Research article Special Issues

A "nonlinear duality" approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model

  • Received: 20 April 2022 Revised: 13 February 2023 Accepted: 05 April 2023 Published: 09 May 2023
  • In this paper, we prove existence of distributional solutions of a nonlinear elliptic system, related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of elliptic equations) proved by Guido Stampacchia and Neil Trudinger.

    Citation: Lucio Boccardo. A 'nonlinear duality' approach to $ W_0^{1, 1} $ solutions in elliptic systems related to the Keller-Segel model[J]. Mathematics in Engineering, 2023, 5(5): 1-11. doi: 10.3934/mine.2023085

    Related Papers:

  • In this paper, we prove existence of distributional solutions of a nonlinear elliptic system, related to the Keller-Segel model. Our starting point is the boundedness theorem (for solutions of elliptic equations) proved by Guido Stampacchia and Neil Trudinger.



    加载中


    [1] P. Bénilan, L. Boccardo, T. Gallouët, R. Gariepy, M. Pierre, J. L. Vazquez, An $L^1$ theory of existence and uniqueness of weak solutions of nonlinear elliptic equations, Ann. Sc. Norm. Super. Pisa Cl. Sci., 22 (1995), 241–273.
    [2] L. Boccardo, Some developments on Dirichlet problems with discontinuous coefficients, Boll. Unione Mat. Ital., 2 (2009), 285–297.
    [3] L. Boccardo, Dirichlet problems with singular convection term and applications, J. Differ. Equations, 258 (2015), 2290–2314. https://doi.org/10.1016/j.jde.2014.12.009 doi: 10.1016/j.jde.2014.12.009
    [4] L. Boccardo, A failing in the Calderon-Zygmund theory of Dirichlet problems for linear equations with discontinuous coefficients, Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur., 26 (2015), 215–221. https://doi.org/10.4171/RLM/703 doi: 10.4171/RLM/703
    [5] L. Boccardo, G. Croce, Elliptic partial differential equations. Existence and regularity of distributional weak solutions, Berlin: De Gruyter, 2014. https://doi.org/10.1515/9783110315424
    [6] L. Boccardo, G. Croce, L. Orsina, Nonlinear degenerate elliptic problems with $W^{1, 1}_{0}$ solutions, Manuscripta Math., 137 (2012), 419–439. https://doi.org/10.1007/s00229-011-0473-6 doi: 10.1007/s00229-011-0473-6
    [7] L. Boccardo, T. Gallouët, Nonlinear elliptic and parabolic equations involving measure data, J. Funct. Anal., 87 (1989), 149–169. https://doi.org/10.1016/0022-1236(89)90005-0 doi: 10.1016/0022-1236(89)90005-0
    [8] L. Boccardo, T. Gallouët, Nonlinear elliptic equations with right hand side measures, Commun. Part. Diff. Eq., 17 (1992), 641–655.
    [9] L. Boccardo, T. Gallouet, $W_0^{1, 1}$ solutions in some borderline cases of Calderon–Zygmund theory, J. Differ. Equations, 253 (2012), 2698–2714. https://doi.org/10.1016/j.jde.2012.07.003 doi: 10.1016/j.jde.2012.07.003
    [10] L. Boccardo, L. Orsina, Sublinear elliptic systems with a convection term, Commun. Part. Diff. Eq., 45 (2020), 690–713. https://doi.org/10.1080/03605302.2020.1712417 doi: 10.1080/03605302.2020.1712417
    [11] L. Boccardo, L. Orsina, Existence of weak solutions for some elliptic systems, Pure Appl. Anal., 4 (2022), 517–534. https://doi.org/10.2140/paa.2022.4.517 doi: 10.2140/paa.2022.4.517
    [12] D. Gilbarg, N. S. Trudinger, Elliptic partial differential equations of second order, Berlin, Heidelberg: Springer, 2001. https://doi.org/10.1007/978-3-642-61798-0
    [13] P. Hartman, G. Stampacchia, On some nonlinear elliptic differential–functional equations, Acta Math., 115 (1966), 271–310. https://doi.org/10.1007/BF02392210 doi: 10.1007/BF02392210
    [14] D. Horstmann, From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Ⅰ, Jahresber. Deutsch. Math.-Verein., 105 (2003), 103–165.
    [15] T. Hillen, K. J. Painter, A user's guide to PDE models for chemotaxis, J. Math. Biol., 58 (2009), 183–217. https://doi.org/10.1007/s00285-008-0201-3 doi: 10.1007/s00285-008-0201-3
    [16] E. F. Keller, L. A. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theor. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
    [17] E. F. Keller, L. A. Segel, Model for chemotaxis, J. Theor. Biol., 30 (1971), 225–234. https://doi.org/10.1016/0022-5193(71)90050-6 doi: 10.1016/0022-5193(71)90050-6
    [18] C. Leone, A. Porretta, Entropy solutions for nonlinear elliptic equations in $L^1$, Nonlinear Anal., 32 (1998), 325–334. https://doi.org/10.1016/S0362-546X(96)00323-9 doi: 10.1016/S0362-546X(96)00323-9
    [19] G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Annales de l'Institut Fourier, 15 (1965), 189–258. https://doi.org/10.5802/aif.204 doi: 10.5802/aif.204
    [20] N. S. Trudinger, Linear elliptic operators with measurable coefficients, Ann. Scuola Norm. Sup. Pisa, 27 (1973), 265–308.
    [21] N. S. Trudinger, On imbeddings into Orlicz spaces and some applications, Indiana Univ. Math. J., 17 (1967), 473–483.
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(997) PDF downloads(116) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog