ...,N in (6.3) and passing to the limit k → ∞ we get

4π ≤ Nπ ≤
3
4

lim
k
W(Mk) ≤ 3π,
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that gives a contradiction.
Also the support of Z is unbounded. In fact suppose by contradiction that suppZ ⊂⊂ BR(0), and

thus M is closed by Proposition B.1. Since Mk is connected, there exists q′k ∈ Mk ∩ ∂B2R(0) definitely
in k for R sufficiently big. Up to subsequence q′k → q′. By Remark 3.5 we get that q′ ∈ suppZ, that
contradicts the absurd hypothesis.

Since M is unbounded, by Corollary B.2 (or equivalently (A.22) in [15]) we know that

lim
ρ→∞

µZ(Bρ(q))
ρ2 ≥ π.

By construction

lim
k

ˆ
Bσ(0)∩∂Mk

〈
p
|p|2

, coMk

〉
dH1(p) = 0,

hence passing to the limit k → ∞ in the monotonicity formula (2.1) evaluated on Mk we get that

AZ(σ) ≤ lim inf
k

AMk(σ),

for ae σ > 0. By monotonicity

AZ(σ) ≤ lim inf
k

lim
σ→∞

AMk(σ) ≤ lim inf
k

W(Mk)
4

+H1(∂Mk) ≤ π.

On the other hand, by (A.14) in [15] we can write that

lim
σ→∞

AZ(σ) =
1
4
W(Z) + lim

σ→∞

µZ(Bσ(q))
σ2 ≥

1
4
W(Z) + π.

Hence Z is stationary, limρ→∞
µZ (Bρ(q))

ρ2 = π, and M is closed.
If p0 is any point in M, the monotonicity formula for Z centered at p0 reads

µZ(Bσ(p0))
σ2 +

ˆ
Bρ(p0)\Bσ(p0)

|(p − p0)⊥|2

|p − p0|
4 =

µZ(Bρ(q))
ρ2 . (6.4)

In particular θZ(p0) = 1, and thus we can apply Allard Regularity Theorem at p0. Thus we get that M
is of class C∞ around p0 (and analogously everywhere), and thus there exists the limit

lim
σ→0

ˆ
Bρ(p0)\Bσ(p0)

|(p − p0)⊥|2

|p − p0|
4 =

ˆ
Bρ(p0)

|(p − p0)⊥|2

|p − p0|
4 .

Passing to the limits ρ→ ∞ and σ↘ 0 in (6.4), we get that

lim
ρ→∞

ˆ
Bρ(p0)

|(p − p0)⊥|2

|p − p0|
4 = 0.

Therefore |(p − p0)⊥| = 0 for any p ∈ M, where we recall that (·)⊥ is the orthogonal projection on
TpM⊥. Since this is true for any p0 ∈ M, we derive that M is a plane. Finally Remark 3.5 implies that
M contains the vertical axis {(0, 0, t) | t ∈ R}. �
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A. Curvature varifolds with boundary

In this appendix we recall the definitions and the results about curvature varifolds with boundary
that we need throughout the whole work. This section is based on [18] (see also [14, 30]).

Let Ω ⊂ Rk be an open set, and let 1 < n ≤ k. We identify a n-dimensional vector subspace P
of Rk with the k × k-matrix {Pi j} associated to the orthogonal projection over the subspace P. Hence
the Grassmannian Gn,k of n-spaces in Rk is endowed with the Frobenius metric of the corresponding
projection matrices. Moreover given a subset A ⊂ Rk, we define Gn(A) = A ×Gn,k, endowed with the
product topology. A general n-varifold V in an open set Ω ⊂ Rk is a non-negative Radon measure on
Gn(Ω). The varifold convergence is the weak* convergence of Radon measures on Gn(Ω), defined by
duality with C0

c (Gn(Ω)) functions.
We denote by π : Gn(Ω) → Ω the natural projection, and by µV = π](V) the push forward of a

varifold V onto Ω. The measure µV is called induced (weight) measure in Ω.

Mathematics in Engineering Volume 2, Issue 3, 527–556.



551

Given a couple (M, θ) where M ⊂ Ω is countably n-rectifiable and θ : M → N≥1 isHn-measurable,
the symbol v(M, θ) defines the (integer) rectifiable varifold given by

ˆ
Gn(Ω)

ϕ(x, P) dv(M, θ)(x, P) =

ˆ
M
ϕ(x,TxM) θ(x) dHn(x), (A.1)

where TxM is the generalized tangent space of M at x (which existsHn-ae since M is rectifiable). The
function θ is called density or multiplicity of v(M, θ). Note that µV = θHn ¬M in such a case.

From now on we will always understand that a varifold V is an integer rectifiable one.
We say that a function ~H ∈ L1

loc(µV ;Rk) is the generalized mean curvature of V = v(M, θ) and σV

Radon Rk-valued measure on Ω is its generalized boundary if
ˆ

divT MX dµV = −n
ˆ
〈 ~H, X〉 dµV +

ˆ
X dσV , (A.2)

for any X ∈ C1
c (Ω;Rk), where divT MX(p) is theHn-ae defined tangential divergence of X on the tangent

space of M. Recall that σV has the form σV = νVσ, where |νV | = 1 σ-ae and σ is singular with respect
to µV .

If V has generalized mean curvature ~H, the Willmore energy of V is defined to be

W(V) =

ˆ
|H|2 dµV . (A.3)

The operator X 7→ δV(X) :=
´

divT MX dµV is called first variation of V . Observe that for any X ∈
C1

c (Ω;Rk), the function ϕ(x, P) := divP(X)(x) = tr(P∇X(x)) is continuous on Gn(Ω). Hence, if Vn → V
in the sense of varifolds, then δVn(X)→ δV(X).

By analogy with integration formulas classically known in the context of submanifolds, we say that
a varifold V = v(M, θ) is a curvature n-varifold with boundary in Ω if there exist functions Ai jk ∈ L1

loc(V)
and a Radon Rk-valued measure ∂V on Gn(Ω) such that

ˆ
Gn(Ω)

Pi j∂x jϕ(x, P) + Ai jk(x, P)∂P jkϕ(x, P) dV(x, P) =

= n
ˆ

Gn(Ω)
ϕ(x, P)A ji j(x, P) dV(x, P) +

ˆ
Gn(Ω)

ϕ(x, P) d∂Vi(x, P),
(A.4)

for any i = 1, ..., k for any ϕ ∈ C1
c (Gn(Ω)). The rough idea is that the term on the left is the integral of a

tangential divergence, while on the right we have integration against a mean curvature plus a boundary
term. The measure ∂V is called boundary measure of V .

Theorem A.1 ( [18]). Let V = v(M, θ) be a curvature varifold with boundary on Ω. Then the following
hold true.
i) Ai jk = Aik j, Ai j j = 0, and Ai jk = P jrAirk + PrkAi jr = P jrAikr + PkrAi jr.
ii) Pil∂Vl(x, P) = ∂Vi(x, P) as measures on Gn(Ω).
iii) PilAl jk = Ai jk.
iv) Hi(x, P) := 1

n A ji j(x, P) satisfies that PilHl(x, P) = 0 for V-ae (x, P) ∈ Gn(Ω).
v) V has generalized mean curvature ~H with components Hi(x,TxM) and generalized boundary σV =

π](∂V).
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We call the functions IIk
i j(x) := PilA jkl components of the generalized second fundamental form of a

curvature varifold V . Observe that IIk
j j = P jlA jlk = A j jk−PklA j jl = A jk j−PklA jl j = nHk−nPklHl = nHk,

and Ai jk = IIk
i j + II j

ki.
In conclusion we state the compactness theorem that we use in this work.

Theorem A.2 ( [18]). Let p > 1 and Vl a sequence of curvature varifolds with boundary in Ω. Call
A(l)

i jk the functions Ai jk of Vl. Suppose that A(l)
i jk ∈ Lp(V) and

sup
l

{
µVl(W) +

ˆ
Gn(W)

∣∣∣∣∣∑
i, j,k

|A(l)
i jk|

∣∣∣∣∣p dVl + |∂Vl|(Gn(W))
}
≤ C(W) < +∞ (A.5)

for any W ⊂⊂ Gn(Ω), where |∂Vl| is the total variation measure of ∂Vl. Then:
i) up to subsequence Vl converges to a curvature varifold with boundary V in the sense of varifolds.
Moreover A(l)

i jkVl → Ai jkV and ∂Vl → ∂V weakly* as measures on Gn(Ω);
ii) for every lower semicontinuous function f : Rk3

→ [0,+∞] it holds thatˆ
Gn(Ω)

f (Ai jk) dV ≤ lim inf
l

ˆ
Gn(Ω)

f (A(l)
i jk) dVl. (A.6)

It follows from the above theorem that the Willmore energy is lower semicontinuous with respect to
varifold convergence of curvature varifolds with boundary satisfying the hypotheses of Theorem A.2.

B. Monotonicity formula and structure of varifolds with bounded energy

The monotonicity formula on varifolds with locally bounded first variation is a fundamental
identity proved in [31], with important consequences on the structure of varifolds with bounded
Willmore energy, collected for example in [15]. Such consequences usually concern varifolds without
generalized boundary: σV = 0. So, in this section we are interested in extending some of these results
in the case of curvature varifold with boundary. The strategy is analogous to the one of [15] and the
following results are probably expected by the experts in the field, however we prove them here for
the convenience of the reader.

Let V = v(M, θV) be a 2-dimensional curvature varifold with boundary with finite Willmore energy.
Denote by σV the generalized boundary. Let 0 < σ < ρ and p0 ∈ R

3. Integrating the tangential
divergence of the field X(p) =

(
1

|p−p0 |
2
σ
− 1

ρ2

)
+

(p− p0), where |p− p0|
2
σ = max{σ2, |p− p0|

2}, with respect
to the measure µV (see also [31] and [24]) one gets that

A(σ) +

ˆ
Bρ(p0)\Bσ(p0)

∣∣∣∣∣ ~H2 +
(p − p0)⊥

|p − p0|
2

∣∣∣∣∣2 dµV(p) = A(ρ), (B.1)

where
A(ρ) :=

µV(Bρ(p0))
ρ2 +

1
4

ˆ
Bρ(p0)

|H|2 dµV(p) + Rp0,ρ, (B.2)

and

Rp0,ρ :=
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p) +
1
2

ˆ
Bρ(p0)

( 1
|p − p0|

2 −
1
ρ2

)
(p − p0) dσV(p)

=:
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p) + Tp0,ρ.

(B.3)
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In particular the function ρ 7→ A(ρ) is non-decreasing.
From now on, let us assume that the support suppσV ⊂ S , where S is compact and |σV |(S ) < +∞.

We also assume that

lim sup
R→∞

µV(BR(0))
R2 ≤ K < +∞.

We have that ∣∣∣∣∣∣
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p)

∣∣∣∣∣∣ ≤
(
µV(Bρ(p0))

ρ2

) 1
2
ˆ

Bρ(p0)
|H|2 dµV

 1
2

≤
ε

2
µV(Bρ(p0))

ρ2 +
2
ε

ˆ
Bρ(p0)

|H|2 dµV .

(B.4)

If d(p0, S ) ≥ δ we have that∣∣∣∣∣∣
ˆ

Bρ(p0)

( 1
|p − p0|

2 −
1
ρ2

)
(p − p0) dσV(p)

∣∣∣∣∣∣ ≤
(
1
δ

+
1
ρ

)
|σV |(S ∩ Bρ(p0)). (B.5)

In particular the monotone function A(ρ) evaluated at p0 < S is bounded below and there exists finite
the limit limρ↘0 A(ρ).

Keeping p0 < S (B.1) implies that

µV(Bσ(p0))
σ2 ≤

µV(Bρ(p0))
ρ2 +

1
4

ˆ
Bρ(p0)

|H|2 dµV(p) + Rp0,ρ − Rp0,σ

≤
µV(Bρ(p0))

ρ2 +
1
4
W(V) +

(
µV(Bρ(p0))

ρ2

) 1
2

W(V)
1
2 − Tp0,σ +

(
1
δ

+
1
ρ

)
|σV |(S ∩ Bρ(p0))

+
ε

2
µV(Bσ(p0))

σ2 +
2
ε
W(V)

(B.6)
Letting ρ→ ∞ and σ < δ in (B.6) we get that Tp0,σ = 0 and

µV(Bσ(p0))
σ2 ≤ C(δ,K,W(V)) < +∞ ∀ 0 < σ < δ, (B.7)

Letting ρ→ 0 in (B.4) and using (B.7) we get that

lim
ρ→0

∣∣∣∣∣∣
ˆ

Bρ(p0)

〈 ~H, p − p0〉

ρ2 dµV(p)

∣∣∣∣∣∣ = 0. (B.8)

Therefore we see that if p0 ∈ R
3 \ S , then

∃ lim
σ↘0

µV(Bσ(p0))
σ2 = πθV(p0) ≤ C(δ, |σV |(S ),K,W(V)). (B.9)

Moreover, consider p0 ∈ R
3\S and a sequence pk → p0; let ρ ∈ (0, d(p0, S )/2) and call ρ0 = d(p0, S )/2,
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then by (B.1) we have that

µV(Bρ(p0))
ρ2 ≥ lim sup

k

µV(Bρ(pk))
ρ2 ≥ lim sup

k
πθV(pk) − Rpk ,ρ −

1
4

ˆ
Bρ(pk)

|H|2 dµV

≥ lim sup
k

πθV(pk) −
ˆ

B2ρ(p0)

|H|
ρ

dµV −
1
4

ˆ
B2ρ(pk)

|H|2 dµV

≥ lim sup
k

πθV(pk) −
(
µV(B2ρ(p0))

ρ2

) 1
2
ˆ

B2ρ(p0)
|H|2 dµV

 1
2

−
1
4

ˆ
B2ρ(pk)

|H|2 dµV

≥ lim sup
k

πθV(pk) −
(
C(2ρ0, |σV |(S ),K,W(V)) +

1
4

) ˆ
B2ρ(p0)

|H|2 dµV

 1
2

,

(B.10)

and thus letting ρ↘ 0 suitably we get

θV(p0) ≥ lim sup
k

θV(pk), (B.11)

i.e., the multiplicity function θV is upper semicontinuous on R3 \ S . Since θV is integer valued, the set
{p ∈ R3\S | θv(p) ≥ 1

2 } is closed in R3\S . Therefore we can take the closed set M = {p ∈ R3\S | θv(p) ≥
1
2 } ∪ S as the support of V .

A particular case of our analysis can be summarized in the following statement.

Proposition B.1. Let V be a 2-dimensional integer rectifiable curvature varifold with boundary.
Denote by σV the generalized boundary and by S a compact set containing the support suppσV .
Assume that

W(V) < +∞, lim sup
R→∞

µV(BR(0))
R2 ≤ K < +∞,

and S is a compact 1-dimensional manifold withH1(S ) < +∞. Then the limit

lim
ρ↘0

µV(Bρ(p))
ρ2

exists at any point p ∈ R3 \S , the multiplicity function θV(p) = limρ↘0
µV (Bρ(p))

ρ2 is upper semicontinuous
on R3 \ S and bounded by a constant C(d(p, S ), |σV |(S ),K,W(V)) depending only on the distance
d(p, S ), |σV |(S ), K and W(V). Moreover V = v(M, θV) where M = {p ∈ R3 \ S | θv(p) ≥ 1

2 } ∪ S is
closed.

Also, we can derive the following consequence.

Corollary B.2. Let V = v(M, θV) be a 2-dimensional integer rectifiable curvature varifold with
boundary with W(V) < +∞. Denote by σV the generalized boundary and by S a compact set
containing the support suppσV . Assume that S is a compact 1-dimensional manifold with
H1(S ) < +∞. Then

M ess. unbounded ⇔ lim sup
ρ→∞

µV(Bρ(0))
ρ2 ≥ π, (B.12)

where M essentially unbounded means that for every R > 0 there is Br(x) ⊂ R3 \ BR(0) such that
µV(Br(x)) > 0.

Moreover, in any of the above cases the limit limρ→∞
µV (Bρ(0))

ρ2 ≥ π exists.
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Proof. Suppose that M is essentially unbounded. We can assume that lim supρ→∞
µV (Bρ(0))

ρ2 ≤ K < +∞.
Then∣∣∣∣∣∣

ˆ
Bρ(0)

1
ρ2 〈

~H, p〉 dµV

∣∣∣∣∣∣ ≤ 1
ρ2

ˆ
Bσ(0)
|H||p| dµV(p) +

ˆ
Bρ(0)\Bσ(0)

|H||p| dµV(p)


≤
σ

ρ2

√ˆ
Bσ(0)
|H|2 dµV

√
µV(Bσ(0)) +

√
µV(Bρ(0))

ρ2

√ˆ
Bρ(0)\Bσ(0)

|H|2 dµV

for any 0 < σ < ρ < +∞. Passing to the lim supρ→∞ and then to σ→ ∞, we conclude that

lim
ρ→∞

∣∣∣∣∣∣
ˆ

Bρ(0)

1
ρ2 〈

~H, p〉 dµV

∣∣∣∣∣∣ = 0.

Hence, assuming without loss of generality that 0 < S , the monotone quantity A(ρ) evaluated on V
with base point 0 gives

∃ lim
ρ→∞

A(ρ) =W(V) +
1
2

ˆ
p
|p|2

dσV(p) + lim sup
ρ→∞

µV(Bρ(0))
ρ2 ,

and thus ∃ limρ→∞
µV (Bρ(0))

ρ2 ≤ K < +∞. Also the assumptions of Proposition B.1 are satisfied and we
can assume that M is closed.

We can prove that M has at least one unbounded connected component. In fact any compact
connected component N of M defines a varifold v(N, θV |N) with generalized mean curvature; now if
S ∩ N = ∅ thenW(N) ≥ 4π, and thus there are finitely many compact connected components without
boundary, if instead S ∩ N , ∅, S ⊂ BR0(0) by compactness, and ∃ p0 ∈ N \ Br(0) for r > R0 but N is
compact, then the monotonicity formula applied on v(N, θV |N) at point p0 gives

π ≤ lim
σ→0

Av(N,θV |N )(σ) ≤ lim
ρ→∞

Av(N,θV |N )(ρ) ≤
1
4
W(v(N, θV |N)) +

1
2
|σV |(S )
r − R0

. (B.13)

Since M is essentially unbounded, if any connected component of M is compact we would find
infinitely many compact connected components N, points p0 ∈ N, and r arbitrarily big in (B.13) so
that the Willmore energy of any such N is greater than 2π, implying thatW(V) = +∞.

As M has a connected unbounded component, for any ρ sufficiently large there is xρ ∈ M ∩ B2ρ(0).
Applying the monotonicity formula on V at xρ for ρ sufficiently big so that S ⊂ Bρ(0) we get that

π ≤ lim
σ→0

A(σ) ≤
µV(Bρ(xρ))

ρ2 +
1
4

ˆ
Bρ(xρ)

|H|2 dµV +
1
ρ

ˆ
Bρ(xρ)

|H| dµV

≤ 9
µV(B3ρ(0))

(3ρ)2 +
1
4

ˆ
R3\Bρ(0)

|H|2 dµV + ε
µV(Bρ(xρ))

ρ2 + Cε

ˆ
Bρ(xρ)

|H|2 dµV ,

that implies that

lim
ρ→∞

µV(Bρ(0))
ρ2 ≥

π

9 + ε
,
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for any ε > 0.
Consider now any sequence Rn → ∞ and the sequence of blow-in varifolds given by

Vn = v
(

M
Rn
, θn

)
,

where θn(x) = θV(Rnx). Since

µVn(BR(0)) =
1
R2

n
µV(BRnR(0)) =

1
(RRn)2µV(BRRn(0))R2 ≤ K′R2

is bounded for any R > 0,W(Vn) =W(V), and |σVn |(R
3) → 0, by the classical compactness theorem

of rectifiable varifolds (Theorem 42.7 in [30]) we get that Vn converges to an integer rectifiable varifold
W (up to subsequence). Also W , 0, in fact 0 ∈ suppW by the fact that

µW(B1(0)) ≥ lim inf
n

µVn(B1(0)) = lim inf
n

µV(BRn(0))
R2

n
≥
π

9
.

We have that W is stationary, in fact for any r > 0 we have thatˆ
R3\Br(0)

|HW |
2 dµW ≤ lim inf

n

ˆ
R3\Br(0)

|HVn |
2 dµVn = lim inf

n

ˆ
R3\BRnr(0)

|HV |
2 dµV = 0.

Also σW = 0, in fact for any X ∈ C0
c (R3) the convergence of the first variation reads

lim
n
−2
ˆ
〈HVn , X〉 dµVn +

ˆ
X dσVn = lim

n
−2
ˆ
〈HVn , X〉 dµVn =

ˆ
X dσV ,

and suppσV ⊂ {0}. Taking X = ΛmY for Y ∈ C0
c (R3) and

Λm(p) =

1 − md(p, 0) d(p, 0) ≤ 1
m ,

0 d(p, 0) > 1
m ,

we see that ∣∣∣∣∣ˆ 〈HVn , X〉 dµVn

∣∣∣∣∣ =

∣∣∣∣∣∣∣
ˆ

B 1
m

(0)
〈HVn ,ΛmY〉 dµVn

∣∣∣∣∣∣∣ ≤ ‖Y‖∞W(V)
1
2

(
K′

1
m2

) 1
2

,

and thus ˆ
Y dσV = lim

n
−2
ˆ
〈HVn ,ΛmY〉 dµVn = lim

m→∞
lim

n
−2
ˆ
〈HVn ,ΛmY〉 dµVn = 0,

for any Y ∈ C0
c (R3).

Finally the monotonicity formula applied on W gives

lim
n

µV(Rn(0))
R2

n
≥ lim inf

n
µVn(B1(0)) ≥ µW(B1(0)) ≥ lim

σ→0
AW(σ) ≥ π.

�
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